• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    秩1修正矩陣特征值問(wèn)題的推廣及其應(yīng)用

    2011-01-02 01:17:02呂海玲明清河
    棗莊學(xué)院學(xué)報(bào) 2011年5期
    關(guān)鍵詞:投貸首單棗莊

    呂海玲,明清河

    (1.棗莊學(xué)院 信息科學(xué)與工程學(xué)院,山東 棗莊 277160;2.棗莊學(xué)院 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,山東 棗莊 277160)

    1 Introduction

    In this paper we prove a spectral perturbation theorem for an extension eigenvalues of rank- one update matrix of special structure,which shows how to modify r eigenvalues of a matrix of order n,(r≤n),ia a rank-k updated matrix,without changing any of the n-rremaining eigenvalues.This theorem plays a relevan t role in the study of the nonnegative inverse eigenvalue problem(NIEP).The main idea behind our proof is from the simple relation between the determinants of a matrix and this result,using a well known determinant identity.Furthermore,we extent this theorem to the block eigenvalues problem.By using this extension,we give a Application on eigenvalues problem of matrix perturbation of special structure.

    Because we apply a classic determinant equality to our spectral analysis,we are able to find explicit expression of the characteristic polynomial of the rank-r update matrix.All eigenvalues of the matrix are immediately available.

    Lemma1 If A is an invertible n×n matrix,and u and v are two n-dimensional column vectors,then

    Proof.We may assume A=I,the n × n identity matrix,since then(1)follows from

    in the general case.In this special case,the result comes from the equality

    so(2)becomes

    Remark1 If A is an invertible n×n matrix,B is a n×r matrix,C is a r×n matrix,then

    In the next section we present the main result.

    2 Main result

    Let A be an n×n matrix.The eigenvalues of A are all the complex zeros of the characteristic polynomial pA(λ)=det(λI- A)of A.Letσ(A)= {λ1,λ2,…,λn}be the set of the eigenvalues of A,counting algebraic multiplicity,that is spectrum of A.

    Theorem 1[1]Let u and v are two n - dimensional column vectors such that u is an eigenvector of A associated with eigenvalue λ1. Then,the eigenvalues of A + uvTare {λ1+vTu,λ2,…,λn},counting algebraic multiplicity.

    The following result is an extension of the theorem 1.This extension shows how to change r eigenvalues λ1,λ2,…,λr,r≤ n,of a matrix A of order n,via a rank - k updated matrix,without changing any of the n - rremaining eigenvaluesλr+1,λr+2,…,λn.

    繼上海之后,云南第二個(gè)獲得設(shè)立人民幣國(guó)際投貸基金的試點(diǎn)資格,人民幣國(guó)際投貸基金落戶(hù)云南,且啟動(dòng)了首單人民幣國(guó)際投貸基金海外投資項(xiàng)目,為推動(dòng)人民幣“走出去”探索了新路徑,為企業(yè)“走出去”搭建了新平臺(tái)。

    Theorem 2 Let A be an n × n matrix with eigenvalues λ1,λ2,…,λn.Let X =[x1x2…xr]be such that rank(X)=r and AX=Xdiag [λ1,λ2,…,λr],r≤n.Let C be a r × n matrix.Then the matrix A+XC has eigenvalues γ1,γ2,…,γr,λr+1,λr+2,…,λn.where γ1,γ2,…,γrare eigenvalues of the matrix K+CX with K=diag [λ1,λ2,…,λr].

    Proof Letλ ? σ(A)be any complex number.Then,by applying remark 1 to the equality

    W e have

    The condition AX=Xdiag [λ1,λ2,…,λr]implies that

    so(7)becomes

    Since the above equality is true for allλ ? σ(A),the theorem is p roved.

    Remark2.2 Since A and AThave the same eigenvalues counting algebraic multiplicity,the conclusion of Theorem 2.1 also holds for A+XC,where X= [x1x2… xr]be such that rank(X)=r and AX=Xdiag [λ1,λ2,…,λr].

    Furthermore,we extent this theorem to the block eigenvalues problem

    Definition 1[4].A matrix X of order n is a block eigenvalue of a matrix A of order mn,if there exists a block vector V of full rank,such that AV=VX,X is a block eigenvector of A.

    The matrix A is partitioned into m ×m blocks of order n,and the block vector V.

    Definition 2[4].A set of block eigenvalues of a block matrix is a complete set if the set of all the eigenvalues of these block eigenvalues is the set of the matrix.

    Let us suppose now that we have computed mn scalar eigenvalues of a partitioned matrix A.We can construct a complete set of block eigenvalues by taking m matrix of order n in Jordan form where the diagonal elements are those scalar eigenvalues.Furthermore,if the scalar eigenvalues of A are distinct,these m matrix are diagonal matrix as is shown in the following construction:

    where theλi,i=1,…,mn,are the eigenvaluesof A.The proof that the matrix Xj,j=1,…,m,are a complete set of block eigenvalues of A is in[1,p.74].

    Theorem 2.If the scalar eigenvalues of A are distinct,let V and C be the block vectors such that V is a block eigenvector of A associated with block eigenvalues X1,Then,the eigenvalues of A + VCTare μ1,…,μn,λn+1,…,λ2n,…λ(m-1)n+1,…,λmnwhere μ1,…,μnare eigenvalues of the matrix K+CTV with K=diag[λ1,…,λn].Proof.The same to theorem 1.

    3 Application of the theorem

    A direct consequence of Theorem 2.1 is the following.

    One Application of the result is given to illustrate the eigenvalues problem with the perturbation matrix.

    Proposition 3.1Let A,B,C,D ∈ Cn×n,D=A+B,where B is the perturbation of A.If B=XC,where X= [x1,x2,…,xn],xiis an eigenvector of A dissociate with eigenvalue xi,i=1,2,…,n.So thatthen,the eigenvalues of A+B are the eigenvalues of the matrix diag[λ1,λ2,…,λn]+CX.

    [1]Jiu D,Zhou A H.Eigenvalues of rank -one updated matrix with some applications[J].Applied Mathematics Letters,2007,20:1223-1226.

    [2]Ricrdo L S,Oscar R.Applications of a Brauer theorem in the nonnegative inverse eigenvalue problem[J].Linear Algebra and its Applications,2006,416:844 -856.

    [3]Bapat R B,Raghavan E S.Nonnegative Matrices and Applications,Cambridge University press,1997.

    [4]Dennis J E,Traub J F and Weber R.P.On the matrix polynomial,lambda- matrix and block eigenvalue problem,Tech.Rep.71 - 109,Computer Science Department,Cornell Univ,Ithaca,NY and Carnegie - Mellon Univ.,Pitsburgh,PA,(1971).

    猜你喜歡
    投貸首單棗莊
    全國(guó)首單水土保持項(xiàng)目碳匯交易在福建長(zhǎng)汀簽約
    山東海洋順利完成中國(guó)首單LNG船-船同步加注業(yè)務(wù)
    無(wú)錫首單知識(shí)產(chǎn)權(quán)海外保險(xiǎn)落地
    山東棗莊:大白鵝“叫開(kāi)”致富門(mén)
    高生豬“保險(xiǎn)+期貨”規(guī)模化項(xiàng)目 山西完成首單理賠
    天津市設(shè)立投貸聯(lián)動(dòng)風(fēng)險(xiǎn)緩釋資金池鼓勵(lì)銀行開(kāi)展外部投貸聯(lián)動(dòng)業(yè)務(wù)
    棗莊學(xué)院
    投貸聯(lián)動(dòng)模式分析
    投貸聯(lián)動(dòng):銀行新的“風(fēng)口”
    銀行家(2016年6期)2016-06-27 08:42:09
    棗莊探索公共衛(wèi)生醫(yī)聯(lián)體
    连城县| 宜宾县| 浮梁县| 广汉市| 镶黄旗| 安平县| 绵竹市| 怀集县| 沁阳市| 晋州市| 明水县| 大田县| 罗山县| 新津县| 澄城县| 米脂县| 武功县| 峨眉山市| 共和县| 成武县| 宝应县| 榆树市| 肥乡县| 台南市| 冕宁县| 河北省| 姚安县| 比如县| 嘉禾县| 巴彦淖尔市| 廊坊市| 游戏| 德庆县| 尖扎县| 文安县| 怀宁县| 贵州省| 天峻县| 延津县| 巴塘县| 乡宁县|