摘 要:根據(jù)非線性理論研究了某非獨(dú)立懸架汽車前輪自激擺振的分岔特性.利用非線性系統(tǒng)Hopf分岔發(fā)生的條件編制計(jì)算自激擺振分岔車速的MATLAB程序,繪制了不同轉(zhuǎn)向結(jié)構(gòu)參數(shù)、輪胎結(jié)構(gòu)參數(shù)以及前輪定位參數(shù)對(duì)應(yīng)的右車輪擺角幅值隨車速變化的分岔圖,分析了各參數(shù)對(duì)自激擺振的影響.結(jié)果表明,某些參數(shù)變化導(dǎo)致自激擺振發(fā)生時(shí)最大振幅所對(duì)應(yīng)的車速改變;轉(zhuǎn)向機(jī)構(gòu)剛度、輪胎側(cè)偏剛度和拖距對(duì)自激擺振的幅值影響較大.
關(guān)鍵詞:自激擺振;Hopf分岔;非線性;數(shù)值仿真
中圖分類號(hào):U461.6文獻(xiàn)標(biāo)識(shí)碼:A
Study on the Bifurcation Characteristics
of Front Wheel Selfexcited Shimmy
ZHOU Bing, SUN Le
(State Key Laboratory of Advanced Design and Manufacture for Vehicle Body, Institute
of Space Technology, Hunan Univ, Changsha, Hunan 410082, China)
Abstract: According to the nonlinear theory, the bifurcation characteristics of front wheel selfexcited shimmy of some motor vehicle with nonindependent suspension were studied. Computer programs were carried out to calculate the range of selfexcited shimmy speed of the motor vehicle with MATLAB when Hopf bifurcation took place. Various bifurcation diagrams indicating the relationship between angle amplitudes of right tire and vehicle speed were presented. And the influences of different parameters on selfexcited shimmy were analyzed. Numerical simulation results have indicated that the increase and decrease of the structural parameters of steering mechanism and tire parameters can restrain the selfexcited shimmy. With the change of some parameters, the vehicle speeds relating to the tire maximum angle amplitude of the selfexcited shimmy change correspondingly. The steering stiffness, tire cornering stiffness and pneumatic trail show greater impact on the amplitude of selfexcited shimmy.
Key words:selfexcited shimmy; Hopf bifurcation; nonlinear; numerical simulation
汽車和起落滑行的飛機(jī)的轉(zhuǎn)向輪都能發(fā)生強(qiáng)烈擺動(dòng)現(xiàn)象,工程界稱為擺振(shimmy).由于輪胎的變形量大,車輛又是復(fù)雜的多體系統(tǒng),致使轉(zhuǎn)向輪擺振成為動(dòng)力學(xué)的一大難題[1].多年來(lái)國(guó)內(nèi)外對(duì)汽車前輪擺振,特別是自激擺振已有較深入的研究,Stepan G指出特定參數(shù)組合下轉(zhuǎn)向輪擺振時(shí)車輪在滾動(dòng)和滑動(dòng)之間轉(zhuǎn)換可能產(chǎn)生瞬態(tài)的混沌運(yùn)動(dòng)[2];管迪華等根據(jù)道路實(shí)驗(yàn)及結(jié)構(gòu)參數(shù)測(cè)定實(shí)驗(yàn)建立了非獨(dú)立懸架擺振系統(tǒng)的數(shù)學(xué)模型,進(jìn)行結(jié)構(gòu)參數(shù)對(duì)擺振影響的仿真計(jì)算,并得到路試的驗(yàn)證[3];郭孔輝院士從能量反饋和負(fù)阻尼效應(yīng)的觀點(diǎn)研究輪胎動(dòng)態(tài)側(cè)偏特性對(duì)汽車前輪擺振的影響[4];李勝將輪胎非線性應(yīng)用于擺振當(dāng)中,闡明自激型擺振是一種非線性動(dòng)力學(xué)Hopf分岔后出現(xiàn)的穩(wěn)定極限環(huán)振動(dòng)現(xiàn)象,并對(duì)分岔進(jìn)行了數(shù)值分析和計(jì)算[5];盧劍偉等借助拉格朗日方程建立考慮轉(zhuǎn)向機(jī)構(gòu)運(yùn)動(dòng)副間隙的6自由度擺振動(dòng)力學(xué)模型,通過(guò)分析發(fā)現(xiàn)轉(zhuǎn)向機(jī)構(gòu)運(yùn)動(dòng)副間隙是誘發(fā)轉(zhuǎn)向輪擺振系統(tǒng)混沌運(yùn)動(dòng)的重要因素[6].
本文根據(jù)非線性理論研究某非獨(dú)立懸架汽車前輪自激擺振的分岔特性,在文獻(xiàn)[5]的基礎(chǔ)上,繪制了不同參數(shù)對(duì)應(yīng)的右車輪繞主銷擺角隨車速變化的分岔圖以及擺角幅值圖,并分析了各參數(shù)對(duì)擺振的影響.
1 動(dòng)力學(xué)模型
11 擺振模型
本文采用的是某非獨(dú)立懸架汽車前輪擺振模型[7],包含左右車輪繞主銷的擺動(dòng)θl,θr
魔術(shù)公式(2)模擬實(shí)際輪胎的非線性側(cè)偏特性時(shí)擁有較高的精度.
y=Dsin Carctan Bx-EBx-arctan Bx(2)
其中C=1.3[8];其余各參數(shù)均由輪胎側(cè)向力曲線擬合得到.本文根據(jù)扁平比約為90%的82系列輪胎在夏季測(cè)得的干燥粗糙水泥路面上側(cè)向附著系數(shù)與側(cè)偏角的關(guān)系[9],將側(cè)向附著系數(shù)乘以垂直載荷5 kN得到側(cè)向力與側(cè)偏角的關(guān)系曲線.擬合得魔術(shù)公式參數(shù)為B=6.896 rad-1;D= -5 250 N;E= -0.187 7;輪胎側(cè)偏剛度-47 067 N/rad.
采用張線理論推導(dǎo)輪胎的滾動(dòng)約束方程[5]:
l+vσαl+vσθl-aσl=0r+vσαr+vσθr-aσr=0(3)
以上方程中出現(xiàn)的符號(hào)意義及參數(shù)取值見表1.湖南大學(xué)學(xué)報(bào)(自然科學(xué)版)2010年
2 前輪自激擺振分岔特性
根據(jù)Hopf分岔發(fā)生的條件——非線性系統(tǒng)的雅克比矩陣有一對(duì)共軛的純虛根——編制確定分岔車速的程序,繪制各種條件下系統(tǒng)微分方程的極值解隨車速變化的分岔圖,并分析各參數(shù)對(duì)擺振的影響.
假設(shè)車輛直線行駛,車速變化范圍為0~30 m/s,偶然受到路面激勵(lì)使左前輪有一初始側(cè)偏角0.01 rad.采用θllθrrψαlαr=[0,0,0,0,0,0,0.01,0]作為狀態(tài)向量的初始值.
這里只繪制了右車輪分岔圖,左車輪和前橋側(cè)擺具有相同的特性,只是幅值較小.
21 轉(zhuǎn)向結(jié)構(gòu)參數(shù)對(duì)自激擺振的影響?yīng)?/p>
2.1.1 轉(zhuǎn)向柱阻尼
圖1是轉(zhuǎn)向柱阻尼為44,46,48,52 N·m·s/rad時(shí)右車輪擺角隨車速變化的分岔圖.從圖中可以看出,在未達(dá)到分岔車速時(shí),擺角振幅幾乎為零,分岔后振幅突然增大,始終為零的直線表示系統(tǒng)不發(fā)生分岔.
隨著轉(zhuǎn)向柱阻尼的增大,分岔車速范圍變小,振幅減小,對(duì)應(yīng)最大振幅的車速基本不變,均為16.4 m/s左右.當(dāng)阻尼大于52 N·m·s/rad后,不發(fā)生分岔.圖2是對(duì)應(yīng)的右車輪自激擺角幅值圖,由此可見,增大轉(zhuǎn)向柱阻尼有減小自激擺振的趨勢(shì).
2.1.2 轉(zhuǎn)向機(jī)構(gòu)剛度
圖3分別是轉(zhuǎn)向機(jī)構(gòu)剛度為10,14,17,20 kN·m/rad時(shí)右車輪擺角隨車速變化的分岔圖.圖4是對(duì)應(yīng)的自激擺角幅值圖.隨著轉(zhuǎn)向機(jī)構(gòu)剛度的增加,分岔車速范圍變小,振幅減小,但對(duì)應(yīng)最大振幅的車速提高.轉(zhuǎn)向機(jī)構(gòu)剛度過(guò)大,系統(tǒng)則不發(fā)生分岔.
2.1.3 橫拉桿剛度
圖5分別是橫拉桿剛度為25,30,35.5,45 kN·m/rad時(shí)右車輪擺角分岔圖.圖6是對(duì)應(yīng)自激擺角幅值圖.橫拉桿剛度對(duì)擺振的影響與轉(zhuǎn)向機(jī)構(gòu)剛度類似,不同的是最大擺角對(duì)應(yīng)車速變化不大,均為16.0 m/s左右.
22 輪胎結(jié)構(gòu)參數(shù)對(duì)自激擺振的影響?yīng)?/p>
2.2.1 側(cè)偏剛度
改變輪胎的側(cè)偏剛度,相當(dāng)于改變側(cè)向力與側(cè)偏角關(guān)系曲線的斜率,相應(yīng)的改變了魔術(shù)公式各參數(shù).圖7分別是側(cè)偏剛度為41 027,47 067,51 592,57 325 N/rad的分岔圖及自激擺角幅值圖.仿真結(jié)果表明,側(cè)偏剛度較小時(shí),車輛并不發(fā)生分岔,隨著側(cè)偏剛度的增大,分岔車速范圍變大,振幅增加較大,且容易在較低的車速發(fā)生較強(qiáng)烈的自激擺振.
2.2.2 垂直剛度
圖8表示輪胎垂直剛度對(duì)擺振的影響.垂直剛度分別取300,400,500,600 kN/m.從圖中可看出
自激擺振隨著垂直剛度的增大而增加,最大振幅對(duì)應(yīng)的車速也稍有增大.
2.2.3 輪胎拖距
圖9表示輪胎拖距對(duì)擺振的影響.振幅及分岔車速范圍均隨著拖距的增大而迅速增加,且擺角的最大振幅較大.減小輪胎拖距可以減小自激擺振.
23 前輪定位參數(shù)對(duì)自激擺振的影響?yīng)?/p>
圖10表示主銷后傾角對(duì)擺振的影響.主銷后傾角較小時(shí)系統(tǒng)不發(fā)生分岔,自激擺振發(fā)生后,隨著角度增加,擺角最大振幅對(duì)應(yīng)的車速基本不變.減小主銷后傾角有減小自激擺振的趨勢(shì).
3 結(jié) 論
通過(guò)對(duì)各參數(shù)對(duì)前輪自激擺振影響的數(shù)值仿真:第一,對(duì)于轉(zhuǎn)向結(jié)構(gòu)參數(shù),隨著轉(zhuǎn)向柱阻尼、轉(zhuǎn)向機(jī)構(gòu)剛度及橫拉桿剛度的減小,車輛發(fā)生自激擺振的可能性增大,擺振發(fā)生后振幅也隨之增大.而對(duì)于輪胎參數(shù),隨著側(cè)偏剛度、垂直剛度、輪胎拖距以及主銷后傾角的增加,自激擺振發(fā)生的可能性增大,振幅隨之增大.
第二,轉(zhuǎn)向機(jī)構(gòu)剛度、輪胎側(cè)偏剛度、垂直剛度和拖距變化時(shí),發(fā)生自激擺振的最大振幅所對(duì)應(yīng)的車速變化較大.其他參數(shù)變化時(shí),對(duì)應(yīng)的車速基本不變.
第三,相比較其他參數(shù),轉(zhuǎn)向機(jī)構(gòu)剛度、輪胎側(cè)偏剛度和輪胎拖距對(duì)前輪自激擺振的幅值影響較大.
參考文獻(xiàn)
[1] 丁文鏡. 自激振動(dòng)[M]. 北京: 清華大學(xué)出版社, 2009: 121-138.
DING Wenjing. Selfexcited vibration[M]. Beijing: Tsinghua University Press, 2009:121-138.(In Chinese)
[2] STEPAN G. Chaotic motion of wheels[J]. Vehicle System Dynamics,1991,20(6): 341-351.
[3] 管迪華, 魏克嚴(yán), 何澤民. 汽車轉(zhuǎn)向輪擺振的仿真計(jì)算研究[J]. 汽車工程, 1982(1):33-38.
GUAN Dihua, WEI Keyan, HE Zemin. Mathematicalsimulation of front wheel shimmy[J]. Automotive Engineering, 1982(1):33-38. (In Chinese)
[4] 郭孔輝. 輪胎動(dòng)態(tài)側(cè)偏特性對(duì)汽車擺振的影響[J]. 汽車技術(shù), 1995(4):1-6.
GUO Konghui. The influence of the tire dynamic characteristics of lateral distortion on shimmy of motor vehicle[J]. Automobile Technology, 1995(4):1-6. (In Chinese)
[5] 李勝. 分岔理論在汽車轉(zhuǎn)向輪擺振機(jī)理及其控制策略研究中的應(yīng)用[D].長(zhǎng)春: 吉林大學(xué)汽車工程學(xué)院, 2005.
LI Sheng. Study on mechanism and control strategies of vehicle steering wheel shimmy with bifurcation theories[D]. Changchun:College of AutomotiveEngineering of Jilin University , 2005. (In Chinese)
[6] 盧劍偉, 顧鴃, 王其東. 運(yùn)動(dòng)副間隙對(duì)汽車擺振系統(tǒng)非線性動(dòng)力學(xué)行為影響分析[J]. 機(jī)械工程學(xué)報(bào), 2008,44(8):169-173.
LU Jianwei, GU Jue, WANG Qidong. Influence analysis of movement pair clearance on nonlinear dynamic behavior of vehicle shimmy system[J]. Chinese Journal of Mechanical Engineering, 2008,44(8):169-173. (In Chinese)
[7] 喻凡, 林逸. 汽車系統(tǒng)動(dòng)力學(xué)[M]. 北京: 機(jī)械工業(yè)出版社,2005: 36-37.
YU Fan, LIN Yi. Dynamics of automotive systems[M]. Beijing: China Machine Press, 2005: 36-37. (In Chinese)
[8] 李德圣, 孫逢春, 黃志剛. 時(shí)變載荷下的輪胎側(cè)偏動(dòng)力學(xué)模型[J]. 北京理工大學(xué)學(xué)報(bào), 1997,17(1): 92-96.
LI Desheng, SUN Fengchun, HUANG Zhigang. Lateral dynamic model of a tire under a timevarying load[J]. Journal of Beijing Institute of Technology, 1997,17(1):92-96. (In Chinese)
[9] 耶爾森賴姆帕爾.汽車底盤基礎(chǔ)[M]. 張洪欣,譯.北京: 科學(xué)普及出版社, 1992: 110-111.
JORNSEN Reimpell. Automotive chassis elements[M]ZHANG Hongxing, translated. Beijing: Popular Science Press, 1992: 110-111. (In Chinese)