• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    波信號(hào)的解調(diào)和人工神經(jīng)網(wǎng)絡(luò)的損傷識(shí)別算法

    2010-12-04 08:56:54SaravananJuGuo
    無(wú)損檢測(cè) 2010年8期
    關(guān)鍵詞:人工神經(jīng)網(wǎng)絡(luò)信號(hào)算法

    S.Saravanan,F(xiàn).Ju,N.Q.Guo

    (1.School of Mechanical &Aerospace Engineering,Nanyang Technological University,Singapore;2.School of Engineering,Monash University,Bandar Sunway 46150,Selangor,Malaysia)

    1 Introduction

    Composite materials are widely and increasingly used due to their low weight,high specific stiffness and strength,good fatigue performance and excellent corrosion resistance. The major disadvantage of composite structures is the high probability of severe degrading of mechanical properties in the presence of damage especially in the through-thickness direction.The unique anisotropic,low-conductivity and low-permeability characteristics of composite materials have limited the applications of traditional nondestructive evaluation(NDE)techniques in damage detection.In addition,traditional NDE testing is usually timeconsuming point testing thus not suitable for large structure inspection.

    The long-range damage detection potential of Lamb waves has been studied extensively1-9.The interaction between Lamb wave and damage will modify the response wave signal from which information related to damage can be extracted for automated damage detection. However, the interpretation of the response wave signal is not easy due to the complex nature of the wave-damage interaction.

    Artificial neural network(ANN)is a powerful computational tool for pattern recognition and function approximation and has been tried in Lamb wave-based damage detection10,11.However,the accuracy of the network has been limited by the redundant highdimensional features and the very complicated network architecture.In this paper,a new damage detection scheme is proposed which uses signal demodulation for feature extraction,an unsupervised neural network for clustering and feature dimensionality reduction,and a supervised neural network for damage characterization.

    2 Numerical simulation of lamb waves

    2.1 Numerical model for simulation

    A 2D unidirectional composite laminate with a notch defect is modeled for simulation.The laminate is 300mm long and 1mm thick as shown in Figure 1.The notch is located at x mm from the left end of the laminate with width 0.4 mm and depth y mm.The element size is 0.2mm×0.125mm,and the time step is 0.011 099 9μs.

    Figure 1.A 2Dnumerical model of a unidirectional composite laminate

    A five-cycle sinusoidal signal modulated by a hanning window with the center frequency of 500kHz is applied at the left end in the x-direction in the form of pressure to excite S0Lamb wave mode,as shown in Figure 2.The phase velocity dispersion curve for S0in Figure 2 is quite flat at the chosen operation frequency.

    2.2 Damage cases

    Thex-andy-displacement response signals at sensing point 1(75mm)and 2(225mm)in Figure 1 are recorded during simulation.A simulation without damage is performed first and the results are plotted in Figure 3.Then simulations are performed for 21notch locations(x:100-200mm,Δx:5mm)and 7notch depths(y:0.125~0.875mm,Δy:0.125mm),the combination of them results in 147damage cases in total.For example,the response signals when the notch is at the middle(x=150mm andy=0.5mm)are plotted in Figure 4.By comparing with Figure 3,there are additional wave packets and change of amplitude due to wave-damage interaction such as reflection,diffraction and mode conversion.So the response signals contain the information associated with damage state from which features can be extracted for damage characterization.

    3 Feature extraction

    3.1 Baseline subtraction

    The signals in Figure 3are used as the baselines and subtracted from the signals in Figure 4thus the resulting signals indicate the effect of damage on the response signals,as shown in Figure 5.

    3.2 Wave signal demodulation

    Each wave packet in Figure 5can be considered as a low-frequency envelope signalx(n)modulated by a high-frequency sine carrier signalc(n)as shown in Figure 6.The modulation operation is carried out by multiplication in the time domainy(n)=x(n)·c(n),which results in the convolution in the frequency domainY(ω)=X(ω)*C(ω),as shown in Figure 7.The modulated signal is then transmitted through the plate and received by the sensor.In order to retrieve the envelope signal from the received signal,the received signal is convoluted by itself in the frequency domainZ(ω)=Y(jié)(ω)*Y(ω)as shown in Figure 7.It is obvious that the resulting signalz(n)has a lowfrequency component and a high-frequency component in 0≤ω≤π/2 which can be separated by a lowpass filter with the cutoff frequency in between.The magnitude response of the filter is shown in Figure 8 and the system function is:

    The signalz(n)is then filtered with this lowpass filter and the result is shown in Figure 8,which is a slightly delayed envelope signal.This demodulation algorithm for envelope extraction is computationally more efficient than the conventional Hilbert transform and do not have discrepancies at two ends.

    3.3 Peak extraction

    The signals in Figure 5are demodulated with the above algorithm and the results are shown in Figure 9,which are related to the energy change due to the wave-damage interaction. The peak values and locations are extracted by finding the local maxima and combined into the following 8-dimensional feature vector:

    wherepkixandpkiyare the peak values at sensor i in thex-andy-direction,respectively.locixandlociyare the peak locations at sensor i in thex-andydirection,respectively.The feature vectors will be used as input vectors to the unsupervised and supervised artificial neural networks for pattern recognition.

    4 Unsupervised learning(SOM)

    4.1 SOM neural network

    The self-organizing map (SOM)12is an unsupervised artificial neural network model for nonlinearly mapping the high-dimensional input vectors onto a low-dimensional,topologically ordered array of neurons,inspired by the topographical mapping ability of the human brain cortex.It has become a powerful tool for clustering,feature selection and highdimensional data visualization due to its properties of input space approximation,topological ordering and density matching13.In this paper,a two-dimensional 4×4Kohonen SOM neural network is used and the architecture is shown in Figure 10.

    Figure 10.The architecture of the SOM neural network

    The training of the SOM is based on unsupervised competitive learning consisting of five essential processes:

    (1)Initialization.The initial synaptic weight vectorswj(0)of neurons are first assigned small random values which should be different from each other.

    (2)Competition.A discriminant function related to the distance between the input vectorxand the weight vectorwjis selected and its value is calculated for each neuron in the network.The neuroni(x)with the minimum discriminant function value is called the winning neuron:

    where‖·‖is the Euclidean norm,andi(x)is the index of the winning neuron.

    (3)Cooperation.A topological neighborhoodhj,iof cooperating neurons centered on the winning neuron is determined with the following Gaussian topological neighborhood function:

    wheredj,iis the lateral distance between winning neuroniand cooperating neuronj,σ(n)is the width of the Gaussian function with initial valueσ0and time constantτ1,nis the number of iterations.

    (4)Weights adaptation.The synaptic weight vectors of all neurons are updated using the following equations:

    whereη(n)is the learning rate with initial valueη0and time constantτ2.

    (5)Iteration.Repeat processes(2)~(4)by randomly presenting the training samples to the network until the stopping criterion is met,which can be the predefined number of iterations or the small rate of changes in the map's weights.

    4.2 Damage clustering using SOM

    An important ability of the SOM neural network is clustering the data into different categories in an unsupervised manner.For example,the peak values of all samples are used as 4-dimensional input patterns to the SOM network in Figure 10.After training without the damage information,the network converges and 7 clusters are formed with 11samples in each,as shown in Figure 11.By checking the samples in each cluster,it is found that samples with the same severity of damage(depth of the notch)are sorted into the same cluster.Now the clusters can be labeled with damage level 1-7.If a new input pattern with unknown damage severity is presented to the SOM,it will be sorted into the cluster which is most activated and the damage severity can be estimated from the cluster label.Similarly,if the peak locations of all samples are used as input patterns to the SOM network,11 clusters are formed with 7samples in each,as shown in Figure 11.It is observed that samples with the same damage location are clustered together.

    Figure 11.Clusters formed by the SOM neural network

    4.3 Feature dimensionality reduction using SOM

    Another important application of the SOM neural network in pattern recognition is the dimensionality reduction of features. This can save a lot of computational cost in the damage detection algorithm if the features are high-dimensional and correlated.Although dimensionality reduction can also be achieved using traditional principal component analysis(PCA)14,the SOM is more advantageous in visualization and will not lose the real meaning of features.In order to reduce the dimensionality of the features acquired in the feature extraction session,the feature vectors of all damage cases are used as input vectors to the SOM neural network.After training and convergence of the network,the weights are plotted in the weight planes in Figure 12.The 8weight planes correspond to the 8elements of the input vector.Each element in the weight plane represents the connection(weight)between one input element and one neuron,with the darkness of color indicating the magnitude of the weight.If the weight planes of two input elements are very similar,the two input elements are highly correlated.It is observed from Figure 12that the weight plane 1,3,5,7are almost the same,this means the input element 1,3,5,7are correlated.Also the correlation between input element 2and 4can be found from weight plane 2and 4.Therefore,the dimensionality of the 8-dimensional feature vector in Equation (2)can be reduced by eliminating the correlated elements,resulting in the following 4-dimensional feature vector which will be used as input to the supervised neural network:

    Figure 12.Weight planes of the SOM neural network

    5 Supervised learning(MLP)

    5.1 MLP neural network and BP learning algorithm

    The multi-layer perceptron(MLP)neural network is the most widely used model of supervised neural network due to its excellent performance in function approximation, associative memory and pattern classification.The typical MLP neural network is a feed-forward network containing one input layer,one or more hidden layers and one output layer,as shown in Figure 13.The input layer neurons do not perform any computation and just distribute the input vectors to the hidden layer.The hidden layer and output layer neurons are computational neurons with a continuously differentiable nonlinear activation functionφ(·),which can be sigmoidal functions such as the following logistic or hyperbolic tangent function:

    Figure 13.The architecture of the MLP neural network

    wherevj(n)=(n)is the activation signal of neuronjat iterationn.

    The training of the MLP neural network is in a supervised manner.During the training process,the input vectorxis presented to the network and the outputois generated by the network.By comparing the output with the a priori desired outputd,an error signale=d-ocan be obtained.Then the adjustments to the synaptic weights of the network are calculated based on the error signal so that the network output can approximate the desired output.The weight adjustments of the output layer neurons can be easily determined using optimization methods such as the gradient descent.However,the calculation of the weight adjustments of the hidden layer neurons becomes a problem which has not been solved until the development of the back-propagation (BP)algorithm15.This algorithm has become the most popular learning algorithm for the training of MLPs due to its high computational efficiency.In the BP algorithm,two passes of computation are identified13:the forward pass and the backward pass.In the forward pass when the synaptic weights remain unchanged,the function signals come in at the input layer,propagate forward on a neuron-by-neuron,layer-by-layer basis and emerge at the output layer as output signals in Equation(8):

    In the backward pass,the error signals are computed at the output layer,propagate backward,layer-by-layer, accompanied by the recursive calculation of the local gradient for each neuron which enables the adjustment of synaptic weight in the following delta rule:

    whereΔwji(n)is the correction applied to the synaptic weight connecting neuronito neuronj,ηis the learning rate,δj(n)is the local gradient,andyi(n)is the input signal of neuronj.The calculation of the local gradient is shown in Equation (10),depending on whether neuronjis an output or a hidden neuron:

    The training process is iteratively performed by presenting epochs of training samples to the network until the stopping criterion is met,which can be the predefined number of iterations or the small rate of change in the mean square error.

    5.1 Damage characterization using MLP

    According to the universal approximation theorem16,any continuous nonlinear function with a finite number of discontinuities can be approximated arbitrarily well by a MLP neural network having one hidden layer of sufficient neurons.In this paper,a MLP neural network is used to approximate the unknown inverse model of the structure in order to estimate the notch parameters providing the features extracted from the response signals.The network has the architecture shown in Figure 13 with one input layer ofm0neurons,one hidden layer ofm1neurons and one output layer ofm2neurons.Herem0=4(number of dimensions of the input vector)andm2=2(number of notch parameters to be estimated).The number of hidden neuronsm1 which governs the express power of the network depends on the complexity of the function to be approximated.According to the Ockham's razor principle,the simplest network which can adequately fit the training set is more preferred.Unless special conditions of the problem are given,a three-layer network(one hidden layer)is sufficient to approximate any arbitrary function.Complex network with more hidden layers and neurons are more susceptible to overfitting which leads to poor generalization.Therefore only 6hidden neurons are used in this paper and this simple network performs well.

    The number of training samples should be more than the number of weights in the network.A rule of thumb for determining the number of training samples is14:

    Since there are 147damage cases,the training samples are enough.

    The elements in the feature vector extracted from the response signal have different orders of magnitude.If they are directly presented to the network for training,the elements with higher orders of magnitude will have dominant effect on the weight adjustments.In order to avoid this,standardization is performed to transform the input and target data into standardized data with zero mean and unit variance using the following equations:

    wherex(j)iis the ith element of the jth sample,is the mean,σ2iis the variance,andz(j)iis the standardized data.The boxplots of input data before and after standardization are shown in Figure 14.

    The standardized data set is then randomly divided into a training set and a testing set,with the ratio of 0.8to 0.2.The testing set is not used during training,but provides an independent test of the network's generalization ability.

    The stopping criterion is set asMSE=1×10-5,which is the mean square error in the standardized space.After 55 epochs of training,the stopping criterion is met and the performance history of the network is plotted in Figure 15and 16.The result shows a good generalization of the network since the performance on the testing set are quite close to that on the training set.And no evidence of overfitting is observed.

    In order to further assess the performance of the network,the entire data set is presented to the trained network and a linear regression analysis is carried out between the network outputs and the corresponding targets.The result is shown in Figure 15.Since the output vector is 2-dimensional,there are two plots.Both of them show the strong linear relationship between outputs and targets,with the correlation coefficients of 1and 0.999 99respectively.This means that the network fits the entire data set well.

    Finally,the errors between the network outputs and corresponding targets are calculated in the original space in terms of the root mean square error(RMSE),the normalized root mean square error(NRMSE)and the maximum absolute error (MAE),which are defined as follows:

    And the results in Table 1show that the errors are quite small,therefore the accuracy of the trained network is reasonably high.

    Table 1.Errors between the network outputs and corresponding targets

    Now the trained network can be used to detect unknown notches by extracting feature vectors form the response signals and presenting them to the network.

    6 Conclusion

    A damage detection algorithm based on Lamb wave signal demodulation and ANNs has been proposed in this paper, consisting of feature extraction,clustering,feature dimensionality reduction and damage characterization.The validity of this damage detection algorithm is verified using a FE model of a composite laminate with notch defects.The wave signal demodulation algorithm is able to demodulate the response Lamb wave signal into the envelope signal and extract peaks which are related to the energy change due to damage.Then the peak values and locations are combined into an 8-dimensional feature vector which is used as the input vector to ANNs.A 4×4SOM neural network is first employed in an unsupervised manner and it is shown that this network is capable of clustering the damage cases into categories according to the damage severity or location.Feature dimensionality reduction is also performed by this network to reduce the original highly correlated 8-dimensional feature vector into a 4-dimensional one.The 4-dimensional feature vector is then used as the input to a MLP neural network with simple architecture for damage characterization.The training of this network is in a supervised manner and based on BP algorithm.The performance of this network is then assessed using an independent testing set,the regression analysis and the evaluation of errors.It is shown that this network has high accuracy and good generalization ability.The developed system and methodology will be used and tested for future experimental signals and 3Dsimulation signals.

    [1] Alleyne DN,Cawley P.The interaction of Lamb waves with defects[J].IEEE Trans Ultrason Ferroelectr Freq Control,1992,39(3):381-397.

    [2] Guo N,Cawley P.The interaction of Lamb waves with delaminations in composite laminates[J].J Acoust Soc Am,1993,94(4):2240-2246.

    [3] Guo N,Cawley P.Lamb wave-propagation in composite laminates and its relationship with acousto-ultrasonics[J].Ndt &E International,1993,26(2):75-84.

    [4] Guo NQ,Cawley P.Lamb wave reflection for the quick nondestructive evaluation of large composite laminates[J].Mater Eval,1994,52(3):404-411.

    [5] Alleyne D,Cawley P.The long range detection of corrosion in pipes using Lamb waves[G].Annual Review of Progress in Quantitative Nondestructive Evaluation.Snowmass Village:Plenum Press Div Plenum Publishing,1994:2073-2080.

    [6] Scudder LP,Hutchins DA,Guo NQ.Laser-generated ultrasonic guided waves in fiber-reinforced plates -Theory and experiment[J].Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control,1996,43(5):870-880.

    [7] Lemistre M,Balageas D.Structural health monitoring system based on diffracted Lamb wave analysis by multiresolution processing[J].Smart Mater Struct,2001,10(3):504-511.

    [8] Jian XM,Guo N,Li MX,et al.Characterization of bonding quality in a multilayer structure using segment adaptive filtering [J]. Journal of Nondestructive Evaluation,2002,21(2):55-65.

    [9] Bartoli I,F(xiàn)L di Scalea,F(xiàn)ateh M,et al.Modeling guided wave propagation with application to the long-range defect detection in railroad tracks[J].NDT E Int,2005,38(5):325-334.

    [10] Su ZQ, Ye L. Lamb wave-based quantitative identification of delamination in CF/EP composite structures using artificial neural algorithm[J].Compos Struct,2004,66(1-4):627-637.

    [11] Lu Y,Ye L,Su ZQ,et al.Artificial Neural Network(ANN)-based Crack Identification in Aluminum Plates with Lamb Wave Signals[J].J Intell Mater Syst Struct,2009,20(1):39-49.

    [12] Kohonen T.The self-organizing map[J].Proc IEEE,1990,78(9):1464-1480.

    [13] Haykin SS. Neural networks: a comprehensive foundation,Prentice Hall,Upper Saddle River,NJ(1999).

    [14] Zang C,Imregun M.Structural damage detection using artificial neural networks and measured FRF data reduced via principal component protection[J].J Sound Vibr,2001,242(5):813-827.

    [15] Rumelhart DE,Hinton GE,Williams RJ.Learning representations by back-propagating errors[J].Nature,1986,323(6088):533-536.

    [16] Cybenko G.Approximation by superpositions of a sigmoidal function[J].Mathematics of Control,Signals,and Systems,1989,2(4):303-314.

    猜你喜歡
    人工神經(jīng)網(wǎng)絡(luò)信號(hào)算法
    信號(hào)
    鴨綠江(2021年35期)2021-04-19 12:24:18
    完形填空二則
    利用人工神經(jīng)網(wǎng)絡(luò)快速計(jì)算木星系磁坐標(biāo)
    基于MapReduce的改進(jìn)Eclat算法
    Travellng thg World Full—time for Rree
    人工神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)簡(jiǎn)單字母的識(shí)別
    電子制作(2019年10期)2019-06-17 11:45:10
    進(jìn)位加法的兩種算法
    滑動(dòng)電接觸摩擦力的BP與RBF人工神經(jīng)網(wǎng)絡(luò)建模
    基于FPGA的多功能信號(hào)發(fā)生器的設(shè)計(jì)
    電子制作(2018年11期)2018-08-04 03:25:42
    一種改進(jìn)的整周模糊度去相關(guān)算法
    搡老熟女国产l中国老女人| 19禁男女啪啪无遮挡网站| 久久人妻福利社区极品人妻图片| 麻豆国产av国片精品| 黄色丝袜av网址大全| 黑人操中国人逼视频| 老汉色∧v一级毛片| 午夜福利一区二区在线看| 丝袜美腿诱惑在线| 亚洲人成伊人成综合网2020| 欧美乱码精品一区二区三区| av天堂在线播放| 久久久水蜜桃国产精品网| a在线观看视频网站| 亚洲男人的天堂狠狠| 黑人操中国人逼视频| 日韩精品青青久久久久久| 日韩三级视频一区二区三区| 国产国语露脸激情在线看| 成人18禁高潮啪啪吃奶动态图| 亚洲专区字幕在线| 97人妻精品一区二区三区麻豆 | 两个人免费观看高清视频| or卡值多少钱| 免费在线观看黄色视频的| 黄片播放在线免费| 黄色 视频免费看| 91成年电影在线观看| 亚洲国产欧美一区二区综合| 午夜久久久在线观看| 在线十欧美十亚洲十日本专区| 97碰自拍视频| 久久久久久大精品| 人人妻人人澡人人看| 欧美大码av| 美女国产高潮福利片在线看| 在线观看一区二区三区| 亚洲aⅴ乱码一区二区在线播放 | 婷婷亚洲欧美| 国产av一区二区精品久久| cao死你这个sao货| www.精华液| 女性被躁到高潮视频| 此物有八面人人有两片| 少妇裸体淫交视频免费看高清 | 久久伊人香网站| 欧美激情久久久久久爽电影| 亚洲激情在线av| 18美女黄网站色大片免费观看| 欧美中文综合在线视频| 在线观看66精品国产| 日本 av在线| 亚洲av熟女| 91麻豆av在线| 变态另类成人亚洲欧美熟女| 亚洲av美国av| 在线观看免费午夜福利视频| 欧美乱码精品一区二区三区| 国产不卡一卡二| or卡值多少钱| 最近最新免费中文字幕在线| av在线天堂中文字幕| 久久久精品欧美日韩精品| 男女视频在线观看网站免费 | 国产成人影院久久av| 欧美成狂野欧美在线观看| 无人区码免费观看不卡| 可以免费在线观看a视频的电影网站| 国产aⅴ精品一区二区三区波| 91老司机精品| 一级毛片高清免费大全| 老司机在亚洲福利影院| 亚洲人成网站在线播放欧美日韩| 男人舔女人的私密视频| 精品久久久久久,| 久久中文字幕人妻熟女| 亚洲男人的天堂狠狠| 777久久人妻少妇嫩草av网站| 婷婷六月久久综合丁香| 大香蕉久久成人网| 国产精品野战在线观看| 国内少妇人妻偷人精品xxx网站 | 国产精品日韩av在线免费观看| 久久久国产成人免费| 啦啦啦韩国在线观看视频| 免费在线观看影片大全网站| or卡值多少钱| 精品日产1卡2卡| 国产精品乱码一区二三区的特点| 国产欧美日韩一区二区三| 中国美女看黄片| 久久午夜综合久久蜜桃| 久久久久久免费高清国产稀缺| 深夜精品福利| 美女 人体艺术 gogo| 一级毛片高清免费大全| av在线播放免费不卡| 一级片免费观看大全| 成熟少妇高潮喷水视频| 精品国产超薄肉色丝袜足j| 亚洲久久久国产精品| 男人操女人黄网站| 国产熟女xx| 欧美日本亚洲视频在线播放| 午夜亚洲福利在线播放| 人妻久久中文字幕网| 国产精品98久久久久久宅男小说| 亚洲熟妇中文字幕五十中出| 99久久国产精品久久久| 成年版毛片免费区| 久久婷婷人人爽人人干人人爱| 1024视频免费在线观看| 91大片在线观看| 日本黄色视频三级网站网址| 淫秽高清视频在线观看| 99久久精品国产亚洲精品| 国产伦在线观看视频一区| 在线视频色国产色| а√天堂www在线а√下载| 色综合欧美亚洲国产小说| 欧美不卡视频在线免费观看 | 午夜免费激情av| 国产成人av激情在线播放| 少妇粗大呻吟视频| 国产精品日韩av在线免费观看| 在线看三级毛片| 中文字幕精品免费在线观看视频| 国产精品,欧美在线| 亚洲色图 男人天堂 中文字幕| 麻豆一二三区av精品| 2021天堂中文幕一二区在线观 | 黄色a级毛片大全视频| 免费在线观看影片大全网站| 99热只有精品国产| 18禁裸乳无遮挡免费网站照片 | 两个人免费观看高清视频| 大香蕉久久成人网| 久久 成人 亚洲| 国产男靠女视频免费网站| 国产伦人伦偷精品视频| 中文在线观看免费www的网站 | 长腿黑丝高跟| 精品午夜福利视频在线观看一区| 国产精品亚洲一级av第二区| 黄色视频,在线免费观看| www国产在线视频色| 白带黄色成豆腐渣| 宅男免费午夜| 欧美黄色淫秽网站| 岛国在线观看网站| 午夜免费观看网址| 麻豆成人午夜福利视频| 黑人操中国人逼视频| 国产不卡一卡二| 亚洲狠狠婷婷综合久久图片| 国产亚洲欧美98| 老熟妇乱子伦视频在线观看| 国产私拍福利视频在线观看| 成年免费大片在线观看| 婷婷亚洲欧美| 亚洲无线在线观看| 成人三级做爰电影| 久久香蕉精品热| 欧美日韩中文字幕国产精品一区二区三区| 亚洲avbb在线观看| 国产视频一区二区在线看| 国产精品九九99| 成人国语在线视频| 欧美日韩精品网址| 在线免费观看的www视频| 青草久久国产| 国产成+人综合+亚洲专区| 亚洲片人在线观看| 久9热在线精品视频| 女人爽到高潮嗷嗷叫在线视频| 中文字幕人成人乱码亚洲影| 精品熟女少妇八av免费久了| 两性午夜刺激爽爽歪歪视频在线观看 | 久久精品夜夜夜夜夜久久蜜豆 | 亚洲成a人片在线一区二区| 老熟妇乱子伦视频在线观看| or卡值多少钱| 国产精品一区二区免费欧美| 久久国产乱子伦精品免费另类| 日本 欧美在线| 午夜免费鲁丝| 男人舔女人下体高潮全视频| 女警被强在线播放| 欧美日韩瑟瑟在线播放| 精华霜和精华液先用哪个| 视频区欧美日本亚洲| 国产高清有码在线观看视频 | 十八禁网站免费在线| 满18在线观看网站| 99久久精品国产亚洲精品| 中文字幕av电影在线播放| 日本黄色视频三级网站网址| 一区二区日韩欧美中文字幕| 制服丝袜大香蕉在线| 无人区码免费观看不卡| 午夜免费鲁丝| 夜夜看夜夜爽夜夜摸| 天天躁狠狠躁夜夜躁狠狠躁| 免费高清视频大片| 香蕉丝袜av| 国产日本99.免费观看| 看黄色毛片网站| 美女免费视频网站| 午夜精品在线福利| 国产伦在线观看视频一区| 宅男免费午夜| 校园春色视频在线观看| 久久精品91蜜桃| 国产精品自产拍在线观看55亚洲| 成人18禁高潮啪啪吃奶动态图| 精品人妻1区二区| 欧美黑人巨大hd| 国产99久久九九免费精品| 国产在线观看jvid| 制服诱惑二区| 色老头精品视频在线观看| 哪里可以看免费的av片| 成熟少妇高潮喷水视频| 99久久久亚洲精品蜜臀av| 日日干狠狠操夜夜爽| 亚洲人成网站高清观看| 久久久国产欧美日韩av| 青草久久国产| av免费在线观看网站| 国产三级黄色录像| 欧美中文综合在线视频| 好男人电影高清在线观看| 老鸭窝网址在线观看| 中文字幕av电影在线播放| 国产主播在线观看一区二区| 性欧美人与动物交配| 黄网站色视频无遮挡免费观看| 久久久精品欧美日韩精品| 欧美大码av| 在线视频色国产色| 99在线视频只有这里精品首页| 欧美精品啪啪一区二区三区| 国产精品精品国产色婷婷| 91大片在线观看| 波多野结衣av一区二区av| 亚洲成av人片免费观看| 免费在线观看视频国产中文字幕亚洲| 亚洲国产欧洲综合997久久, | 十八禁网站免费在线| 老司机福利观看| 日韩欧美 国产精品| 国产成人精品久久二区二区91| 国产激情偷乱视频一区二区| 国产高清激情床上av| 亚洲欧美激情综合另类| 一区二区三区激情视频| 亚洲av第一区精品v没综合| 国内精品久久久久精免费| 亚洲国产精品999在线| 一本一本综合久久| 少妇熟女aⅴ在线视频| 天堂√8在线中文| 国产精品久久电影中文字幕| 精品久久久久久,| 久9热在线精品视频| 欧美精品亚洲一区二区| av在线天堂中文字幕| 黑人欧美特级aaaaaa片| 18禁黄网站禁片免费观看直播| 精品熟女少妇八av免费久了| 亚洲精品国产区一区二| 啪啪无遮挡十八禁网站| 搡老熟女国产l中国老女人| 国产精品一区二区三区四区久久 | 国产精品影院久久| 99riav亚洲国产免费| 国产伦一二天堂av在线观看| 亚洲久久久国产精品| 法律面前人人平等表现在哪些方面| 神马国产精品三级电影在线观看 | 我的亚洲天堂| 亚洲第一青青草原| 91麻豆av在线| 亚洲av成人不卡在线观看播放网| 久久香蕉激情| 国产亚洲精品久久久久久毛片| 少妇裸体淫交视频免费看高清 | 色老头精品视频在线观看| 国产精品二区激情视频| 亚洲男人的天堂狠狠| 国产三级在线视频| 国产熟女午夜一区二区三区| 亚洲中文字幕一区二区三区有码在线看 | 日韩成人在线观看一区二区三区| 国产真实乱freesex| 一二三四在线观看免费中文在| 俄罗斯特黄特色一大片| 久久 成人 亚洲| 岛国视频午夜一区免费看| 午夜福利成人在线免费观看| 欧美日韩精品网址| 亚洲性夜色夜夜综合| 两个人看的免费小视频| 婷婷六月久久综合丁香| 免费看日本二区| 成人国产一区最新在线观看| 一级作爱视频免费观看| 一边摸一边做爽爽视频免费| 久久精品成人免费网站| 757午夜福利合集在线观看| 亚洲av电影在线进入| 国产成人av激情在线播放| 少妇被粗大的猛进出69影院| 熟女少妇亚洲综合色aaa.| 村上凉子中文字幕在线| 中文字幕人妻熟女乱码| 欧美成人午夜精品| a级毛片在线看网站| 国产精品乱码一区二三区的特点| 免费女性裸体啪啪无遮挡网站| 亚洲av中文字字幕乱码综合 | 精品久久久久久久久久免费视频| 国产精品久久久人人做人人爽| 老司机午夜福利在线观看视频| 大型黄色视频在线免费观看| 18禁黄网站禁片午夜丰满| 亚洲国产高清在线一区二区三 | 熟妇人妻久久中文字幕3abv| 欧美性猛交╳xxx乱大交人| 亚洲精品av麻豆狂野| 国产精品二区激情视频| 天堂影院成人在线观看| 久久狼人影院| 欧美成人免费av一区二区三区| 免费看a级黄色片| 欧美日韩福利视频一区二区| 亚洲国产欧美日韩在线播放| 一本一本综合久久| 一区二区三区激情视频| 老鸭窝网址在线观看| 黄色毛片三级朝国网站| 国产男靠女视频免费网站| 亚洲精品粉嫩美女一区| 国产精品美女特级片免费视频播放器 | 午夜福利在线在线| 一夜夜www| svipshipincom国产片| 色哟哟哟哟哟哟| 免费高清在线观看日韩| 日本三级黄在线观看| 18禁观看日本| 国产一区二区在线av高清观看| www国产在线视频色| 亚洲国产高清在线一区二区三 | 老司机福利观看| 身体一侧抽搐| 久久久久国内视频| 午夜激情av网站| av视频在线观看入口| 欧美乱色亚洲激情| 久久久精品欧美日韩精品| 真人做人爱边吃奶动态| 久久久久久国产a免费观看| 啦啦啦韩国在线观看视频| 亚洲精品美女久久久久99蜜臀| 黄片播放在线免费| 88av欧美| 丁香六月欧美| 天天添夜夜摸| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久久久久精品吃奶| 亚洲自偷自拍图片 自拍| 久久中文字幕人妻熟女| 亚洲一区二区三区不卡视频| 亚洲欧美一区二区三区黑人| 欧美不卡视频在线免费观看 | 国产精品 欧美亚洲| 一区二区日韩欧美中文字幕| 国产人伦9x9x在线观看| 香蕉av资源在线| 中文在线观看免费www的网站 | 一区二区三区精品91| 亚洲中文字幕日韩| 青草久久国产| ponron亚洲| 99在线视频只有这里精品首页| 国产成人欧美| 无人区码免费观看不卡| 久久欧美精品欧美久久欧美| 中文字幕精品亚洲无线码一区 | 亚洲色图 男人天堂 中文字幕| 妹子高潮喷水视频| 青草久久国产| 午夜福利高清视频| 美女 人体艺术 gogo| 欧美又色又爽又黄视频| 很黄的视频免费| 韩国精品一区二区三区| 国产日本99.免费观看| 最好的美女福利视频网| 国产区一区二久久| 搡老岳熟女国产| 人妻久久中文字幕网| avwww免费| 日本在线视频免费播放| 一进一出好大好爽视频| 久久久久精品国产欧美久久久| 午夜免费观看网址| 国产在线精品亚洲第一网站| 国产午夜精品久久久久久| 免费一级毛片在线播放高清视频| 淫秽高清视频在线观看| 好看av亚洲va欧美ⅴa在| 少妇裸体淫交视频免费看高清 | 亚洲精品在线美女| 亚洲色图 男人天堂 中文字幕| 99久久久亚洲精品蜜臀av| 国产国语露脸激情在线看| 神马国产精品三级电影在线观看 | 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲精品久久国产高清桃花| 亚洲一区二区三区色噜噜| 欧美色视频一区免费| 天天躁夜夜躁狠狠躁躁| 亚洲成a人片在线一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 欧美中文综合在线视频| 国产私拍福利视频在线观看| 亚洲 欧美一区二区三区| 欧美性猛交黑人性爽| 国产亚洲精品综合一区在线观看 | 婷婷丁香在线五月| 男人舔女人下体高潮全视频| 成人18禁高潮啪啪吃奶动态图| 一二三四社区在线视频社区8| 高潮久久久久久久久久久不卡| 在线天堂中文资源库| 母亲3免费完整高清在线观看| 91av网站免费观看| 91老司机精品| 午夜福利欧美成人| 欧美色欧美亚洲另类二区| 精品一区二区三区视频在线观看免费| 两个人视频免费观看高清| 国产成人精品久久二区二区免费| 在线免费观看的www视频| 日本在线视频免费播放| 丁香欧美五月| 97超级碰碰碰精品色视频在线观看| 欧美一区二区精品小视频在线| 午夜精品在线福利| 亚洲五月色婷婷综合| 免费搜索国产男女视频| 欧美绝顶高潮抽搐喷水| 色精品久久人妻99蜜桃| 亚洲自偷自拍图片 自拍| 视频区欧美日本亚洲| 欧美一级a爱片免费观看看 | 99热只有精品国产| 色播在线永久视频| 免费搜索国产男女视频| 国产成人欧美| 少妇的丰满在线观看| 国产精品久久久人人做人人爽| 久久青草综合色| 久久久精品欧美日韩精品| 欧美激情久久久久久爽电影| 欧美乱妇无乱码| 亚洲av成人不卡在线观看播放网| 欧美另类亚洲清纯唯美| 一二三四社区在线视频社区8| 欧美日本视频| 1024视频免费在线观看| 91字幕亚洲| 特大巨黑吊av在线直播 | 亚洲av成人一区二区三| 亚洲aⅴ乱码一区二区在线播放 | 亚洲精品国产精品久久久不卡| 亚洲一区二区三区不卡视频| 视频在线观看一区二区三区| 女同久久另类99精品国产91| 在线观看午夜福利视频| 国产精品98久久久久久宅男小说| 老鸭窝网址在线观看| 老熟妇乱子伦视频在线观看| 日日干狠狠操夜夜爽| 中文资源天堂在线| 国产精品日韩av在线免费观看| 国产成人av激情在线播放| 免费在线观看完整版高清| 伦理电影免费视频| 精品国产美女av久久久久小说| 高清在线国产一区| 国产av一区二区精品久久| 国产精品久久电影中文字幕| 精品国产一区二区三区四区第35| 成人国语在线视频| 色在线成人网| 少妇的丰满在线观看| 国产在线观看jvid| 狂野欧美激情性xxxx| 欧美av亚洲av综合av国产av| 久久精品国产99精品国产亚洲性色| 国产亚洲精品第一综合不卡| 免费在线观看成人毛片| 亚洲精品一区av在线观看| 热99re8久久精品国产| 午夜福利欧美成人| 99精品在免费线老司机午夜| 满18在线观看网站| 悠悠久久av| 精品欧美一区二区三区在线| 国产精品一区二区三区四区久久 | 亚洲中文av在线| www日本在线高清视频| 欧美成狂野欧美在线观看| 色在线成人网| 久久久久久久久免费视频了| 女生性感内裤真人,穿戴方法视频| 中文字幕av电影在线播放| 成人亚洲精品一区在线观看| 黑人操中国人逼视频| 香蕉丝袜av| 女性被躁到高潮视频| 大型av网站在线播放| 亚洲午夜精品一区,二区,三区| 大型av网站在线播放| av免费在线观看网站| 在线观看午夜福利视频| 午夜两性在线视频| 国产亚洲av嫩草精品影院| 999精品在线视频| 可以在线观看的亚洲视频| 久久欧美精品欧美久久欧美| 在线看三级毛片| 日韩成人在线观看一区二区三区| 欧美一级毛片孕妇| 久久精品aⅴ一区二区三区四区| 正在播放国产对白刺激| 国产欧美日韩一区二区三| 国产在线精品亚洲第一网站| 国产黄a三级三级三级人| 国产成人精品久久二区二区免费| 黄色视频,在线免费观看| 亚洲专区字幕在线| 制服诱惑二区| 一a级毛片在线观看| 脱女人内裤的视频| 一个人观看的视频www高清免费观看 | 午夜激情福利司机影院| 他把我摸到了高潮在线观看| 91九色精品人成在线观看| 在线观看免费日韩欧美大片| 美女大奶头视频| 精品国内亚洲2022精品成人| 亚洲一码二码三码区别大吗| 99久久久亚洲精品蜜臀av| 校园春色视频在线观看| 视频区欧美日本亚洲| 日本成人三级电影网站| 久久久久久亚洲精品国产蜜桃av| 岛国视频午夜一区免费看| 日本熟妇午夜| 久99久视频精品免费| 亚洲国产毛片av蜜桃av| 日韩欧美在线二视频| 亚洲成av片中文字幕在线观看| 免费观看精品视频网站| 黑丝袜美女国产一区| 色婷婷久久久亚洲欧美| 91av网站免费观看| 亚洲一区中文字幕在线| 免费看十八禁软件| 精品国产亚洲在线| 精品熟女少妇八av免费久了| 波多野结衣高清无吗| 成人国语在线视频| 日韩精品免费视频一区二区三区| 久久伊人香网站| 国产一卡二卡三卡精品| 淫妇啪啪啪对白视频| 女生性感内裤真人,穿戴方法视频| 9191精品国产免费久久| 一夜夜www| 变态另类成人亚洲欧美熟女| 亚洲成av人片免费观看| 天天躁夜夜躁狠狠躁躁| 欧美中文日本在线观看视频| 99re在线观看精品视频| www.熟女人妻精品国产| 亚洲精品美女久久久久99蜜臀| 亚洲中文日韩欧美视频| 男女之事视频高清在线观看| 老熟妇乱子伦视频在线观看| a在线观看视频网站| 自线自在国产av| 一卡2卡三卡四卡精品乱码亚洲| 免费在线观看完整版高清| 亚洲av中文字字幕乱码综合 | 成人精品一区二区免费| 精品国产乱码久久久久久男人| 亚洲精品一卡2卡三卡4卡5卡| 18禁裸乳无遮挡免费网站照片 | 欧美日韩亚洲综合一区二区三区_| 美女国产高潮福利片在线看| 久久性视频一级片| 亚洲真实伦在线观看| 色综合欧美亚洲国产小说| 久久天堂一区二区三区四区| 欧美乱码精品一区二区三区| 最近在线观看免费完整版| 国产免费av片在线观看野外av| 欧美乱色亚洲激情| 日本一区二区免费在线视频| 欧美黄色片欧美黄色片|