摘 要:直接研究非飽和土的強(qiáng)度隨含水量的變化,建立引入含水量的強(qiáng)度公式,具有重要的實(shí)用價(jià)值在普通三軸儀上進(jìn)行非飽和殘坡積土的強(qiáng)度試驗(yàn),試驗(yàn)結(jié)果表明,非飽和殘坡積土的抗剪強(qiáng)度隨著含水量的增大而明顯減小,這說(shuō)明水分對(duì)強(qiáng)度的影響劇烈引入?yún)?shù)峰殘應(yīng)力比對(duì)非飽和殘坡積土的應(yīng)變軟化特性進(jìn)行了量化分析,發(fā)現(xiàn)最佳含水量為應(yīng)力應(yīng)變曲線從軟化轉(zhuǎn)變?yōu)橛不呐R界含水量,且凝聚力c值隨含水量的增加呈指數(shù)衰減,內(nèi)摩擦角φ值隨含水量的增加呈線性衰減在此基礎(chǔ)上提出非飽和殘坡積土總應(yīng)力強(qiáng)度公式,公式運(yùn)用簡(jiǎn)單便捷,可為工程實(shí)際應(yīng)用提供參考
關(guān)鍵詞:非飽和殘坡積土; 吸力; 含水量; 三軸試驗(yàn)
中圖分類號(hào):PU411.7 文獻(xiàn)標(biāo)識(shí)碼:A
Experimental Studies of the Strength Variation
of Unsaturated Residual Soil with Different Water Contents
XIAO Zhiyu1, CHEN Changfu1, YANG Jianxiang2
(1.Institute of Geotechnical Engineering, Hunan Univ, Changsha, Hunan 410082, China;
2.Zhongji Geotechnical Engineering Investigation Design Institute, Chengdu,Sichuan 610052,China)
Abstract: It is of significant practical value to investigate the strength variation of unsaturated residual soil with different water contents, and establish the computational formulae between them. In the general triaxial instrument, strength tests were conducted on unsaturated residual soil. The results indicated that the shear strength of unsaturated residual soil decreased significantly with the increase of the water content, which demonstrated that water contents had considerable influence on strength. Quantitative analysis of the strain softening characteristics of unsaturated residual soil was done by adopting peakresidual stress ratio. It was found that the optimum water content equaled the critical water content where stressstrain curve was transformed from softening to hardening, the value of c decayed exponentially with the increase of water content, and the value of φ decayed linearly. Based on these results, the integral stress strength formula of unsaturated residual soil was proposed, which can be applied in practice and provide reference in practical situations.
Key words: unsaturated residual soil; suction pressure; water content; triaxial test
為促進(jìn)中西部發(fā)展,國(guó)家正大力推動(dòng)和實(shí)施中西部開(kāi)發(fā)戰(zhàn)略,并將持續(xù)加大對(duì)中西部交通設(shè)施建設(shè)的投入.由于中西部崇山峻嶺密布、地形地質(zhì)條件復(fù)雜,分布有大面積的殘積和坡積物覆蓋層,因此修建高等級(jí)公路時(shí),必將形成大量高陡殘坡積土邊坡[1]大量工程實(shí)踐證明,水是導(dǎo)致這類土坡滑坡的罪魁禍?zhǔn)?,因此研究水?duì)殘坡積土力學(xué)性質(zhì)的影響具有重要的理論和工程實(shí)際意義[2].
在土坡的穩(wěn)定性評(píng)價(jià)中,土的抗剪強(qiáng)度指標(biāo)是最重要的力學(xué)參數(shù).實(shí)際工程中,土坡常處于非飽和狀態(tài),若設(shè)計(jì)計(jì)算仍采用經(jīng)典土力學(xué)飽和土抗剪強(qiáng)度參數(shù)將帶來(lái)極大的誤差.對(duì)此,理論界不少學(xué)者致力于非飽和土理論研究,并提出了各自的非飽和土強(qiáng)度公式,其中有兩種強(qiáng)度公式[3]已被巖土界廣泛認(rèn)可.一種是Fredlund的雙變量公式,另一種是Bishop公式,這兩種公式都含有吸力項(xiàng),反映吸力對(duì)強(qiáng)度的貢獻(xiàn).但是吸力的試驗(yàn)室量測(cè)需用到昂貴的非飽和土三軸試驗(yàn)儀,且非常耗時(shí),至于現(xiàn)場(chǎng)量測(cè)更加困難,即使世界范圍內(nèi)積累的實(shí)測(cè)資料也很少[4-5];在理論分析和數(shù)值計(jì)算中要獲得吸力,就涉及到現(xiàn)階段仍不成熟且比較復(fù)雜的非飽和土固結(jié)模型[6].為此,將吸力作為變量的非飽和土強(qiáng)度公式未能得到廣泛的實(shí)際運(yùn)用.近年來(lái),不少學(xué)者提出通過(guò)水分特征曲線預(yù)測(cè)非飽和土強(qiáng)度[7],但是嚴(yán)格地講,這種方法應(yīng)考慮水分特征曲線的諸多影響因素,特別是土體的應(yīng)力狀態(tài)和滯回特性[8].
實(shí)際工程中,含水量(或飽和度)的數(shù)值很容易確定.直接研究非飽和土的強(qiáng)度隨含水量的變化,建立引入含水量的強(qiáng)度公式,這種方法雖然是近似的和經(jīng)驗(yàn)性的,但由土體含水量分布就可方便地確定強(qiáng)度,非常便捷適用.許多研究人員做了這方面的研究,如楊和平等[9]用常規(guī)直剪儀研究了膨脹土的力學(xué)參數(shù)隨含水量的變化;王洋等[10]用普通三軸儀研究了紅粘土在含水量變化模式下的力學(xué)性質(zhì);凌華等[11]在改進(jìn)的普通三軸儀上進(jìn)行了非飽和土強(qiáng)度試驗(yàn)本文在南京土壤儀器廠生產(chǎn)的TSZ30-2.0型應(yīng)變控制式三軸儀上進(jìn)行三軸剪切試驗(yàn)(試樣尺寸為:39.1 mm×80 mm),發(fā)現(xiàn)抗剪強(qiáng)度參數(shù)c值隨含水量的增加呈指數(shù)衰減,φ值隨含水量的增加呈線性衰減,并依此建立了非飽和殘坡積土總應(yīng)力強(qiáng)度公式,研究結(jié)果可為工程應(yīng)用提供參考.
1 非飽和殘坡積土三軸試驗(yàn)
11 試樣制備
研究非飽和土的強(qiáng)度隨含水量的變化,試驗(yàn)中要求試樣的含水量保持不變,即不排水.常見(jiàn)的制樣方法是:把土樣烘干,試樣需要多少水就在配土?xí)r加多少水,這樣做每個(gè)試樣的干密度和擊實(shí)功不相同,出來(lái)的結(jié)果就沒(méi)有可比性.本文的試驗(yàn)流程為:按接近最優(yōu)含水量配置試樣土,即保證每個(gè)試樣的初始含水量是一樣的,然后裝入塑料袋扎緊,潤(rùn)濕一晝夜,按干密度進(jìn)行控制,每層土嚴(yán)格控制厚度,并按相同擊實(shí)功進(jìn)行擊實(shí).然后放入真空抽氣機(jī)進(jìn)行飽和,再拿出來(lái)自然風(fēng)干,每隔一段時(shí)間稱質(zhì)量,當(dāng)?shù)竭_(dá)想要的含水量時(shí)進(jìn)行試驗(yàn).
12 試驗(yàn)流程
本文試驗(yàn)用土來(lái)自于長(zhǎng)沙岳麓山殘坡積土層,采用比重計(jì)法對(duì)土樣進(jìn)行顆粒分析,確定為粉質(zhì)粘土,其物理力學(xué)指標(biāo)如表1所示.
試驗(yàn)用土按照《公路土工試驗(yàn)規(guī)程》擾動(dòng)土樣的制備程序處理.試驗(yàn)試樣為重塑土,控制干密度為ρd=1.52 g/cm3,含水量為15%.為使試樣各處更均勻,分8層擊實(shí),每層土的數(shù)量相等,各層接觸面用小刀刨毛.飽和后再按含水量分為5組進(jìn)行風(fēng)干,分別為5%(飽和度Sr=18.3%),10%(Sr=36.6%),15%(Sr=55.0%),20%(Sr=73.3%)和25%(Sr=91.5%).每組取4個(gè)相同的試樣,分別在圍壓50,100,150和200 kPa下進(jìn)行試驗(yàn),當(dāng)?shù)谝粋€(gè)試樣進(jìn)行試驗(yàn)時(shí),其余3個(gè)試樣用保鮮膜包裹以防止水分蒸發(fā).加荷速率為0.4 mm/min.
13 試驗(yàn)結(jié)果與分析
各組含水量試樣的三軸剪切試驗(yàn)結(jié)果見(jiàn)圖1~圖6所示:在圍壓為50 kPa時(shí),側(cè)向壓力很小,所有含水量的應(yīng)力應(yīng)變曲線都為應(yīng)變軟化,含水量較小的試驗(yàn)曲線也呈現(xiàn)出明顯的應(yīng)變軟化特性,如圖1,2所示.當(dāng)含水量增加到最佳含水量附近時(shí),試驗(yàn)曲線呈現(xiàn)出應(yīng)變硬化的特性(圍壓50 kPa除外),如圖3,4所示,即最佳含水量為應(yīng)力應(yīng)變曲線從軟化轉(zhuǎn)變?yōu)橛不呐R界含水量.隨著含水量繼續(xù)增大至接近飽和時(shí),試驗(yàn)曲線又轉(zhuǎn)化成應(yīng)變軟化的特性,如圖5所示.并且非飽和土的抗剪強(qiáng)度隨著含水量的增大而明顯減小,這表明水分對(duì)強(qiáng)度的影響劇烈,如圖6所示.
軸向應(yīng)變/%
式中σ峰為某一含水量和某一圍壓下應(yīng)力應(yīng)變曲線的峰值,σ殘為σ峰所對(duì)應(yīng)的應(yīng)力應(yīng)變曲線的殘余強(qiáng)度.峰殘應(yīng)力比值如圖7所示.當(dāng)含水量為5%時(shí),峰殘應(yīng)力比值非常大,因?yàn)樵嚇雍糠浅P?,破壞時(shí)為脆性,且圍壓為50 kPa時(shí)最大;峰殘應(yīng)力比值隨著圍壓的增大逐漸減小,這是因?yàn)閲鷫旱脑龃?,約束了試樣的變形;當(dāng)含水量增大時(shí),試樣的脆性性質(zhì)不那么明顯,所以含水量為10%時(shí)的峰殘應(yīng)力比相對(duì)于含水量為5%的峰殘應(yīng)力比有所減小;當(dāng)含水量繼續(xù)增加到最佳含水量附近時(shí),除圍壓為50 kPa外,曲線都呈現(xiàn)為應(yīng)力硬化,且圍壓為50 kPa的峰殘應(yīng)力比也在逐漸減小.
軸向應(yīng)變/%
2 非飽和殘坡積土總應(yīng)力強(qiáng)度公式
由于直接確定強(qiáng)度包線與摩爾圓的切點(diǎn)坐標(biāo)存在困難,因此采用下列方法予以解決.即以(σ1-σ3)的峰值為破壞點(diǎn),無(wú)峰值時(shí),取15%軸向應(yīng)變時(shí)的主應(yīng)力差值作為破壞點(diǎn),以主應(yīng)力為橫坐標(biāo),剪應(yīng)力為縱坐標(biāo),將破壞應(yīng)力圓的頂點(diǎn)(頂點(diǎn)橫坐標(biāo)為(σ1f+σ3f)/2,縱坐標(biāo)為(σ1f-σ3f)/2)點(diǎn)繪在圖中,進(jìn)行線將由式(4)和式(5)計(jì)算得到的強(qiáng)度指標(biāo),代入庫(kù)侖公式就可得到強(qiáng)度包線方程.由式(4),(5)可以得到不同含水量下非飽和殘坡積土強(qiáng)度指標(biāo)值,如表2所示.
整理c和φ與含水量的關(guān)系,發(fā)現(xiàn)c值隨含水量的增加呈指數(shù)衰減,φ值隨含水量的增加呈線性衰減如圖15和圖16所示并可得出c和φ與含水量的關(guān)系式,即式τ=cw+σtan
下面通過(guò)一個(gè)算例來(lái)反映土體含水量的不同對(duì)土坡穩(wěn)定性的影響.
設(shè)一均質(zhì)坡,高H=30 m,γ=18 kN/m3,采用里正軟件的瑞典條分法自動(dòng)搜索最危險(xiǎn)滑裂面,在不同含水量情況(即不同飽和度)下的滑裂面和安全穩(wěn)定系數(shù)如圖17所示由圖17可知:隨著含水量的增加,土坡的安全穩(wěn)定系數(shù)逐漸降低;最危險(xiǎn)滑裂面的位置逐漸向土體表層移動(dòng).圖17 最危險(xiǎn)滑動(dòng)面位置
因此對(duì)于非飽和殘坡積土邊坡,如果用飽和殘坡積土的抗剪強(qiáng)度參數(shù)和模型來(lái)計(jì)算土體的應(yīng)力和變形顯然不合理,在實(shí)際工程中可以采用本文方法確定隨含水量變化的總強(qiáng)度公式,以確定邊坡穩(wěn)定分析中的殘坡積土體抗剪強(qiáng)度參數(shù).
4 結(jié) 論
1)在普通三軸儀上進(jìn)行非飽和殘坡積土的強(qiáng)度試驗(yàn)試驗(yàn)結(jié)果表明,非飽和殘坡積土的抗剪強(qiáng)度隨著含水量的增大而明顯減小,這說(shuō)明水分對(duì)強(qiáng)度的劇烈影響.且c值隨含水量的增加呈指數(shù)衰減,φ值隨含水量的增加呈線性衰減.并且發(fā)現(xiàn)最佳含水量為應(yīng)力應(yīng)變曲線從軟化轉(zhuǎn)變?yōu)橛不呐R界含水量.文中還引入了參數(shù)峰殘應(yīng)力比來(lái)對(duì)非飽和殘坡積土的應(yīng)變軟化特性進(jìn)行了量化分析.
2)提出非飽和殘坡積土總應(yīng)力強(qiáng)度公式,公式中引入含水量參數(shù),避免吸力量測(cè)和計(jì)算的困難,運(yùn)用簡(jiǎn)單便捷,可為工程實(shí)際應(yīng)用提供參考.
參考文獻(xiàn)
[1] 貴州省交通規(guī)劃勘察設(shè)計(jì)研究院,湖南大學(xué).貴州三-凱高速公路滑坡及高陡邊坡支護(hù)加固形式調(diào)研報(bào)告[R]2007.
Guizhou Province Survey and Design Institute of Transport Planning, Hunan University. The landslide and steep slope reinforcement form of research reports support of sankai highway in guizhou province[R].2007.(In Chinese)
[2] 王恭先,王應(yīng)先,馬惠民. 滑坡防治100例[M].北京:人民交通出版社,2008.
WANG Gongxian, WANG Yingxian, MA Huiming. 100 cases of landslide prevention[M]Beijing:China Communications Press, 2008.(In Chinese)
[3] 弗雷德隆德 D G,拉哈爾佐 H. 非飽和土土力學(xué)[M].陳仲頤,張?jiān)诿?,陳愈炯等,譯.北京:中國(guó)建筑工業(yè)出版社,1997:349-369.
FREDLUND D G, RAHARDJO H. Soil mechanics for unsaturated soils[M]Beijing:China Building Industry Press, 1997:349-369.(In Chinese)
[4] 湯連生,王洋,張鵬程,等. 非飽和黏性土粒間吸力測(cè)試研究[J]. 巖土工程學(xué)報(bào),2003,25(3):304-307.
TANG Liansheng, WANG Yang, ZHANG Pengcheng,et al. Experimental study on suctions between grains in unsaturated cohesive soil[J]. Chinese Jounal of Geotechnical Engineering, 2003,25(3):304-307.(In Chinese)
[5] NG C W W,ZHAN L T,BAO C G,et al. Performance of an unsaturated expansive soil slope subjected to artificial rainfall infiltration[J].Geotechnique,2003,53(2):143-157.
[6] 殷宗澤,周建,趙仲輝,等. 非飽和土本構(gòu)關(guān)系及變形計(jì)算[J]. 巖土工程學(xué)報(bào),2006,28(2):137-144.
YIN Zongze, ZHOU Jian, ZHAO Zhonghui,et al.Constitutive relations and deformation calculation for unsaturated soils[J]. Chinese Jounal of Geotechnical Engineering, 2006,28(2):137-144. (In Chinese)
[7] FREDLUND G,XING A,F(xiàn)REDLUND M D,et al.The relationship of the unsaturated soil shear strength to the soilwater characteristic curve[J].Canadian Geotechnical Journal,1996,33(3):440-448.
[8] 龔壁衛(wèi),周小文,周武華. 干濕循環(huán)過(guò)程中吸力與強(qiáng)度關(guān)系研究[J].巖土工程學(xué)報(bào),2006,28(2):207-209.
GONG Biwei, ZHOU Xiaowen, ZHOU Wuhua. Test on suction and strength of expansive soil in a desorptionabsorption cycle of moisture[J]. Chinese Jounal of Geotechnical Engineering,2006,28(2):207-209. (In Chinese)
[9] 楊和平,張銳,鄭健龍. 非飽和膨脹土總強(qiáng)度指標(biāo)隨飽和度變化規(guī)律[J]. 土木工程學(xué)報(bào),2006,39(4):58-62.
YANG Heping, ZHANG Rui, ZHENG Jianlong. Variation of the total shear strength of unsaturated expansive soils with degree of saturation[J]. China Civil Engineering Journal, 2006,39(4):58-62. (In Chinese)
[10]王洋,湯連生,高全臣,等. 水土作用模式對(duì)殘積紅粘土力學(xué)性質(zhì)的影響分析[J]. 中山大學(xué)學(xué)報(bào),2007,46(1):128-132.
WANG Yang, TANG Liansheng, GAO Quanchen,et al.Effects of watersoil interaction on mechanical strength of residual red clay[J].Acta Scientiarum Naturalium Universitatis Sunyatseni, 2007,46(1):128-132. (In Chinese)
[11]凌華,殷宗澤. 非飽和土強(qiáng)度隨含水量的變化[J]. 巖石力學(xué)與工程學(xué)報(bào),2007,26(7):1549-1553.
LING Hua, YIN Zongze. Variation of unsaturated soil strength with water contents[J].Chinese Journal of Rock Mechanics and Engineering, 2007,26(7):1549-1553. (In Chinese)