韓天成, 張振飛, 呂新彪, 盧守卿
(1.河南省地礦局第一地質(zhì)勘查院,河南南陽 473000;2.中國地質(zhì)大學(xué)(武漢)資源學(xué)院,湖北武漢 430074)
東天山中段位于塔里木板塊北部邊緣,地質(zhì)構(gòu)造復(fù)雜,包括有色金屬在內(nèi)的礦產(chǎn)資源豐富,屬我國新一輪礦產(chǎn)勘查重點攻關(guān)地區(qū)(崔彬等,2008)。多年來眾多科研、地勘單位在該區(qū)投入大量勘查工作,取得顯著成效,先后發(fā)現(xiàn)了土屋-延?xùn)|和赤湖斑巖型銅礦、維權(quán)矽卡巖型銀銅礦、黑尖山和路白山火山巖型銅礦等一系列重要礦床(潘成澤等,2005)。區(qū)域化探在該區(qū)礦產(chǎn)勘查中起到十分極積的作用,覆蓋全區(qū)的1/20萬水系沉積物/土壤測量數(shù)據(jù)為找礦提供了豐富信息。為改善區(qū)域化探找礦效果,有效識別礦致異常,已在該區(qū)進行了不少勘查地球化學(xué)研究。代表性工作如新疆地質(zhì)調(diào)查研究院用襯度方法圈定了Au、Cu、Pb、Zn等主要成礦元素地球化學(xué)異常,編制了12種元素地球化學(xué)塊體分布圖和成礦遠景圖;中國冶金地質(zhì)西北勘查局張年生等利用特定粒級(2~10mm)、多點采樣法在康古爾地區(qū)進行1∶5萬巖屑地球化學(xué)普查,相繼發(fā)現(xiàn)了銅、金銀等地表礦(化)體(莊道澤等,2005;王虹等,2007)。這些工作豐富了該區(qū)化探異常識別技術(shù),提高了化探異常示礦規(guī)律性的認(rèn)識。
勘查地球化學(xué)數(shù)據(jù)所反映的成礦相關(guān)元素分布,既受一定地區(qū)成礦地質(zhì)條件控制,也經(jīng)歷了各種后生和表生過程的長期影響(阮天健等,1985)?;綌?shù)據(jù)的復(fù)雜性使得一些傳統(tǒng)的較簡單的數(shù)據(jù)處理方法效果受到限制,化探異常作為找礦標(biāo)志往往表現(xiàn)出不確定性。本區(qū)也不例外,有異常而無礦或無異常而有礦的情況常見。因此,探討更好地適合于不同地區(qū)具體情況的化探數(shù)據(jù)處理方法一直是深受重視的研究課題(王桂琴等,2002)。綜觀前人研究,本區(qū)該領(lǐng)域中尚存在一些重要問題需進一步探討。一是目前圈定化探異常多采用單個元素豐度或襯度,通過不同元素的空間疊加來圈定綜合異常。這雖已考慮了不同元素之間的相關(guān)性,但對相關(guān)性的描述缺乏定量,對不同元素在綜合異常中的重要性一視同仁,指示元素組合的選擇缺乏客觀性;二是在對各種元素及元素組合相關(guān)性的研究方面,偏重豐度相關(guān)關(guān)系,而空間相關(guān)多被忽略。研究空間相關(guān)性,這里指研究元素組合的空間變化尺度、幅度和方向性,這將比單個元素的空間分布更有利于反映化探異常與地質(zhì)因素之間的關(guān)系,從而可能更好地圈定示礦異常。
鑒于以上情況,本文以東天山中段地區(qū)銅礦找礦為目標(biāo),將因子分析與泛克立格法相結(jié)合,針對銅礦床的不同成因類型建立指示元素組合,通過分析元素組合的空間分布規(guī)律及其與地質(zhì)因素的關(guān)系圈定異常。結(jié)果表明該方法可明顯提高化探異常示礦的有效性,較好地反映化探元素空間分布的規(guī)律性,為該區(qū)地質(zhì)成礦研究提供新信息。
研究區(qū)內(nèi)地質(zhì)情況十分復(fù)雜,出露地層有中元古界、晚古生界、中生界和新生界,其中晚古生界最為發(fā)育。褶皺構(gòu)造在太古界、古元古界屬緊閉型,中上元古界為長條帶疏緩型,古生界為短軸開闊型。區(qū)內(nèi)主干斷裂從北到南依次為大草灘斷裂、康古爾塔格斷裂、阿齊克庫都克斷裂和卡瓦布拉克斷裂,以東西向為主,北東東向為次,控制了本區(qū)巖漿活動-成礦作用(圖1)。大草灘斷裂以北主要為泥盆系大草灘組火山巖和火山沉積巖;阿齊克庫都克斷裂以北和康古爾斷裂以南地區(qū)主要出露石炭紀(jì)濱-淺海相火山-沉積巖系;卡瓦布拉克斷裂帶附近為石炭紀(jì)低綠片巖相-埋藏變質(zhì)的碎屑-富鎂碳酸鹽沉積建造。區(qū)內(nèi)巖漿活動頻繁,晚古生代侵入巖廣泛分布,從深成巖到淺成巖,從超基性巖到酸性巖均有出露,其中以華力西中晚期花崗巖最為發(fā)育?;裕詭r體主要分布于黃山、土屋和延?xùn)|地區(qū),花崗巖類主要分布于康古爾、黃山和南北大溝附近(Chen W M et al.,2002;韓春明,2003;高珍權(quán)等,2006)。
研究區(qū)內(nèi)已發(fā)現(xiàn)多處多種類型的銅或含銅礦產(chǎn)地,主要包括(1)斑巖型銅礦,主要沿康古爾斷裂以北分布,以土屋、延?xùn)|大型銅礦、赤湖銅(鉬)礦等為代表,礦化以細脈浸染狀-浸染狀為主;(2)熱液型(含矽卡巖型)礦床,主要沿康古爾斷裂以南分布,以維權(quán)中型銀銅礦和阿拉塔格銅礦為代表,有關(guān)侵入巖主要為鈣堿性系列巖石,包括花崗巖-斜長花崗巖-花崗閃長巖-閃長巖,巖石成因多為同熔型; (3)火山巖型銅礦,以黑尖山、路白山銅礦為代表,銅礦體多與磁鐵礦體共生,顯示上鐵下銅的規(guī)律; (4)巖漿型銅鎳硫化物礦床,有紅嶺、企鵝山銅鎳礦等,礦化以巖漿熔離成礦為主,形成稀疏浸染狀、稠密浸染狀、海綿隕鐵狀礦化,局部見受構(gòu)造控制的貫入式富礦體(韓春明等,2002;秦克章等,2003;Song Lin-Shan et al.,2008)。
因子分析是識別和定量評價區(qū)域地球化學(xué)異常的一種有力工具 。因子分析從數(shù)據(jù)矩陣中獲取多個主因子。主因子是多變量(元素)協(xié)方差矩陣的正交(獨立)的特征向量,是多元素的線性組合,每個主因子都可能反映一定的成因意義,這些成因意義的具體內(nèi)可以結(jié)合成礦地球化學(xué)知識,通過分析元素組合情況而加以判斷,便于地質(zhì)研究(趙鵬大,2004)。因此,通過因子分析可以獲得代表不同成因意義的元素組合,即獲得對不同成因類型具有針對性的指示元素組合。
為了查明對不同類型銅礦具有針對性的指示元素組合,需要從覆蓋全區(qū)的化探測量點中選出一批與礦床空間關(guān)系密切的樣品(化探測量點)作為訓(xùn)練樣品,來建立元素組合模型。我們從研究區(qū)內(nèi)16個典型的銅礦床(點)處及其周圍選取共331個數(shù)據(jù)點作為訓(xùn)練樣品點。這些礦床(點)包含了斑巖型、熱液型(含矽卡巖型)、火山巖型和巖漿銅鎳硫化物型4種類型(見表1)。
表1 用于控制選取訓(xùn)練樣品點的銅礦床(點)信息點Table 1 Copper deposit information used to select training samples
圖1 東天山中段地質(zhì)礦產(chǎn)簡圖(據(jù)新疆地質(zhì)調(diào)查院,2004修編)Fig.1 Simplified map showing geology and deposits of the middle section of East Tian Shan (modified from Xinjiang Institute of Geological Survey,2004)1-第四系;2-第三系河湖相碎屑巖;3-石炭紀(jì)花崗巖;4-西山窯組砂巖;5-大南湖組玄武質(zhì)凝灰?guī)r、火山角礫巖、灰?guī)r和大理巖;6-石炭紀(jì)花崗閃長巖;7-白山包組粉砂巖、砂巖;8-星星峽群變質(zhì)巖、片麻巖及片巖;9-底坎爾組中基性火山巖;10-雅滿蘇組陸源碎屑巖、灰?guī)r夾火山碎屑巖;11-泥盆紀(jì)二長花崗巖、黑云母二長花崗巖;12-愛爾基干群白云質(zhì)灰?guī)r及大理巖;13-青白口紀(jì)二長花崗巖、黑云母二長花崗巖;14-梧桐窩子組中基性火山巖;15-阿爾皮什麥布拉克組碎屑巖、灰?guī)r、安山玢巖、凝灰?guī)r、硅質(zhì)巖、片巖; 16-頭蘇泉組凝灰?guī)r、碎屑巖夾中酸性火山巖;17-干墩組深灰硅質(zhì)巖、泥質(zhì)巖、碎屑巖夾酸性火山巖;18-阿其克布拉克組碎屑巖、灰?guī)r;19-卡瓦布拉克群碳酸鹽巖;20-二疊紀(jì)花崗巖;21-二疊紀(jì)閃長巖;22-石炭紀(jì)鉀長花崗巖;23-加波薩爾組灰?guī)r和安山玢巖;24-斷(層)裂;25-地層界線;26-實測逆沖推覆斷層;27-地殼拼接斷裂帶;28-板塊結(jié)合帶1-Quaternary;2-Tertiary fluvial-lacustrine facies detrital rocks;3-Carboniferous granite;4-Xishanyao Formation sandstone;5-Dananhu Formation basalt tuff,volcanic breccia,limestone and marble;6-Carboniferous granodiorite;7-Baishanbao Formation siltstone and sandstone; 8-metamorphic,gneiss and schist of Xingxingxia Formation;9-Dikaner Formation basic-intermediate volcanic rocks;10-Yamansu Formation terrigenous clastic rock,limestone and pyroclastic rock;11-Devonian adamellite and biotite adamellite;12-dolomitic limestone and marble of Aierjigan Formation;13-Qingbaikou period adamellite and biotite adamellite;14-Wutongwozi Formation basic-intermediate volcanic rocks;15-Arpishmebulaq Formation clastic rock,limestone,andesitic porphyrite,tuff,siliceous and schist;16-Tousuquan Formation tuff,clastic rock and intermediate-acid volcanic rocks;17-Gandun Formation siliceous,pelite,clastic rock and acidic volcanic rock;18-Aqikebulake Formation clastic rock and limestone;19-carbonate rocks of Kawabulak Group;20-Permian granite;21-Permian diorite;22-Carboniferous moyite;23-Jiabosar Formation limestone and andesitic porphyrite;24-fault;25-strata boundary;26-measured thrust nappe fault;27-crustal splicing fault zone;28-plate junction zone
根據(jù)該區(qū)成礦地質(zhì)特征,我們從原始數(shù)據(jù)中選擇Cu、Co、Mn、Ni、Pb、Zn、Fe、Cr、Hg、As、Ag、V、Mo等13種元素進行因子分析。為了統(tǒng)一各變量(元素)量綱,首先將原始數(shù)據(jù)進行標(biāo)準(zhǔn)化處理(即對各元素所有數(shù)據(jù),每個數(shù)據(jù)減去該元素的平均值并除以該元素的標(biāo)準(zhǔn)差),結(jié)果使所有數(shù)據(jù)接近于服從標(biāo)準(zhǔn)正態(tài)分布(紀(jì)宏金等,2001)。由13個變量、331個樣品的標(biāo)準(zhǔn)化數(shù)據(jù)矩陣算出13個變量的協(xié)方差矩陣,然后用雅可比法求出該矩陣的13個特征值和特征向量。該13個特征向量構(gòu)成了因子載荷矩陣。為了易于解釋將因子載荷矩陣進行正交旋轉(zhuǎn)。各因子(即旋轉(zhuǎn)后的特征向量)所對應(yīng)特征值的相對大小反映了該因子的方差貢獻大小。由于因子分析是一種人們熟知的方法,這里未列出其各步計算公式。選擇方差貢獻最大的前4個因子(特征值>1)作為最后得到的指示元素組合,按重要性(方差貢獻)大小分別用F1,F(xiàn)2,F(xiàn)3,F(xiàn)4表示。由于在進行因子分析時,訓(xùn)練樣本是圍繞典型礦床選擇的,故可認(rèn)為這些因子所代表的元素組合與不同類型礦化的元素組合有一定對應(yīng)關(guān)系,同時也與礦化所處的地質(zhì)背景關(guān)系密切。各因子載荷見表2,其中F1,F(xiàn)2,F(xiàn)3,F(xiàn)4各因子(列)分別代表一種多元素定量組合;根據(jù)載荷相對大小,結(jié)合成礦地球化學(xué)知識,可以解釋判斷各因子的成因意義。解釋判斷結(jié)果見表3。
表2 正交旋轉(zhuǎn)因子載荷矩陣及因子方差貢獻值Table 2 Rotated orthogonal factors and their variance contributions
表3 主因子的地質(zhì)成因解釋Table 3 Geologic interpretations for main factors
第一主因子(F1)實際上反映了巖漿型和斑巖型兩類礦化。這兩類的空間分布比較接近(特別在大草灘斷裂一帶),物質(zhì)成分上有某種相似性(表現(xiàn)為含銅礦斑巖體為I型花崗斑巖,斑巖巖漿和成礦溶液是同源巖漿分異產(chǎn)物,來源于地殼深部或上地幔(王福同等,2001);同時這兩類礦化都是巖體含礦,相關(guān)的礦化元素組合在空間上分布較廣,故因子分析未能區(qū)分這兩類礦化。在這種情況下,F(xiàn)1因子組合異常所指示的礦化類型需要結(jié)合具體地質(zhì)條件才能確定。同時應(yīng)注意,該組合中Fe、Mn及V載荷較高,反映了與區(qū)內(nèi)鐵礦關(guān)系密切的銅礦化(以路白山銅鐵礦為代表)。
第二主因子(F2)為中低溫元素組合,主要反映該地區(qū)碳酸鹽巖-細碎屑巖建造等地質(zhì)背景以及與其有關(guān)的后期熱液作用及可能的鉛鋅多金屬礦床(莊道澤,2005)。由于該組合中銅不占有重要位置,因此在后面圈定組合異常時將不再考慮。
第三主因子(F3)反映該地區(qū)與中基性火山巖、火山碎屑巖及正常沉積碎屑巖建造等有關(guān)的火山巖型銅礦,其中Ni、Cr的相對富集可能反映偏基性火山巖存在。
第四主因子(F4)主要反映與熱液作用有關(guān)的熱液型及矽卡巖型銅-多金屬礦化,從Mo、Cu、As到Hg,可能反映了較大的成礦溫度變化。其中,Mo相對富集反映出斑巖型銅(鉬)礦床特征(木合塔爾·扎日等,2004)。
上述因子分析得到3個與銅礦化關(guān)系密切的指示元素組合。為了了解每個取樣點上這些元素組合的出現(xiàn)情況,可計算每個樣點對于每個因子的因子得分。因子得分是樣點上各元素標(biāo)準(zhǔn)化含量的一種加權(quán)和,其中權(quán)系數(shù)是對應(yīng)于各元素的因子載荷,并考慮了各元素之間的相關(guān)系數(shù)。算出每個取樣點上每種指示元素組合的因子得分,可做出區(qū)內(nèi)各指示元素組合的等值線圖,以反映這些組合的空間分布情況。圖2、3、4分別為F1、F3和F4的因子得分等值線圖。
圖4 F4因子得分圖Fig.4 Contour map showing factor scores of F4
從3張因子得分等值線圖可以看出:不同的元素組合有不同的空間分布特點:3個因子的得分高值區(qū)在空間位置上有明顯的差異。因子F1的高值區(qū)主要有兩處,一處在土屋、延?xùn)|和靈龍地區(qū),是基性-超基性雜巖體和I-型花崗斑巖體出露區(qū),主要分布著斑巖型銅(鉬)礦床及巖漿型銅-鎳礦床;另一處沿阿其克庫都克斷裂分布,可能主要反映與中基-中酸性火山巖建造有關(guān)的鐵礦、銅鐵礦或鐵銅礦(王福同等,2001;莊道澤,2005)。F3因子的高值區(qū)主要位于阿其克庫都克斷裂與康古爾斷裂之間破碎帶(或韌性剪切帶),與中基性火山巖分布比較一致;F4因子高值區(qū)主要沿康古爾斷裂南側(cè)分布,是中酸性侵入巖比較發(fā)育地區(qū)。不同元素組合空間分布既有一定程度的重疊,也各自有一定的獨立性,都受地質(zhì)構(gòu)造-建造控制,并與主要礦化類型的分布比較吻合。這說明由主因子所代表的元素組合比單個元素能更好地反映地質(zhì)成礦規(guī)律。
對于各個因子得分值,給定其異常下限,可以圈定各個因子組合元素異常。但是,這種圈定組合異常的方法雖然考慮了各元素之間的相關(guān)性及與礦化的關(guān)系,但仍存在一些問題。一是異常下限取為常數(shù),忽略了元素組合空間分布的區(qū)域非平穩(wěn)性(即元素的分布有某種變化趨勢),二是忽略了元素分布在區(qū)內(nèi)可能存在的各向異性(即不同方向上元素豐度的變化幅度和尺度可能不同)。這些問題都有可能造成異常圈定的不客觀,影響其找礦效果,也不利于結(jié)合地質(zhì)背景進行解釋。為了克服這些問題,我們對因子得分進行泛克立格分析。
對任一元素組合,泛克立格法首先對覆蓋全區(qū)的因子得分進行結(jié)構(gòu)分析,建立其變差函數(shù)模型,查明其空間變化的各向異性;然后考慮可能存在的趨勢變化,通過最優(yōu)無偏插值算出每個樣品點上因子得分的趨勢性(稱為漂移)和局部性(稱為剩余)兩種克立格估值。其中漂移可看作背景值,剩余估值可看作異常值,用于圈定地球化學(xué)異常。這樣的異常圈定方法其下限隨空間位置而變,取決于漂移(燕長海,1991;張先容等,1993;黃競先等,1994)。限于篇幅這里略去詳細計算過程,僅列出計算結(jié)果并進行分析討論。
結(jié)構(gòu)分析結(jié)果以第一主因子(F1)為例加以說明。利用實驗變差函數(shù)分析地球化學(xué)元素空間變化特點,即方向性、幅度、連續(xù)性及影響范圍。采用取樣間距4km為步長,角度容差22.5°,帶寬2km,用球狀模型擬合變差函數(shù)。圖5是F1因子得分在0° (南北向)、45°(北東-南西向)、90°(東西向)、135° (北西-南東向)四個方向上的實驗變差圖。
圖5 F1因子得分變差圖(橫坐標(biāo)為距離km;縱坐標(biāo)為變差)Fig.5 Variogram of factor scores for F1
由圖5可見,F(xiàn)1在不同方向上有不同的基臺值(即曲線趨于平緩部分的變差值),反映不同方向上元素豐度的變化幅度不一樣(基臺值越大,元素的變化幅度越大)。南北向(0°)變化幅度最大,東西向(90°)最小。這表明銅礦化在南北方向上變化較劇烈,連續(xù)性較差,而在近東西向則相反。這符合礦化受特定地質(zhì)因素控制、具有東西向帶狀分布的特征,與該區(qū)內(nèi)近東西向斷裂構(gòu)造帶為主要導(dǎo)礦、貯礦構(gòu)造的成礦規(guī)律一致。在結(jié)構(gòu)分析基礎(chǔ)上,采用2次漂移,對F1、F3、F4因子得分計算泛克立格剩余估值,得到該3種元素組合異常圖,如圖6、7、8。
F1組合異常(圖6)主要受近東西向斷裂構(gòu)造控制,異常分布較集中,濃集程度高,反映了康古爾大斷裂和大草灘斷裂控制銅礦床(點)分布、阿其克庫都克斷裂控制(含銅)鐵礦床(點)分布的規(guī)律性。另外,卡瓦布拉克斷裂帶附近呈帶狀分布的一些弱異常得到加強。
F3組合異常(圖7)呈串珠狀分布在中基性火山巖、火山碎屑巖及正常沉積碎屑巖區(qū)域,與火山巖型礦床的空間分布比較一致。
F4組合異常(圖8)主要沿康古爾大斷裂呈近東西向帶狀分布,與巖漿熱液型、矽卡巖型銅礦床分布比較一致。在土屋、延?xùn)|和靈龍礦床附近出現(xiàn)一些弱異常,可能說明這些斑巖型礦床也有熱液型特征,是斑巖型礦床中有疊加成礦作用的反映(芮宗瑤等,2001)。
三類異??臻g分布基本不重疊,反映不同局部地區(qū)主要控礦因素及礦床類型的差異。
為進一步說明上述方法的優(yōu)勢,下面列出一個用傳統(tǒng)簡單方法圈定化探異常的例子,以便比較。過去較為常用的一類方法,是作出成礦相關(guān)元素豐度等值線圖,并選定一個閥值(如平均值+2倍標(biāo)準(zhǔn)差)作為異常下限直接圈定異常。在這種框架下,對于找銅礦來說,銅元素異常當(dāng)然被認(rèn)為是主要的異常。圖9是用這種簡單方法圈定的銅異常圖。比較圖9與圖6、7、8,可看出本文所述方法與傳統(tǒng)簡單方法的結(jié)果有以下一些明顯的不同之處。一是能夠使強異常處更加突出顯示,從而反映控礦地質(zhì)因素,如圖6中大草灘斷裂處大面積異常極其突出,反映了康古爾大斷裂和大草灘斷裂控制銅礦床(點)分布,而圖9中異常只呈現(xiàn)串珠狀分布;二是局部出現(xiàn)一些“新類型”礦化異常區(qū),如圖8中維權(quán)、小尖山附近出現(xiàn)一些與巖漿熱液型、矽卡巖型有關(guān)的礦化異常,而圖9中卻沒顯示出來;三是能夠使弱緩異常得到加強,如圖6中在阿其克庫都克斷裂東部路白山附近出現(xiàn)一些弱異常。這有力說明本文所述方法在反映控礦地質(zhì)因素、尋找“新類型”礦化異常及提取弱緩異常方面有明顯優(yōu)勢。
圖9 銅元素豐度等值線圖及異常圖(異常下限為50×10-6)Fig.9 Copper abundance contours with anomalies demarcated(anomaly threshold is 50×10-6)
本次研究將因子分析與泛克立格法相結(jié)合,利用東天山中段部分區(qū)域化探數(shù)據(jù),查明了對不同類型銅礦有指示意義的元素定量組合,用剩余克立格估值來圈定化探異常,得到一些有意義的認(rèn)識。東天山中段地區(qū)不同類型的銅(或含銅)礦床有明顯不同的指示元素組合。這些組合在空間變異性方面南北向大于東西向,異常主要呈近東西向帶狀或串珠狀展布,反映了區(qū)域性構(gòu)造-建造因素對異常和礦化的總體控制規(guī)律;各類型礦床相關(guān)的異常在空間分布上基本不重疊,反映不同局部地質(zhì)成礦環(huán)境。對已知礦床而言,Cu-Co-Ni-Mn-V-Fe-Cr組合指示斑巖型和巖漿銅鎳硫化物銅礦床,主要受深源巖漿侵入活動控制,并在康古爾斷裂帶附近發(fā)育; Pb-Mo-Ni-Cr組合反映火山巖型銅多金屬礦化,受中基性火山活動控制,主要分布于康古爾斷裂帶西端及阿其克庫都克斷裂一帶;Cu-Mo-Hg-As組合反映熱液型或矽卡巖型銅礦化,主要受中酸性侵入活動控制,分布于康古爾斷裂一帶和卡瓦布拉克斷裂交匯處附近。所用方法能較好地揭示該區(qū)區(qū)域化探組合異常、礦化類型及控礦地質(zhì)因素三者密切相關(guān)的規(guī)律性。各類組合異常在這些“已知區(qū)”之外還可以出現(xiàn),提示我們進一步加強基礎(chǔ)地質(zhì)和成礦地質(zhì)研究、拓寬找礦思路,探討區(qū)內(nèi)不同局部發(fā)現(xiàn)“新類型”礦床的可能性。本文對所圈定異常區(qū)的找礦潛力尚未做出深入具體的研究和評價;這將是進一步工作的主要內(nèi)容。
致謝 研究工作得到“十一五”國家科技支撐計劃重點項目(編號2007BAB25B00)資助;得到新疆“三零五”項目辦公室、新疆第一區(qū)調(diào)大隊及新疆地礦局物探隊等單位的大力支持,在此深表感謝!
Chen Wen-ming,Qu Xiao-ming.2002.Host rocks of Tuwn-Yandong (porphyry)copper deposit in Tianshan Mountains[J].Mineral Deposits,21(4):331-340(in Chinese with English abstract)
Cui Bin,He Zhi-jun,Zhao Lei,Dong Lian-h(huán)ui,Liu Tuo,Qu Jun.2008.Geochemical subareas of the middle part of East Tianshan Mountains and their characteristics[J].Geophysical&Geochemical Exploration,32(5):23-28(in Chinese with English abstract)
Gao Zhen-quan,F(xiàn)ang Wei-xuan,Hu Rui-zhong,Liu Ji-shun.2006.The Metallogenic environment Kalatage porphyry copper(gold)deposit and its prospecting perspective of East Tianshan,Xin-jiang,China[J].Acta Geological Sinica,80(1):90-100(in Chinese with English abstract)
Han Chun-ming,Mao Jing-wen,Yang Jian-min,Wang zhi-liang. 2002.Late Paleozoic endocentric metallogenic series and mineralization law in the East Tianshan Mountains[J].Geology and Exploration,38(5):5-10(in Chinese with English abstract)
Han Chun-ming.2003.Research on Metallogenic series of copper deposits in East Tianshan Mountains[D].Beijing:China University of Geosciences(Beijing):12-29(in Chinese with English abstract)
Huang Jing-xian,Hou Jing-ru.1994.Application of Universal Kriging and Indicator Kriging for Geochemical Prospecting[J].Earth Science-Journal of China University of Geosciences,19(3):321-328(in Chinese with English abstract)
Ji Hong-jin,Lin Rui-qing,Zhou Yong-chang.2001.A discussion about some data processing methods in geochemical exploration[J].Geology and Exploration,37(4):56-59(in Chinese with English abstract)
Muhtar ZARI,Imam TAYIR,CHI Shundu,Parat ABDDUKADIR.2004.GIS mineral resource forecast in the Tuwu-Yandong porphyry copper belt,Eastern Tianshan Mountain[J].Geology and Exploration,40(3):55-598(in Chinese with English abstract)
Pan Chen-ze,Xiao Wen-jiao,Cui Bin,Han Chun-ming.2005.Geological characteristics of copper deposits in the middle section of the East Tianshan Mountains[J].Xinjiang Geology,23(2):127-130 (in Chinese with English abstract)
Qin Ke-Zhang,Peng Xiao-ming,San Jin-zhu,Xu Xiang-Wang,F(xiàn)ang Tong-h(huán)ui,Wang Shu-lai,Yu Hai-feng.2003.Types of major ore deposits,di-vision of metallogenic belts in eastern Tian shan,and discrimination of potential prospects of Cu,Au,Ni,mineralization[J].XinJiang Geoloty,21(2):143-150(in Chinese with English abstract)
Ruan Tian-jian,Zhu You-gong.1985.Geochemical Prospecting[M].Beijing:Geological Publishing House:100-110(in Chinese)
Rui Zong-yao,Wang Fu-tong,Li Heng-h(huán)ai,Dong Lian-h(huán)ui,Wang Lei,Jiang Li-feng,Liu Yu-lin,Wang Long-sheng,Chen Weishi.2001.The new development of porphyry copper deposit belt of East Tianshan Mountains,Xinjiang[J].Chinese Geology,28(2):11-16(in Chinese with English abstract)
Song Lin-Shan,Wang Li-jin,Deng Gang.2008.Metallogenic Characteristics of East Tianshan Moun-tains and the Distribution of Copper and Gold Deposit[J].Journal of Xinjiang University(Natural Science Edition),25(4):88-93(in Chinese with English abstract)
Wang Fu-tong,F(xiàn)eng Jing,Wu Jian-wei,Wang Lei,Jiang Li-feng,Zhang Zheng.2001.Geological characteristics and discovery significance of the Tuwu large type porphyry copper deposit,Xinjiang[J].Chinese Geology,28(1):36-39(in Chinese with English abstract)
Wang Gui-qin,Xu Wen-xin,Li Heng,Zhu Jian-yi.2002.Research development of evaluation method of regional geochemical anomaly (I)[J].Mineral Resources and Geology,16(02):105-108(in Chinese with English abstract)
Wang Hong,Liu Tuo,Wang Qing-ming,Zheng Qi-ping.2007.Geochemical character in ore-forming belt of Tianshan-Beishan mineralization zone,Xinjiang[J].Journal of Earth Sciences and Environment,29(2):141-144(in Chinese with English abstract)
Yan Chang-h(huán)ai.1991.Pick up the information of geochemical prospecting by use of the geostatistical method[J].Computing Techniques for Geophysical and Geochemical Exploration,13(3):213-219(in Chinese with English abstract)
Zhao Peng-da.2004.Quantitative geology theories and methods[M].Beijing:Geological Publishing House:178-180(in Chinese)
Zhuang Dao-ze.2005.Research on Metallogenetic geological conditions and the predicting models of compound information in East Tianshan of Xinjiang[D].Jilin:Jilin University:66-128(in Chinese with English abstract)
Zhuang Dao-ze,Liu Tuo,Hu Jian-wei,Wang Xue-yan.2003.The review and prospect of regional geochemical exploration in Xinjiang[J].Geoph-ysical&Geochemical Exploration,27(6):425-427 (in Chinese with English abstract)
Zhuang Dao-ze.2003.The geochemical characteristics and anomaly verification methods of Tuwu and Yandong copper-deposits in the Eastern Tianshan Mountains,Xinjiang[J].Geology and Exploration,39 (5):67-71(in Chinese with English abstract)
Zhang Xian-rong,Ma Long.1993.Application of Log Pan-Kriging method to geochemical prospecting[J].Mineral Resources and Geology,7(3):225-231(in Chinese with English abstract)
[附中文參考文獻]
陳文明,曲曉明.2002.論東天山土屋-延?xùn)|(斑巖)銅礦的容礦巖[J].礦床地質(zhì),21(4):331-340
崔彬,和志軍,趙磊,董連慧,劉拓,屈君.2008.東天山中段地球化學(xué)分區(qū)及其特征[J].物探與化探,32(5):23-28
高珍權(quán),方維萱,胡瑞忠,劉繼順.2006.新疆東天山卡拉塔格斑巖型銅(金)礦成礦地質(zhì)背景與找礦評價[J].地質(zhì)學(xué)報,80(1):90-100
韓春明,毛景文,楊建民,王志良.2002.東天山晚古生代內(nèi)生金屬礦床成礦系列和成礦規(guī)律[J].地質(zhì)與勘探,38(5):5-10
韓春明.2003.東天山銅礦區(qū)域成礦系列研究[D].北京:中國地質(zhì)大學(xué)(北京):12-29
黃競先,侯景儒.1994.泛克立格法和指示克立格法在地球化學(xué)探礦中的應(yīng)用[J].地球科學(xué)-中國地質(zhì)大學(xué)學(xué)報,19(3):321-328
紀(jì)宏金,林瑞慶,周永昶.2001.關(guān)于若干化探數(shù)據(jù)處理方法的討論[J].地質(zhì)與勘探,37(4):56-59
木合塔爾.扎日,依瑪木.塔依爾,池順都,帕拉提.阿布都卡迪爾.2004.東天山土屋-延?xùn)|斑巖銅礦帶礦產(chǎn)資源GIS預(yù)測[J].地質(zhì)與勘探,40(3):55-598
潘成澤,肖文交,崔彬,韓春明.2005.東天山中段銅礦床主要類型及地質(zhì)特征[J].新疆地質(zhì),23(2):127-130
秦克章,彭曉明,三金柱.2003.東天山主要礦床類型、成礦區(qū)帶劃分與成礦遠景區(qū)優(yōu)選[J].新疆地質(zhì),21(2):143-150
阮天健,朱有光.1985.地球化學(xué)找礦[M].北京:地質(zhì)出版社:100-110
芮宗瑤,王福同,李恒海,董連慧,王磊,姜立豐,劉玉琳,王龍生,陳偉十.2001.新疆東天山斑巖銅礦帶的新進展[J].中國地質(zhì),28 (2):11-16
宋林山,汪立今,鄧剛,孫寶生,劉曉疆,柴鳳梅.2008.東天山地區(qū)成礦規(guī)律及銅、金礦床分布[J].新疆大學(xué)學(xué)報(自然科學(xué)版),25 (4):88-93
王福同,馮京,胡建衛(wèi),王磊,姜立豐,張征.2001.新疆土屋大型斑巖銅礦床特征及發(fā)現(xiàn)意義[J].中國地質(zhì),28(1):36-39
王桂琴,徐文炘,李蘅,朱堅毅.2002.區(qū)域化探異常評價方法研究進展(Ⅰ)[J].礦產(chǎn)與地質(zhì),16(2):105-108
王虹,劉拓,王慶明,鄭啟平.2007.新疆天山-北山成礦帶區(qū)域地球化學(xué)特征[J].地球科學(xué)與環(huán)境學(xué)報,29(2):141-144
燕長海.1991.應(yīng)用地質(zhì)統(tǒng)計學(xué)方法提取地球化學(xué)找礦信息[J].物探化探計算技術(shù),13(3):213-219
趙鵬大.2004.定量地質(zhì)學(xué)理論與方法[M].北京:地質(zhì)出版社:178-180
莊道澤.2005.新疆東天山成礦地質(zhì)條件與綜合信息預(yù)測模型研究[D].吉林:吉林大學(xué):66-128
莊道澤,劉拓,胡建衛(wèi),王學(xué)彥.2003.新疆區(qū)域地球化學(xué)勘查的回顧與展望[J].物探與化探,27(6):425-427
莊道澤.2003.新疆東天山地區(qū)土屋、延?xùn)|銅礦地球化學(xué)特征與異常查證方法[J].地質(zhì)與勘探,39(5):67-71
張先容,馬龍.1993.對數(shù)泛克立格法在化探中的應(yīng)用[J].礦產(chǎn)與地質(zhì),7(3):225-23