• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    金屬酞菁仿生催化兒茶酚胺氧化性能研究及其用于腎上腺素濃度的光學(xué)檢測(cè)

    2010-11-09 06:37:02李明田楊瑞嵩喻蘭英
    關(guān)鍵詞:酞菁兒茶酚胺理工學(xué)院

    李明田 黃 俊 楊瑞嵩 喻蘭英 周 璇

    (1材料腐蝕與防護(hù)四川省重點(diǎn)實(shí)驗(yàn)室,自貢 643000)(2四川理工學(xué)院材料與化學(xué)工程學(xué)院,自貢 643000)(3武漢理工大學(xué)光纖傳感技術(shù)與信息處理教育部重點(diǎn)實(shí)驗(yàn)室,武漢 430070)

    金屬酞菁仿生催化兒茶酚胺氧化性能研究及其用于腎上腺素濃度的光學(xué)檢測(cè)

    李明田*,1,2黃 俊3楊瑞嵩1,2喻蘭英1,2周 璇3

    (1材料腐蝕與防護(hù)四川省重點(diǎn)實(shí)驗(yàn)室,自貢 643000)
    (2四川理工學(xué)院材料與化學(xué)工程學(xué)院,自貢 643000)
    (3武漢理工大學(xué)光纖傳感技術(shù)與信息處理教育部重點(diǎn)實(shí)驗(yàn)室,武漢 430070)

    采用電子吸收光譜法研究了5種金屬酞菁MPcs(M=Mn(Ⅱ),F(xiàn)e(Ⅱ),Ni(Ⅱ),Cu(Ⅱ))仿生催化腎上腺素(Adrenaline,AD)和去甲腎上腺素(Noradrenaline,NA)2種兒茶酚胺的氧化性質(zhì),相應(yīng)的氧化產(chǎn)物分別為三羥基-N-甲基-吲哚和三羥基-吲哚。用氧化產(chǎn)物的特征吸收峰強(qiáng)度評(píng)價(jià)金屬酞菁的催化能力,實(shí)驗(yàn)表明,在最佳催化條件下,金屬酞菁催化效率有以下順序ηMnPc>ηFePc>ηNiPc>ηCuPc>ηCoPc。以酞菁錳仿生酶為催化劑,采用鎖相放大技術(shù)構(gòu)建了一種新型光纖生物傳感器實(shí)現(xiàn)對(duì)腎上腺素濃度的測(cè)定,系統(tǒng)地研究了光纖腎上腺素傳感器的性質(zhì):在2.0×10-6~9.0×10-5mol·L-1范圍,滯后相移φ與腎上腺素的濃度有較好的線性關(guān)系,檢測(cè)下限為4.0×10-7mol·L-1,響應(yīng)時(shí)間為10 min,該傳感器有良好地重復(fù)性和穩(wěn)定性。

    金屬酞菁;仿生酶;兒茶酚胺;催化氧化;光纖生物傳感器

    Catecholamines (CAs),such asepinephrine(adrenaline,AD),noradrenaline (NA)and dopamine,play a key role in central and sympathetic nervous systems.Some catecholamine drugs have been used to treat hypertension,bronchial asthma,organic heart disease,and used in cardiac surgery and myocardial infarction[1-3].CAs monitoring has become of increasing interest in medical diagnosis.Many methods are applied to determine the CAs concentration,such as flow injection analysis[4],spectrophotometry[5],flowinjection chemiluminescence[6-7],high performance liquid chromatography (HPLC)[8-9],and electrochemical detection[10].However,these methods are timeconsuming,unsatisfactory for on-line and real-time monitoring.

    The fiber optic biosensors are composed of a biologicalrecognition element (biocomponent),a transducer converting the biocomponent response to an optical signal and associated electronics.The ones have many advantages such as high sensitivity,low cost,immunity from electrical and magnetic disturbances,small size,lightweight,and can be used to monitor many parameters online and real-time.In our previous investigation,the fiber optic biosensor based on laccase catalysis was applied into the detection of AD[11].However,the application is seriously restricted due to the very limited enzyme source and poor stability.Contrastively,metallophthalocyanines (MPcs)with a perfectly symmetrical 18-electron aromatic macrocycle are easily accessible,very stable to degradation and cost effective[12],and have been extensively used to mimicenzymesto catalyzea varietyof organic reactions[13-20].

    As a part of the investigation of phthalocyanine and the derivatives,MPcs[M=Mn(Ⅱ) Co(Ⅱ),Ni(Ⅱ),Cu(Ⅱ)]were mimickedenzymetocatalyzethe oxidation of ABTS[2,2′-azino-bis-(3-ethylthiazoline-6-sulphonate)][21],and the nano-composites formed from Fe3O4and metaltetraaminophthalocyanines were used as carriers of immobilized laccase to catalyze AD oxidation[11,22].As potential effective alternatives to laccase,five MPcs[M=Mn(Ⅱ),Fe(Ⅱ),Co(Ⅱ),Ni(Ⅱ),Cu(Ⅱ)]were tested to catalyze the oxidation of CAs(AD and NA)by dioxygen.Based on the fluorescence quenching and MnPc catalysis,a novel fiber optic biosensor was fabricated and studied for AD concentration detection.The experimental results indicated that MPcs were good catalyst for the CAs oxidation and could be used effe ctively in the fiber optic AD biosensor.

    1 Experimental

    1.1 Materials and instruments

    Adrenaline hydrochloride injection(1.0 mg·mL-1)and noradrenaline bitartrate injection (2.0 mg·mL-1)were purchased from Wuhan Pharmaceutical Co.Ltd.[Ru(bipy)3]Cl2·6H2O and cellulose aceate were obtained from Sigma-Aldrich.All other reagents were analytical grade.Simulated body fluid (SBF)was prepared by deionized water.Dual-distilled water was used throughout the experiment.The UV/Vis spectra were measured on a Shimadzu UV-2450 spectrophotometer(Shimadzu,Japan)with 10 mm quartz cell.Lock-in amplifier(SR830,Standford Research Systems,U.S.A)was used to measure the phase delay of the sensor.MPcs were synthesized and purified according to the literatures[23-25],and a schematic structure of the complex was presented in Fig.1.

    1.2 Procedure for estimation of catalytic activity

    A certain amount of MPc was dispersed into the buffer solution of disodium hydrogen phosphate-citric acid(PBS)(3.0 mL,0.1 mol·L-1).After incubated about 10 min,the solution of AD or NA was added into the buffer containing MPc,then the mixture was incubated for a period of time.MPc was filtered off and UV/Vis spectrum of the filtrate was recorded on spectrophotometer.The procedure of the oxidation reaction can be estimated by the characteristic peak of the oxidation product,and the rates of catalytic oxidation were evaluated by η=It/Ic,where Itand Icwere the absorbances of the mixture solution at 298 nm after t minutes reaction and after complete oxidation of AD or NA,respectively.

    1.3 Principle of biosensors

    CAs are o-diphenol and can be oxidized easily by O2with catalysis of enzyme[26],the structures of AD and NA were shown in Fig.2.If the sensor head with an oxygen-sensitive membrane was put into the AD or NA solution containing catalyst,an oxygen gradient would be created on the membrane due to the consumption of the dissolved oxygen caused by the oxidation of AD or NA,which would lead to a fluorescence change of the oxygen-sensitive membrane since O2serves as a dynamicquencheroffluorescence.Thiscan be mathematically described by using Stern-Volmer equation:

    Where I0and I, τ0and τ are the fluorescence intensities and lifetimes ofthe oxygen-sensitive membranein theabsence and presence ofthe quencher,respectively,and Ksvis the Stern-Volmer constant.cQis oxygen concentration in the solution.

    Since a novel lock-in amplifier is used,light signal from LED is supplied as sine modulated signal,and the fluorescence signal thus also appears a sine signal but a phase delay.The change of light signal containing the fluorescence lifetime can be converted into phase change in the lock-in amplifier according to the relationship between τ and φ as shown in Eq.(2):

    When φ is very small,tanφ can be substituted by φ.By collecting the data of phase delay φ,the quantification of AD or NA is achieved.

    1.4 Preparation of biosensor

    The oxygen-sensitive membrane was prepared by using [Ru(bipy)3]2+as the fluorescence indicator and cellulose acetate as the matrix[27].The detecting system consists of a lock-in amplifier,a LED with the excitation wavelength of 416 nm as the light source,a sensor head with a sensing membrane and a computer for data processing(Fig.3)[11].The modulation frequency was set for 40.0 kHz.

    2 Results and discussion

    2.1 Absorption spectra

    In 0.1 mol·L-1PBS at pH 8.0,the two compounds of CAs showed two bands in the UV range at 217 and 279 nm for AD and NA shown in Fig.4.Barreto assigned the transitions at 220 and 280 nm in CAs to a π-π*and an La-Lbcoincident transition,respectively[28].

    Fig.4A(b~g)showed the spectra obtained from the oxidation of AD catalyzed by MnPc.It can be seen that MnPc can catalyze the oxidation of AD effectively.The same spectrum patterns were observed for AD and NA during the oxidation processes catalyzed by the other MPcs.During the oxidation,two bands appeared progressively at ca.298 and 266 nm(for NA at 298 and 267 nm)until they completely overlapped the band at 280 nm,which were assigned to a1Lb←1A1and a1La←1A1transition,respectively[28].However,the spectral patterns were obviously different from those of the reported literatures(new peaks at ca.300 and 475 nm in the visible region of their UV/Vis spectra)[28-32],and the new peaks of 298 and 266 nm were considered as the characteristic absorption of trihydroxyl-N-methylindole (THMI) and trihydroxyl-indole (THI),respectively[33].

    The experimental results also showed that the suitable concentration was 5.0×104mol·L-1for AD and NA.When the concentration was lower,the change of the UV/Vis spectra of CAs could not be observed evidently.Due to the similar properties of oxidation reactions with AD and NA as the substrates,AD was only discussed in the followings.

    2.2 Effects of incubation time

    The results of evaluation on incubation time were shown in Fig.5.At pH 8.0 and T=55℃,five MPcs catalyzed the oxidation of AD effectively.η first increased remarkably for all MPcs,then increased slowly.However,η decreased after about 120 min for MnPc,and 140,180,200,240 min for FePc,NiPc,CuPc and CoPc,respectively.The decline might be that THMI proceeded with the structural transformation.The results also indicated that the catalytic abilities of MPcs to AD oxidation were different and they had the order of ηMnPc>ηFePc>ηCuPc>ηNiPc>ηCoPc.This difference might be probably due to the different d-electron configurations of metal ions in MPcs[32,34-36].

    2.3 Effects of pH

    Fig.6 presented the effects of pH values on the catalytic activities of MPcs for the oxidation of AD.η increased gradually in the range from pH 3.0 to 8.0,and then declined when pH was over 8.0 for all five MPcs.Thus,the optimal pH values for the catalytic reaction of all MPcs were the same at 8.0.Although it had the best catalytic activity under the optimal conditions,MnPc showed worse activity in low pH environment than FePc,and the other three MPcs(M=Co(Ⅱ),Ni(Ⅱ),Cu(Ⅱ))shared the similar catalytic tendency.FePc had better catalytic activity in the range from pH 4.0 to 9.0,indicating that FePc can be used in larger pH range.The reason for the poor catalyzing ability of MPc in low pH environment is probably that the acid environment is not advantageous to the coordination of AD and O2to metal center and the formation of AD2+[34-35].

    2.4 Effects of temperature

    The temperature dependence of MPcs catalytic activities to the oxidation of AD was shown in Fig.7.As temperature increased,η increased rapidly in the temperature range from 40 to 55℃,then decreased from 55to 65 ℃ for four MPcs(M=Mn(Ⅱ),Fe(Ⅱ),Ni(Ⅱ),Cu(Ⅱ)).These were different from the catalytic activity of CoPc which increased gradually in the temperature range from 40 to 65℃.Therefore,the optimal temperatures for the catalytic reaction of the four MPcs were the same at 55℃.It might be explained in the following way:The rate of reaction would increase with the increase of temperature.In addition,AD and O2should coordinate to M(Ⅱ)in MPc along the vertical axis direction before the oxidation occurred at higher temperature,AD and O2would dissociated themselves from M(Ⅱ)in MPc before the accomplishment of electronic transfer.These two factors caused the reaction rate to reach a maximum at about 55℃.[32,34,36].

    As for CoPc,the electron transfer rate between O2and the substrate was quickened with temperature increased,which accelerated the speed of the catalytic reaction,however,the change of temperature less influences the stability of transitional products than the electron transfer rate,so the catalytic activity increased gradually ranging from 40℃to 65℃.

    2.5 Effects of MPc amount

    The effects of MPcs amount on the catalytic activities were shown in Fig.8.It indicated that η increased with the addition of MPcs.The catalytic activities for MnPc and FePc showed some degree above 50%at 1.0 mg·mL-1and the increasing magnitude was not notable once the quantity exceeded 1.0 mg·mL-1.The similar results were occurred to the others.Hence,1.0 mg·mL of MPc was used throughout the other parts of our experiments[37-38].

    2.6 Mechanism of catalytic oxidation

    The oxidative pathways of CAs have been well studied in order to investigate the catalytic mechanism[28-32].As for MPc acting as the catalyst to the oxidation of AD or NA,the following steps were proposed taking MnPc catalyzing AD as the example and were shown in Fig.9:(1)AD and O2coordinated to Mn(Ⅱ)in MnPc along the vertical axis direction[29];(2)one electron transferred from Mn(Ⅱ) to O2,Mn(Ⅱ) was oxidized to Mn(Ⅱ) and O2was reduced to O2-;(3)Mn(Ⅱ)obtained one electron from AD,Mn(Ⅱ)was reduced to Mn(Ⅱ)and ADwas formed;(4)another one electron of AD transferred to O2-via Mn(Ⅱ),thus AD2+and O22-were formed,and then dissociated from Mn(Ⅱ)in MnPc;(5)AD2+transferred continuedly to THMI.

    Under the optimal conditions of pH 8.0,T=55℃,mMPc=1.0 mg·mL-1,MPcs have the catalytic activity order of ηMnPc>ηFePc>ηNiPc>ηCuPc>ηCoPc,which is followed with the changed rule of d electron number of central metal cations except CoPc,and is accorded with the order ofthe oxidation ofpinane to 2-pinane hydroperoxide by using MPc as catalyst[17].Obviously,the electron populations of M(Ⅱ)is vital to the catalytic rate.Because the peaks of o-quinone framework were not found during the oxidation,the rate-determining step of the catalytic reaction might lie in before the formation of AD,hence the oxidization and reduction of M(Ⅱ)might be the determinate factor of the reaction rate.

    2.7 Properties of biosensor

    According to our studies,the oxygen-sensitive membrane could only be used below 40℃[11].The biosensor could effectively work at pH 7.0 and T=30℃using MnPc as the catalyst,because the activity is about 35%at 30℃and pH 7.0 obtained from the discussed above.

    The concentrations of dissolved oxygen and AD were evaluated by the phase delay φ.A linear relationship between φ and AD was observed in the concentration range from 2.0×10-6to 9.0×10-5mol·L-1,as shown in Fig.10,and the linear graph was defined by the equation of y=0.002 2x+0.029 8(R2=0.993),while the detection limit was 4.0×10-7mol·L-1.It would be possible to perform the determination of lower AD concentration if the catalyzing characteristics of mimic enzyme were improved.

    Repeatability of the sensor was tested,and the standard deviation(SD)value was 5.6×10-7(n=5)mol·L-1for the concentration range from 2.0×10-6to 9.0×10-5mol·L-1.While the response time of the sensor was 10 min.It would be possible to reduce the response time if suitable mediator was used.

    The reusability and stability of the fiber optic AD biosensor were investigated,and the results were shown in Fig.11 and 12.The stability of the biosensor depended on the stabilities of the oxygen-sensitive membrane and MnPc.The oxygen-sensitive membrane was immersed in the reaction cell containing working buffer solution for 72 h on optimized working conditions and its oxygen sensitivity had no detectable change.Due to the immunity from strong acid,strong base and high temperature,MnPc has good stabilities.Hence,the biosensor has good reusability and stability.

    To test performance of the fiber optic biosensor,the SBF and rabbit serum were used as the test medium,and the results were listed in Tables 1 and 2.Viewed from Table 1,the test results were consistent with the actual values,indicating the surroundings of SBF had little influence on the biosensor.However,the deviations were large in the rabbit serum listed in Table 2.The reasonable cause are as follows:first,there are no interactions between the anions or cations within SBF and MnPc or the sensitive membrane;second,the rabbit serum contains various inorganic ions and organic complexes,which is more complicated than SBF and the solvent for the standard curves,and the sensitive membrane is influenced to some degree by organic complexes.Thus,the performance can be optimized by improving the functions of MPc and the sensitive membrane,and the deviation can be reduced greatly through simulating more close to the real serum conditions.

    Table 1 Results of AD in SBF for the fiber optic biosensor1

    Table 2 Results of AD in the rabbit serum1

    3 Conclusions

    MPcs[M=Mn(Ⅱ),Fe(Ⅱ),Co(Ⅱ),Ni(Ⅱ),Cu(Ⅱ)]were used as catalyst for the oxidation of adrenaline(AD)and noradrenaline(NA)by dioxygen.The optimal pH values were the same at 8.0 for all five MPcs.The best suitable temperature were 55 ℃ for four MPcs[M=Mn(Ⅱ),Fe(Ⅱ),Ni(Ⅱ) ,Cu(Ⅱ) ],while the catalytic activity of CoPc increased gradually from 40℃to 65℃.MPcs had the catalytic activity order of ηMnPc>ηFePc>ηNiPc>ηCuPc>ηCoPcunder the optimal catalytic conditions with pH 8.0,T=55 ℃,mMPc=1.0 mg·mL-1.The conceivable mechanism was proposed.Based on the fluorescence quenching,the fiber optic sensor by using MnPc as catalyst to the oxidation of AD by dioxygen was constructed and studied.It had the detecting range from 2.0×10-6to 9.0×10-5mol·L-1with the detection limit of 4.0 ×10-7mol·L-1.The sensor also has good reproducibility and stability,showing great prospect of its application.

    [1]Sorou raddin M H,Manzoori J L,Kargarzadeh E,et al.J.Pharm.Biomed.Anal.,1998,18:877-881

    [2]Cohn J N,Levine T B,Olivari M T,et al.N.Engl.J.Med.,1984,311(13):819-823

    [3]Fernstrom J D,Fernstrom M H.J.Nutr.,2007,137:1539S-1547S

    [4]Palop S G,Romero A M,Calatayud J M.J.Pharm.Biomed.Anal.,2002,27:1017-1025

    [5]Nagaraja P,Vasantha R A,Sunitha K R.J.Pharm.Biomed.Anal.,2001,25:417-424

    [6]Zhang C X,Huang J C,Zhang Z J,et al.Anal.Chim.Acta,1998,374:105-110

    [7]Loay K A,Anas M A,Mayada H A.Anal.Chim.Acta,2005,538(1/2):331-335

    [8]Kartsova L A,Sidorova A A,Kazakov V A,et al.J.Anal.Chem.,2004,59:737-741

    [9]Fotopoulou M A,Ioannou P C.Anal.Chim.Acta,2002,462:179-185

    [10]Chernyshov D V,Shvedene N V,Antipova E R,et al.Anal.Chim.Acta,2008,621:178-184

    [11]Huang J,Fang H,Liu C,et al.Anal.Lett.,2008,41:1430-1442

    [12]Obirai J,Nyokong T.Electrochim.Acta,2005,50:3296-3304

    [13]Meunier B,Sorokin A.Acc.Chem.Res.,1997,30:470-476

    [14]Prasada R T,Murali D G Ed.Recent Advances in Basic and Applied Aspects of Industrial Catalysis,Amsterdam:Elsevier,1998,113:921-926

    [15]Valente A A,Vital J.J.Mol.Catal.A Chem.,2000,156:163-172

    [16]Ni?oME,GiraldoSA,Páez-MozoEA.J.Mol.Catal.A Chem.,2001,175:139-151

    [17]Nyokong T.Coord.Chem.Rev.,2007,251:1707-1722

    [18]Sulman E M,Romanovskii B V.Russ.Chem.Rev.,1996,67:609-616

    [19]QIANG Min-Jie(錢敏杰),JIANG Xiang-Fen(蔣相芬),WANG Xi-Tong(王喜童),et al.Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao),2008,24(9):1278-1283

    [20]KONG De-Jing(孔德靜),SHEN Shui-Fa(沈水發(fā)),YU Hai-Yang(于海洋),et al.Chinese.J.Inorg.Chem.(Wuji Huaxue Xuebao),2010,26(5):817-821

    [21]TANG Yan(湯 雁),HUANG Jun(黃 俊),FANG Hua(方 華),et al.J.Wuhan Univ.Tech.(Wuhan Ligong Daxue Xuebao),2008,9:46-48

    [22]Huang J,Xiao H Y,Li B,et al.Biotechnol.Appl.Biochem.,2006,44:93-100

    [23]Kimer J F,Dow W,Scheidt W R.Inorg.Chem.,1976,15:1685-1690

    [24]Linstead R P,Robertson J M.J.Chem.Soc.,1936,1736-1738[25]Robertson J M.J.Chem.Soc.,1935,615-621

    [26]Palop S G,Romero A M,Calatayud J M.J.Pharm.Biomed.Anal.,2002,27:1017-1025

    [27]ZHANG Jian-Biao(張建標(biāo)),CHEN Xing(陳 興),HUANG Jun(黃 俊),et al.J.Transducer.Tech.(Chuanganqi Jishu),2002,21(10):4-7

    [28]Barreto W J,Ponzoni S,Sassi P.Spectrochim.Acta Part A,1999,55:65-72

    [29]CHEN Bin(陳 彬),DU Xi-Guang(杜錫光),YANG Shu-Qing(楊樹(shù)卿),et al.Chin.J.Mol.Sci.(Fenzi Kexue Xuebao),1996,3(9):211-217

    [30]Graham D G.Mol.Pharmacol.,1978,14:633-643

    [31]Heacock R A.Adv.Heterocycl.Chem.,1965,5:205-290

    [32]Kitamura Y,Mifune M,Takatsuki T,et al.Catal.Commun.,2008,9:224-228

    [33]TrautnerEM,BradleyTR.Austral.J.Sci.,1951,1-4:303-306

    [34]CHEN Bin(陳 彬),SHAO Yun(邵 允),LI Lian-Zhong(李連忠),et al.Chin.J.Mol.Sci.(Fenzi Kexue Xuebao),1996,3(9):218-223

    [35]SONG Xu-Feng(宋旭峰),JI Hong-Bing(紀(jì)紅兵),ZHOU Xian-Tai(周顯太),et al.Fine Chem.(Jingxi Huagong),2004,12(6):474-476

    [36]Sorkin A,Fraisse L,Rabion A,et al.J.Mol.Catal.A Chem.,1997,117:103-114

    [37]Jiang Q,Hu H Y,Guo C C,et al.J.Porphyrins Phthalocyanines,2007,11(07):524-530

    [38]XIANG Yu-Zhi(項(xiàng)玉芝),SI Xi-Qiang(司西強(qiáng)),ZHANG Yan-Sheng(張衍勝),et al.Fine Chem.(Jingxi Huagong),2008,25(12):1240-1244

    Oxidation of Catecholamines Catalyzed by Metallophthalocyanines and Application to the Fiber Optic Biosensor for Adrenaline Concentration Detection

    LI Ming-Tian*,1,2HUANG Jun3YANG Rui-Song1,2YU Lan-Ying1,2ZHOU Xuan3
    (1Key Laboratory of Material Corrosion and Protection of Sichuan Province,Zigong,Sichuan 643000)
    (2Institute of Materials Science and Chemistry Engineering,Sichuan University of Science and Engineering,Zigong,Sichuan 643000)
    (3Key Laboratory of Fiber Optic Sensing Technology and Information Processing(Ministry of Education),Wuhan University of Technology,Wuhan 430070)

    The oxidation ofcatecholamines (adrenaline,AD;noradrenaline,NA)by oxygen using metallophthalocyanines[MPcs,M=Mn(Ⅱ),Fe(Ⅱ),Co(Ⅱ),Ni(Ⅱ),Cu(Ⅱ)]as the catalyst were studied by electronic absorption spectra,and the consequent products were trihydroxyl-N-methyl-indole and trihydroxyl-indole,respectively.The catalytic activities of the MPcs were evaluated by the absorbance ratios at the characteristic peak of the oxidation products.The results showed that MnPc had the best catalytic activity under the optimal conditions.The fiber optic AD biosensor based on MnPc catalysis and fluorescence quenching was fabricated and studied.The dissolved oxygen and AD content were evaluated by the phase delay φ.A linear relationship between φ and AD concentration was observed in the range from 2.0×10-6to 9.0×10-5mol·L-1,and the detection limit was 4.0×10-7mol·L-1.The results indicated that the fiber optic biosensor exhibited good reproducibility and stability.

    metallophthalocyanines;mimic enzyme;catecholamines;catalytic oxidation;fiber optic biosensor

    O625.8;O643.36+1

    A

    1001-4861(2010)11-2069-08

    2010-04-26。收修改稿日期:2010-06-06。

    國(guó)家自然科學(xué)基金(No.60877048)和四川理工學(xué)院科技項(xiàng)目(2009xjkRL007)資助。

    *通訊聯(lián)系人。 E-mail:limt63646616@yahoo.com.cn

    李明田,男,31歲,講師;研究方向:仿生功能材料。

    猜你喜歡
    酞菁兒茶酚胺理工學(xué)院
    應(yīng)激性心肌病的研究進(jìn)展
    江蘇理工學(xué)院
    常熟理工學(xué)院
    不同麻醉方法對(duì)上腹部手術(shù)圍術(shù)期兒茶酚胺的影響研究
    Detecting liars wisely
    理工學(xué)院簡(jiǎn)介
    2-硝基酞菁鋁的合成及其催化活性研究
    安徽化工(2018年4期)2018-09-03 07:11:48
    任意門(mén)
    外源性棕櫚酸減輕兒茶酚胺和血管緊張素II共同介導(dǎo)的大鼠乳鼠心肌細(xì)胞損傷機(jī)制的初步探討
    纖維素纖維負(fù)載鈷酞菁對(duì)活性染料X-3B的降解
    欧美不卡视频在线免费观看| 亚洲精品日韩av片在线观看 | 国产日本99.免费观看| 亚洲av一区综合| 国产高清三级在线| 叶爱在线成人免费视频播放| 国产男靠女视频免费网站| 少妇的逼好多水| 亚洲人成网站在线播放欧美日韩| 亚洲激情在线av| 国产中年淑女户外野战色| 91在线精品国自产拍蜜月 | 在线天堂最新版资源| 欧美日本视频| 亚洲欧美激情综合另类| 亚洲国产色片| 麻豆一二三区av精品| 久久午夜亚洲精品久久| 亚洲精品国产精品久久久不卡| 全区人妻精品视频| 一级毛片女人18水好多| 成年女人看的毛片在线观看| 精品久久久久久久久久久久久| 欧美性猛交黑人性爽| 成人av一区二区三区在线看| 黑人欧美特级aaaaaa片| a在线观看视频网站| 成人三级黄色视频| 动漫黄色视频在线观看| 成年女人毛片免费观看观看9| 精品久久久久久久毛片微露脸| 99久久成人亚洲精品观看| 国产精品一区二区三区四区久久| 欧美日韩国产亚洲二区| 亚洲国产精品久久男人天堂| 性色avwww在线观看| 变态另类丝袜制服| 亚洲乱码一区二区免费版| 老司机在亚洲福利影院| 女人被狂操c到高潮| 国产精品1区2区在线观看.| 欧美一区二区国产精品久久精品| 性色av乱码一区二区三区2| 18禁美女被吸乳视频| 国产亚洲欧美98| 狂野欧美激情性xxxx| 一本精品99久久精品77| 亚洲av不卡在线观看| 国产精品久久久人人做人人爽| 国产精品嫩草影院av在线观看 | 日本一二三区视频观看| 五月玫瑰六月丁香| 成年人黄色毛片网站| 国产精品1区2区在线观看.| 欧美一级毛片孕妇| 午夜免费激情av| 成年女人永久免费观看视频| 老司机福利观看| 麻豆国产av国片精品| 亚洲欧美日韩卡通动漫| 久久这里只有精品中国| 精品国产超薄肉色丝袜足j| 少妇的丰满在线观看| 97超视频在线观看视频| 精品人妻偷拍中文字幕| 日韩欧美国产在线观看| 国模一区二区三区四区视频| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲精品456在线播放app | 国产日本99.免费观看| 1024手机看黄色片| 午夜a级毛片| av专区在线播放| 亚洲av电影不卡..在线观看| 黄片大片在线免费观看| 欧美av亚洲av综合av国产av| 欧美区成人在线视频| 小蜜桃在线观看免费完整版高清| 男插女下体视频免费在线播放| 久久久久久国产a免费观看| 亚洲国产精品久久男人天堂| 亚洲狠狠婷婷综合久久图片| 亚洲电影在线观看av| 国产精品 欧美亚洲| 亚洲精华国产精华精| 日韩欧美精品v在线| 欧美最黄视频在线播放免费| 国产精品一及| 精品福利观看| АⅤ资源中文在线天堂| 精品无人区乱码1区二区| 偷拍熟女少妇极品色| 免费看a级黄色片| 久久国产精品影院| 亚洲av免费高清在线观看| 久久精品影院6| 搡老熟女国产l中国老女人| 高清毛片免费观看视频网站| 我的老师免费观看完整版| 看片在线看免费视频| 欧美一级毛片孕妇| 亚洲最大成人手机在线| 91在线精品国自产拍蜜月 | 波多野结衣高清无吗| 一卡2卡三卡四卡精品乱码亚洲| 国产美女午夜福利| 18禁美女被吸乳视频| 亚洲av电影在线进入| 亚洲精品亚洲一区二区| 日韩欧美国产在线观看| 男女下面进入的视频免费午夜| 日韩中文字幕欧美一区二区| 国产精品久久视频播放| 久久久久国产精品人妻aⅴ院| 亚洲第一欧美日韩一区二区三区| 日韩高清综合在线| 制服丝袜大香蕉在线| 久久精品影院6| 一进一出好大好爽视频| 国产真人三级小视频在线观看| 悠悠久久av| 网址你懂的国产日韩在线| xxx96com| 亚洲人成网站在线播| 操出白浆在线播放| 黄片大片在线免费观看| 亚洲色图av天堂| 午夜免费男女啪啪视频观看 | 亚洲精品美女久久久久99蜜臀| 欧美又色又爽又黄视频| 在线a可以看的网站| 国产成人a区在线观看| 18禁在线播放成人免费| 国产91精品成人一区二区三区| 国产99白浆流出| 国产亚洲精品一区二区www| 美女被艹到高潮喷水动态| 免费在线观看亚洲国产| 最近最新中文字幕大全免费视频| 88av欧美| 免费在线观看日本一区| 亚洲精品乱码久久久v下载方式 | 色哟哟哟哟哟哟| www日本在线高清视频| 欧美中文日本在线观看视频| 亚洲 欧美 日韩 在线 免费| 性欧美人与动物交配| 最近在线观看免费完整版| 搡老妇女老女人老熟妇| 一二三四社区在线视频社区8| 美女大奶头视频| 国产老妇女一区| 日日摸夜夜添夜夜添小说| 欧美3d第一页| 欧美黑人欧美精品刺激| 久久国产乱子伦精品免费另类| 三级毛片av免费| 色播亚洲综合网| 亚洲中文日韩欧美视频| 男女午夜视频在线观看| 国产成人av教育| 欧美一区二区国产精品久久精品| 国内揄拍国产精品人妻在线| 97人妻精品一区二区三区麻豆| 久久久久亚洲av毛片大全| 欧美不卡视频在线免费观看| 在线国产一区二区在线| 欧美成人免费av一区二区三区| 午夜福利在线观看吧| 国产91精品成人一区二区三区| 免费av观看视频| 亚洲精华国产精华精| 精品国产美女av久久久久小说| 国产精品98久久久久久宅男小说| 国产精品爽爽va在线观看网站| 国产精品 国内视频| 一个人观看的视频www高清免费观看| 午夜影院日韩av| 黑人欧美特级aaaaaa片| 99精品欧美一区二区三区四区| 日韩 欧美 亚洲 中文字幕| 国产精品 欧美亚洲| 成人性生交大片免费视频hd| 伊人久久大香线蕉亚洲五| 黑人欧美特级aaaaaa片| xxxwww97欧美| 亚洲成人中文字幕在线播放| 国产高清视频在线播放一区| 成人无遮挡网站| 五月玫瑰六月丁香| 我的老师免费观看完整版| 亚洲avbb在线观看| 久久人妻av系列| 亚洲av不卡在线观看| 欧美极品一区二区三区四区| 国产精品亚洲av一区麻豆| 99久久成人亚洲精品观看| 脱女人内裤的视频| 中文字幕高清在线视频| 精品国产亚洲在线| 3wmmmm亚洲av在线观看| 丰满的人妻完整版| 日韩人妻高清精品专区| 国产免费男女视频| 搞女人的毛片| 精品久久久久久久久久免费视频| 1024手机看黄色片| netflix在线观看网站| 国产激情偷乱视频一区二区| 天堂影院成人在线观看| 性欧美人与动物交配| 久久久成人免费电影| 久久国产乱子伦精品免费另类| 三级国产精品欧美在线观看| 国产精品电影一区二区三区| 成年女人永久免费观看视频| 12—13女人毛片做爰片一| 亚洲国产日韩欧美精品在线观看 | 女生性感内裤真人,穿戴方法视频| 欧美一级a爱片免费观看看| 男人和女人高潮做爰伦理| 国产黄色小视频在线观看| 久久精品人妻少妇| 亚洲国产高清在线一区二区三| 中文字幕熟女人妻在线| 亚洲中文日韩欧美视频| 色播亚洲综合网| 综合色av麻豆| 国内毛片毛片毛片毛片毛片| 国产一区二区在线观看日韩 | 亚洲av成人av| 变态另类成人亚洲欧美熟女| 小说图片视频综合网站| 国产主播在线观看一区二区| 村上凉子中文字幕在线| 亚洲精品一卡2卡三卡4卡5卡| 国产精品亚洲av一区麻豆| 美女cb高潮喷水在线观看| 久9热在线精品视频| 亚洲最大成人手机在线| 亚洲七黄色美女视频| 精品免费久久久久久久清纯| 琪琪午夜伦伦电影理论片6080| 国产精品,欧美在线| 最新中文字幕久久久久| 精品福利观看| 免费看日本二区| 18美女黄网站色大片免费观看| 日韩欧美免费精品| www.色视频.com| 两个人的视频大全免费| 欧美中文日本在线观看视频| 久久草成人影院| svipshipincom国产片| 国产色爽女视频免费观看| 亚洲欧美日韩高清在线视频| 国产久久久一区二区三区| 亚洲男人的天堂狠狠| 国产v大片淫在线免费观看| 18禁裸乳无遮挡免费网站照片| 欧美激情在线99| 18禁美女被吸乳视频| 69av精品久久久久久| 日本一二三区视频观看| 真人一进一出gif抽搐免费| 国产精华一区二区三区| 欧美色视频一区免费| 波多野结衣高清作品| 亚洲,欧美精品.| 少妇的逼好多水| 免费无遮挡裸体视频| 国产免费男女视频| 国产精品乱码一区二三区的特点| 在线播放无遮挡| 欧美激情在线99| 青草久久国产| 日本a在线网址| 亚洲乱码一区二区免费版| 欧美又色又爽又黄视频| 久久欧美精品欧美久久欧美| 亚洲精品日韩av片在线观看 | 在线观看日韩欧美| 很黄的视频免费| 欧美日韩福利视频一区二区| 亚洲五月婷婷丁香| tocl精华| 亚洲人成伊人成综合网2020| 精品无人区乱码1区二区| 88av欧美| 俄罗斯特黄特色一大片| 一个人观看的视频www高清免费观看| 91久久精品国产一区二区成人 | 国产成人aa在线观看| 亚洲在线观看片| 免费在线观看亚洲国产| 窝窝影院91人妻| 老司机午夜十八禁免费视频| 国产真人三级小视频在线观看| 日本与韩国留学比较| 亚洲在线观看片| 久久久久久久久大av| 香蕉丝袜av| 中国美女看黄片| 亚洲av电影在线进入| 欧美性感艳星| 中亚洲国语对白在线视频| 美女cb高潮喷水在线观看| 丰满乱子伦码专区| 男女视频在线观看网站免费| 午夜精品在线福利| 亚洲人与动物交配视频| 色视频www国产| 老司机福利观看| 日韩大尺度精品在线看网址| 日韩大尺度精品在线看网址| 国产精品久久久久久久久免 | 无遮挡黄片免费观看| 日韩欧美精品v在线| 欧美国产日韩亚洲一区| 真人做人爱边吃奶动态| 变态另类成人亚洲欧美熟女| 真实男女啪啪啪动态图| 欧美成狂野欧美在线观看| 亚洲av成人精品一区久久| 色哟哟哟哟哟哟| 国产国拍精品亚洲av在线观看 | 中文字幕熟女人妻在线| 在线观看午夜福利视频| 内地一区二区视频在线| 日韩中文字幕欧美一区二区| 亚洲精品色激情综合| 精品熟女少妇八av免费久了| av专区在线播放| 伊人久久大香线蕉亚洲五| 精品久久久久久久毛片微露脸| 亚洲国产中文字幕在线视频| 少妇高潮的动态图| 久久这里只有精品中国| 一边摸一边抽搐一进一小说| 欧美一级a爱片免费观看看| 国产精品综合久久久久久久免费| 一级a爱片免费观看的视频| 亚洲aⅴ乱码一区二区在线播放| 内地一区二区视频在线| 九九在线视频观看精品| 国产免费av片在线观看野外av| 黄片大片在线免费观看| 制服人妻中文乱码| 日本黄大片高清| 九九热线精品视视频播放| 日韩有码中文字幕| 91九色精品人成在线观看| 午夜福利欧美成人| 国产高清有码在线观看视频| 亚洲男人的天堂狠狠| 国产亚洲精品久久久久久毛片| 五月玫瑰六月丁香| 狂野欧美白嫩少妇大欣赏| 一本综合久久免费| 丁香欧美五月| 91久久精品国产一区二区成人 | 日本一二三区视频观看| 黄片大片在线免费观看| 真实男女啪啪啪动态图| 色老头精品视频在线观看| 一进一出好大好爽视频| 一本一本综合久久| 国产熟女xx| 午夜福利在线在线| 国产高清有码在线观看视频| 亚洲第一电影网av| 12—13女人毛片做爰片一| a级毛片a级免费在线| 性色avwww在线观看| 制服人妻中文乱码| 久久精品人妻少妇| 亚洲七黄色美女视频| 日韩欧美在线二视频| 中文亚洲av片在线观看爽| 亚洲精品粉嫩美女一区| 亚洲一区高清亚洲精品| 欧美日韩瑟瑟在线播放| 婷婷亚洲欧美| 亚洲,欧美精品.| 国产成人av教育| 少妇熟女aⅴ在线视频| 亚洲美女视频黄频| 99riav亚洲国产免费| 麻豆一二三区av精品| 免费在线观看影片大全网站| 国产野战对白在线观看| 无遮挡黄片免费观看| 色精品久久人妻99蜜桃| 亚洲不卡免费看| 亚洲成人久久性| 99国产综合亚洲精品| 欧美成人免费av一区二区三区| 黄色成人免费大全| 琪琪午夜伦伦电影理论片6080| 亚洲精品456在线播放app | 99国产极品粉嫩在线观看| 成人午夜高清在线视频| 观看免费一级毛片| 12—13女人毛片做爰片一| 精品久久久久久久毛片微露脸| 熟女少妇亚洲综合色aaa.| 黄色成人免费大全| 少妇的逼好多水| 狂野欧美激情性xxxx| 又黄又爽又免费观看的视频| 在线a可以看的网站| 久久精品综合一区二区三区| 国产精品久久久久久久久免 | 欧美极品一区二区三区四区| 国产精品乱码一区二三区的特点| 91麻豆精品激情在线观看国产| 最近在线观看免费完整版| 日韩国内少妇激情av| 黄色女人牲交| 欧美日韩一级在线毛片| 两性午夜刺激爽爽歪歪视频在线观看| 黄色女人牲交| 非洲黑人性xxxx精品又粗又长| 一本综合久久免费| 久久中文看片网| 女人被狂操c到高潮| 麻豆成人av在线观看| 九色成人免费人妻av| 特大巨黑吊av在线直播| 国产精品98久久久久久宅男小说| 女生性感内裤真人,穿戴方法视频| 国产69精品久久久久777片| 国产极品精品免费视频能看的| 最近视频中文字幕2019在线8| 国产v大片淫在线免费观看| 亚洲国产高清在线一区二区三| 深爱激情五月婷婷| 最近最新中文字幕大全电影3| 久久久久亚洲av毛片大全| 国产精品 国内视频| 精品国内亚洲2022精品成人| 国产三级中文精品| 久久精品91无色码中文字幕| 欧美高清成人免费视频www| 国产精品久久久人人做人人爽| 中文字幕精品亚洲无线码一区| 黄色成人免费大全| 成人特级av手机在线观看| 亚洲国产精品合色在线| 三级男女做爰猛烈吃奶摸视频| 久久久久久久久大av| 免费在线观看亚洲国产| 久久香蕉精品热| 国产精品女同一区二区软件 | 亚洲真实伦在线观看| 亚洲国产精品成人综合色| 国产高清videossex| 国产三级中文精品| 国产精品 国内视频| a级一级毛片免费在线观看| 97人妻精品一区二区三区麻豆| 嫁个100分男人电影在线观看| 午夜日韩欧美国产| www.色视频.com| av片东京热男人的天堂| 麻豆成人av在线观看| 国产精品爽爽va在线观看网站| 成人18禁在线播放| 免费在线观看影片大全网站| 性色av乱码一区二区三区2| 啦啦啦观看免费观看视频高清| avwww免费| 99热6这里只有精品| 欧美日韩综合久久久久久 | 黄色片一级片一级黄色片| 白带黄色成豆腐渣| 久久久久久大精品| 国产综合懂色| 一a级毛片在线观看| 欧美日韩福利视频一区二区| 久久精品国产综合久久久| 久久精品国产亚洲av香蕉五月| aaaaa片日本免费| 国产精品1区2区在线观看.| 免费看美女性在线毛片视频| 国内精品久久久久精免费| 久久精品国产亚洲av香蕉五月| 最新在线观看一区二区三区| 亚洲av二区三区四区| av在线天堂中文字幕| 黑人欧美特级aaaaaa片| 国产野战对白在线观看| 国产美女午夜福利| 亚洲人成网站在线播放欧美日韩| 免费观看人在逋| 国内精品久久久久精免费| 91麻豆精品激情在线观看国产| 蜜桃亚洲精品一区二区三区| 欧美一区二区精品小视频在线| 俺也久久电影网| 国内精品一区二区在线观看| 黄色视频,在线免费观看| 可以在线观看毛片的网站| 91麻豆精品激情在线观看国产| 欧美3d第一页| 亚洲国产精品sss在线观看| 看黄色毛片网站| 五月伊人婷婷丁香| 国产69精品久久久久777片| 好男人电影高清在线观看| 日韩亚洲欧美综合| 日本成人三级电影网站| 两个人视频免费观看高清| 在线播放无遮挡| 九九久久精品国产亚洲av麻豆| x7x7x7水蜜桃| 亚洲精品在线美女| 午夜老司机福利剧场| 一本综合久久免费| 欧美日韩中文字幕国产精品一区二区三区| 亚洲天堂国产精品一区在线| 在线观看一区二区三区| 国产69精品久久久久777片| 精品人妻偷拍中文字幕| tocl精华| 久久精品91蜜桃| 亚洲aⅴ乱码一区二区在线播放| 久久精品国产综合久久久| 51午夜福利影视在线观看| 内射极品少妇av片p| 国产精品女同一区二区软件 | 亚洲性夜色夜夜综合| 特级一级黄色大片| 日韩av在线大香蕉| 国语自产精品视频在线第100页| 嫩草影院精品99| 狂野欧美激情性xxxx| 国产午夜精品久久久久久一区二区三区 | 校园春色视频在线观看| 日韩成人在线观看一区二区三区| 桃红色精品国产亚洲av| 九九在线视频观看精品| 亚洲国产色片| 日韩欧美 国产精品| 午夜精品久久久久久毛片777| 欧美日韩黄片免| 欧美日韩一级在线毛片| 亚洲专区国产一区二区| 两个人视频免费观看高清| 日韩国内少妇激情av| 天天躁日日操中文字幕| 搞女人的毛片| 日本 欧美在线| 熟女电影av网| tocl精华| 又粗又爽又猛毛片免费看| 热99re8久久精品国产| 97碰自拍视频| 成年免费大片在线观看| 欧美日本亚洲视频在线播放| 少妇的丰满在线观看| avwww免费| 日本三级黄在线观看| 日韩欧美一区二区三区在线观看| 尤物成人国产欧美一区二区三区| 色噜噜av男人的天堂激情| 婷婷丁香在线五月| 搡老岳熟女国产| 久久久色成人| 两个人的视频大全免费| 99精品久久久久人妻精品| ponron亚洲| 国产成人av教育| 日本五十路高清| 97超级碰碰碰精品色视频在线观看| 人人妻,人人澡人人爽秒播| 免费在线观看亚洲国产| 精品人妻1区二区| 国产69精品久久久久777片| 日韩成人在线观看一区二区三区| 亚洲第一欧美日韩一区二区三区| 国产av在哪里看| 成人鲁丝片一二三区免费| 少妇人妻一区二区三区视频| 欧美丝袜亚洲另类 | 99久久无色码亚洲精品果冻| 99久久精品一区二区三区| 床上黄色一级片| 精品久久久久久久人妻蜜臀av| www.色视频.com| 一本精品99久久精品77| 丰满人妻一区二区三区视频av | 99热精品在线国产| 美女黄网站色视频| 成熟少妇高潮喷水视频| 婷婷六月久久综合丁香| 国产综合懂色| 久久这里只有精品中国| 久久国产精品人妻蜜桃| 婷婷六月久久综合丁香| 亚洲av成人精品一区久久| 国产av不卡久久| 在线国产一区二区在线| 亚洲av第一区精品v没综合| www日本在线高清视频| 国产精品久久视频播放| 动漫黄色视频在线观看| 久久久国产成人免费| 日本黄大片高清| 一本一本综合久久| 好男人电影高清在线观看| 亚洲成a人片在线一区二区| 此物有八面人人有两片| 国产成人欧美在线观看| 久久精品国产自在天天线|