郭云王 東 劉德志 陳俊全 李富華
(海軍工程大學(xué)電力電子技術(shù)研究所艦船綜合電力技術(shù)國防科技重點實驗室 武漢 430033)
變頻驅(qū)動三相感應(yīng)電機系統(tǒng)穩(wěn)定性的數(shù)學(xué)推導(dǎo)與分析
(海軍工程大學(xué)電力電子技術(shù)研究所艦船綜合電力技術(shù)國防科技重點實驗室 武漢 430033)
變頻驅(qū)動感應(yīng)電機系統(tǒng)在低轉(zhuǎn)速、輕載下容易出現(xiàn)低頻振蕩現(xiàn)象。以變頻驅(qū)動的三相電機系統(tǒng)為例,由電機小擾動模型及逆變系統(tǒng)開關(guān)模型入手,推導(dǎo)出全系統(tǒng)小擾動數(shù)學(xué)模型。利用現(xiàn)代控制理論赫爾維茲判據(jù)分析了系統(tǒng)的穩(wěn)定性并繪制出三維不穩(wěn)定區(qū)域,詳細分析了不同運行工況下電機參數(shù)、直流濾波電感電容、變頻器死區(qū)時間、調(diào)制頻率、調(diào)制比等參數(shù)變化時對系統(tǒng)穩(wěn)定性的影響規(guī)律并得到了仿真及實驗驗證。此推導(dǎo)與分析過程可以推廣至變頻驅(qū)動的多相感應(yīng)電機系統(tǒng)中,結(jié)論有助于此類系統(tǒng)參數(shù)合理設(shè)計與穩(wěn)定運行。
變頻驅(qū)動 感應(yīng)電機 小擾動模型 開關(guān)函數(shù) 穩(wěn)定性
交?直?交變頻驅(qū)動感應(yīng)電機系統(tǒng)在開環(huán)控制方式下容易出現(xiàn)低頻功率振蕩的現(xiàn)象,早期國外學(xué)者對此進行過一些研究,但由于采取一定的措施可以減弱振蕩,逐漸忽略了對該問題的探索。隨著艦船綜合電力系統(tǒng)的不斷發(fā)展,交?直?交變頻驅(qū)動感應(yīng)電機系統(tǒng)成為其中的一項關(guān)鍵環(huán)節(jié),對其性能提出了更高、更嚴格的要求[1]。研究兆瓦級大容量交直交變頻驅(qū)動多相感應(yīng)電機系統(tǒng)期間,在空載開環(huán)、額定電壓和頻率時就出現(xiàn)了持續(xù)的低頻振蕩現(xiàn)象,導(dǎo)致保護開關(guān)頻繁跳閘而無法試驗,空載起動的相電流波形如圖1所示。開展交?直?交變頻驅(qū)動感應(yīng)電機系統(tǒng)穩(wěn)定性的研究變得必要而緊迫。
圖1 某大容量變頻驅(qū)動感應(yīng)電機系統(tǒng)電流振蕩波形Fig.1 Current waveforms of certain large-capacity inverter-fed induction motor drive system
20世紀60年代末,Lipo提出了系統(tǒng)的低頻振蕩是由逆變器直流環(huán)節(jié)濾波元件與電機磁場、轉(zhuǎn)子之間的能量交換引起的觀點,并預(yù)測了系統(tǒng)二維不穩(wěn)定區(qū)域[2-3]。文獻[2]通過根軌跡方法對三相對稱的感應(yīng)電機穩(wěn)定性進行了分析。文獻[3]由乃奎斯特判據(jù)對整流-相控逆變-感應(yīng)電機系統(tǒng)的穩(wěn)定性進行了理論分析和仿真驗證。20世紀 80~90年代,Mutoh、Ueda等分析了變頻驅(qū)動系統(tǒng)由于本身電機參數(shù)匹配性帶來的系統(tǒng)不穩(wěn)定問題,及死區(qū)時間對PWM 逆變器供電系統(tǒng)穩(wěn)定性的影響,對影響低頻振蕩的一些因素給了定性解釋[4-5]。文獻[6]采用一種調(diào)節(jié)定子頻率的方法使此類系統(tǒng)的低頻振蕩現(xiàn)象得到了一定的抑制。文獻[7]從電力電子非線性現(xiàn)象的角度,通過分岔及混沌理論對系統(tǒng)的不穩(wěn)定性進行了一些研究。20世紀 90年代后,國內(nèi)開始對電機-負載系統(tǒng)的穩(wěn)定性進行研究,但主要是針對同步發(fā)電機-整流系統(tǒng)穩(wěn)定性的分析。文獻[8]建立了同步發(fā)電機-整流器-反電動勢負載系統(tǒng)的等效電路模型,分析了系統(tǒng)的穩(wěn)定性。文獻[9]分析了發(fā)電機參數(shù)、交軸穩(wěn)定繞組及負載對 3/3相雙繞組發(fā)電機系統(tǒng)運行穩(wěn)定性的影響規(guī)律。文獻[10]對3/3相雙繞組發(fā)電機系統(tǒng)并聯(lián)運行時的穩(wěn)定性進行了研究。而對于變頻驅(qū)動感應(yīng)電機系統(tǒng)穩(wěn)定性研究較少,主要是合肥工業(yè)大學(xué)、清華大學(xué)、天津大學(xué)等單位開展了相關(guān)研究工作,分析了PWM逆變器供電系統(tǒng)穩(wěn)定性,研究了產(chǎn)生振蕩的主要影響因素及抑制方法。文獻[11]通過仿真模擬了系統(tǒng)的低頻振蕩現(xiàn)象,提出了一種低頻振蕩判據(jù)。文獻[12]提出濾波器與電機之間可能構(gòu)成自激振蕩。文獻[13]基于李亞普諾夫理論研究了鉛酸動力電池組供電的電壓源型逆變器-牽引感應(yīng)電機傳動系統(tǒng)的穩(wěn)定性。但上述研究未涉及濾波器參數(shù)、逆變器參數(shù)及系統(tǒng)的不同運行負載工況,也未對系統(tǒng)的不穩(wěn)定區(qū)域進行充分的實驗驗證。
本文以交?直?交變頻驅(qū)動的三相電機系統(tǒng)為例,考慮了電機參數(shù)、直流濾波電感電容、變頻器死區(qū)時間、調(diào)制頻率、調(diào)制比以及運行工況等因素,對系統(tǒng)穩(wěn)定性進行了深入全面的研究,為艦船綜合電力系統(tǒng)中大容量交?直?交變頻驅(qū)動的多相感應(yīng)電機系統(tǒng)的參數(shù)設(shè)計和穩(wěn)定性分析打下了基礎(chǔ)。
常見的交?直?交變頻驅(qū)動三相感應(yīng)電機系統(tǒng)主要由三相電源、不控整流、濾波環(huán)節(jié)、PWM 逆變器及感應(yīng)電機組成,如圖2所示。
圖2 變頻驅(qū)動三相感應(yīng)電機系統(tǒng)組成原理圖Fig.2 Structure of inverter-fed three phase induction motor drive system
對于一個理想三相感應(yīng)電機,所做假設(shè)可參見文獻[1-2],其數(shù)學(xué)模型由磁鏈方程、電壓方程、轉(zhuǎn)矩方程和運動方程組成。磁鏈方程
式中 Ls——定子等效自感;
Lms——原三相繞組任意兩相間最大互感。同步旋轉(zhuǎn)坐標(biāo)系下電壓方程
式中 p——算子d/dt;
rs——定子電阻;
ωe——同步旋轉(zhuǎn)角速度;
ωr——轉(zhuǎn)子旋轉(zhuǎn)的角速度。
轉(zhuǎn)矩方程
式中 P——電機的極對數(shù)。
運動方程
式中 TL—負載轉(zhuǎn)矩;
J—轉(zhuǎn)動慣量。由式(1)~式(4)表示的數(shù)學(xué)模型可以推導(dǎo)出線性化的系統(tǒng)小擾動模型。忽略諧波影響,在初始的穩(wěn)態(tài)下,令式(2)中p=0。文中帶有下標(biāo)“0”的變量均表示其相應(yīng)的初始穩(wěn)態(tài)值。式中,
穩(wěn)態(tài)工作時,解方程組,可得ids0、iqs0、id′r0、和Te0,如式(6)所示。
式中 Um——相電壓幅值;
Ts——定子時間常數(shù),
Tr——轉(zhuǎn)子時間常數(shù),
在小擾動條件下,系統(tǒng)中各變量在穩(wěn)定點附近產(chǎn)生一定的增量,結(jié)合電磁轉(zhuǎn)矩方程和運動方程,可得完整的三相感應(yīng)電機小擾動數(shù)學(xué)模型如式(7)所示。
三相電壓型逆變器系統(tǒng)由濾波環(huán)節(jié)與逆變器兩大部分組成。將開關(guān)器件與反并二極管組合看成一個理想開關(guān),利用開關(guān)函數(shù)描述開關(guān)行為,該系統(tǒng)可等效為三個單刀雙擲開關(guān)的并聯(lián),則可建立系統(tǒng)的開關(guān)平均等效模型[14-16]。
假定Sap、Sbp、Scp表示上半橋中分別連接a、b、c相理想開關(guān)的狀態(tài),San、Sbn、Scn表示下半橋中分別連接a、b、c相理想開關(guān)的狀態(tài)。
以其中一相對應(yīng)的開關(guān)為例,設(shè) S在開關(guān)閉合時為1,開關(guān)斷開時為0的開關(guān)函數(shù),有如下關(guān)系式:
在遠低于開關(guān)頻率的范圍內(nèi),開關(guān)網(wǎng)絡(luò)可以用平均模型建模。開關(guān)函數(shù)S的平均值為相應(yīng)的占空比d。列寫出逆變器系統(tǒng)的狀態(tài)方程
即
按電路結(jié)構(gòu)得到三相電壓型逆變器系統(tǒng)平均模型,如圖3a所示。再經(jīng)dq旋轉(zhuǎn)坐標(biāo)系變換,可得旋轉(zhuǎn)dq坐標(biāo)系下平均等效模型,此時dq是解耦的,如圖3b所示。
圖3 三相電壓型逆變器系統(tǒng)平均模型Fig.3 Average model of three phase voltage-source inverter system
式中 Lf——直流側(cè)電感值;
Cf——直流側(cè)電容值。
直流側(cè)電壓來源于電網(wǎng),若忽略其變化ΔUdc=0;同時由
式中,M為逆變器調(diào)制比,可得
通常,為防止逆變器同一相上、下兩橋臂的器件同時導(dǎo)通發(fā)生短路故障,須設(shè)置一段死區(qū)時間td。死區(qū)的影響是產(chǎn)生一系列寬度為td的畸變脈沖電壓,這些脈沖列可以等效為一個矩形波的偏差電壓Uef,經(jīng)過傅里葉分解,此偏差電壓的基波分量幅值為
式中 fc——開關(guān)頻率。
經(jīng)過分析,死區(qū)時間可等效為定子電阻,其值為
由式(7)、式(14)和式(16),最終得到包含死區(qū)時間的全系統(tǒng)小擾動數(shù)學(xué)模型為式(17)。
由該系統(tǒng)小擾動數(shù)學(xué)模型則可通過現(xiàn)代控制理論赫爾維茲穩(wěn)定性判據(jù),對系統(tǒng)穩(wěn)定性進行分析。
為了驗證數(shù)學(xué)推導(dǎo)的結(jié)論,建立了系統(tǒng)仿真模型及實驗系統(tǒng),參數(shù)詳見表1。
表1 電機參數(shù)Tab.1 Parameters of motor
通過穩(wěn)定性分析可知該系統(tǒng)的固有不穩(wěn)定區(qū)域遠離正常工作區(qū),要在工作區(qū)模擬出系統(tǒng)的振蕩可以通過增大定子電阻、減小轉(zhuǎn)子電阻、減小定子漏抗或減小轉(zhuǎn)子漏抗四種方式來實現(xiàn)。顯然,后面三種方式在實際中難以實現(xiàn),故考慮在電機定子輸入端每相串聯(lián)了相同的電阻r0,來模擬系統(tǒng)的振蕩現(xiàn)象。
當(dāng)變頻驅(qū)動感應(yīng)電機系統(tǒng)各參數(shù)一定時,系統(tǒng)的不穩(wěn)定性分別與定子電壓、定子頻率(轉(zhuǎn)速)和負載量(輸出電磁轉(zhuǎn)矩)三個量有直接的關(guān)系。為形象地表示系統(tǒng)不同工況下的不穩(wěn)定性,由系統(tǒng)小擾動數(shù)學(xué)模型,可以由計算機繪制出三維不穩(wěn)定區(qū)域,以及理想空載下和恒壓頻比時 U-Te、Te-f坐標(biāo)面投影的不穩(wěn)定域,如圖 4所示。x坐標(biāo)為定子頻率,y坐標(biāo)為定子電壓,z坐標(biāo)為電磁轉(zhuǎn)矩。
由圖4可見,此系統(tǒng)在低頻、輕載下將出現(xiàn)不穩(wěn)定現(xiàn)象。以空載(輸出轉(zhuǎn)矩為零)為例進行分析驗證,如圖5所示,橫坐標(biāo)為定子頻率,縱坐標(biāo)為定子電壓有效值,區(qū)域內(nèi)為系統(tǒng)不穩(wěn)定區(qū),區(qū)域外均為穩(wěn)定區(qū)。圖中“?!迸c“×”表示進行仿真驗證所選擇的點。其中,“?!北硎镜狞cA、B、D、E、G、H、J、K、L處于穩(wěn)定區(qū),“×”表示的點C、F、I處于不穩(wěn)定區(qū)。
圖5 系統(tǒng)空載運行時的不穩(wěn)定區(qū)域Fig.5 Unstable region with simulation points at no-load
在 Matlab/Simulink軟件中建立了變頻驅(qū)動三相感應(yīng)電機系統(tǒng)仿真模型。仿真結(jié)果表明,處于穩(wěn)定區(qū)內(nèi)的A、B、D、E、G、H、J、K、L點所對應(yīng)的工況下,系統(tǒng)能夠穩(wěn)定運行,轉(zhuǎn)速波動很小,電流不出現(xiàn)畸變,轉(zhuǎn)矩脈動小;處于不穩(wěn)定區(qū)內(nèi)的C、F、I點所對應(yīng)的工況下,系統(tǒng)出現(xiàn)轉(zhuǎn)速持續(xù)振蕩,電流波形畸變,轉(zhuǎn)矩在大范圍內(nèi)脈動,即出現(xiàn)了低頻振蕩現(xiàn)象。仿真與理論分析結(jié)論是完全一致的,證明了理論推導(dǎo)與分析的正確性。圖6為其中部分工作點下的電流、轉(zhuǎn)速、轉(zhuǎn)矩仿真波形。
圖6 三個工況點運行的定子相電流、轉(zhuǎn)速、轉(zhuǎn)矩仿真波形Fig.6 Simulation waveforms of stator phase current, speed and torque under different operation conditions
實驗系統(tǒng)由供電電源、不控整流柜、濾波-逆變器以及三相感應(yīng)電動機構(gòu)成,如圖2所示。在電機定子輸入端串聯(lián)了三相電阻,每相r0=1.0?,第4.86s時刻串入,14.74s時刻切除;由于實驗中負載難以保持恒定,以空載實驗加以驗證。根據(jù)解析分析得到的系統(tǒng)空載不穩(wěn)定區(qū)域和實驗結(jié)果擬合出的不穩(wěn)定區(qū)域(虛線)如圖7所示。
以出現(xiàn)振蕩的工況點X為例,系統(tǒng)振蕩時采集的實驗波形如圖8所示。在投入電阻之前,系統(tǒng)運行時遠離振蕩區(qū),電壓、電流和轉(zhuǎn)速均保持穩(wěn)定,投入電阻后,X點處于系統(tǒng)不穩(wěn)定區(qū)域內(nèi),各量出現(xiàn)振蕩現(xiàn)象,再切除電阻后系統(tǒng)恢復(fù)穩(wěn)定運行。但由圖8可看出,其中電流和轉(zhuǎn)速的振蕩較為明顯,電壓振蕩現(xiàn)象并不十分明顯,這主要與系統(tǒng)的不穩(wěn)定程度以及直流側(cè)電容作用有關(guān)。事實上,串入更大電阻后,振蕩現(xiàn)象明顯加劇,電壓也呈現(xiàn)較大幅度的振蕩,限于篇幅,串入更大電阻時的實驗振蕩波形文中已略去。
圖7 系統(tǒng)不穩(wěn)定域的理論分析結(jié)果與實驗結(jié)果對比Fig.7 Comparison between mathematic analysis and experiment results
圖8 系統(tǒng)出現(xiàn)振蕩的實驗波形Fig.8 Experiment oscillation waveforms
實驗結(jié)果表明,該實驗系統(tǒng)出現(xiàn)的振蕩區(qū)域與理論分析得到的區(qū)域是一致的。實驗結(jié)果擬合得到的振蕩區(qū)域范圍與理論分析區(qū)域相比略小,主要原因是:
(1)存在一定的空載損耗,輸出轉(zhuǎn)矩非零。
(2)實驗中電機參數(shù)隨溫度、磁路飽和等發(fā)生變化。
(3)電源電壓及直流側(cè)電壓并非為理想的恒定值。
當(dāng)系統(tǒng)各參數(shù)變化時,可能對系統(tǒng)的穩(wěn)定域產(chǎn)生影響。它可能使系統(tǒng)由穩(wěn)定狀態(tài)變?yōu)椴环€(wěn)定狀態(tài)或由不穩(wěn)定變?yōu)榉€(wěn)定,也可能僅僅會增大或減小系統(tǒng)的穩(wěn)定裕度。對不同參數(shù)變化情況下系統(tǒng)的穩(wěn)定域邊界量化分析和深入研究是十分有意義的。
由于影響系統(tǒng)穩(wěn)定性的參數(shù)眾多,限于篇幅,文中主要以電機定子電阻和系統(tǒng)負載量兩個參數(shù)為例,分析其變化時對全系統(tǒng)穩(wěn)定性的影響規(guī)律,而其他參數(shù)則可類似地進行分析。
對系統(tǒng)小擾動模型的推導(dǎo)結(jié)果進行分析,當(dāng)電機定子輸入端串聯(lián)電阻r0分別為0?、0.3?、0.6?、0.9?、1.2?時,系統(tǒng)的不穩(wěn)定域邊界變化情況如圖9所示。可見,定子電阻增大時,系統(tǒng)的不穩(wěn)定域?qū)⒃龃?,同時不穩(wěn)定域的邊界將逐漸向 V/f值增大的方向移動。
圖9 改變定子電阻時的不穩(wěn)定區(qū)域變化規(guī)律Fig.9 Influence law of unstable region of system with different stator resistances
針對某一典型工況,可通過根軌跡法分析系統(tǒng)的穩(wěn)定性,以及參數(shù)變化時穩(wěn)定裕度的變化規(guī)律,得出在該狀態(tài)下系統(tǒng)最穩(wěn)定或最不穩(wěn)定時的該參數(shù)值。以f =10Hz、Urms=70V的工況為例,分析可知,當(dāng)串聯(lián)的電阻0.90?<r0<5.02?時系統(tǒng)不穩(wěn)定,且當(dāng)r0=1.99?時系統(tǒng)的特征根具有最大的正實部,故最不穩(wěn)定。圖10所示為影響系統(tǒng)穩(wěn)定性的兩個特征根(其他特征根始終具有較大的負實部)在定子電阻參數(shù)變化時的軌跡變化情況。
圖10 改變定子電阻,f =10Hz、Urms=70V時根軌跡圖Fig.10 Roots locus of system with different stator resistances
類似地,可以分析負載量變化對全系統(tǒng)穩(wěn)定性的影響規(guī)律。由圖7知,電機定子輸入端串聯(lián)電阻r0為1.0?時,系統(tǒng)存在一定的不穩(wěn)定域。當(dāng)負載量變化時,系統(tǒng)的不穩(wěn)定域?qū)⒅饾u減小,當(dāng)負載量增大至某一值時系統(tǒng)將變得穩(wěn)定,如圖11所示。系統(tǒng)的輸出轉(zhuǎn)矩分別為0N·m、14.8N·m、28.1N·m、40.2N·m、51.0N·m(由Te-s曲線知,轉(zhuǎn)差率分別為0、0.002、0.004、0.006、0.008),系統(tǒng)的不穩(wěn)定域不斷減小,系統(tǒng)趨于穩(wěn)定。
圖11 串入r0并改變負載量(轉(zhuǎn)差率)時不穩(wěn)定區(qū)域變化規(guī)律Fig.11 Influence law of unstable region of system with different loads
以f =6Hz、Urms=30V的工況為例,通過根軌跡法分析負載(轉(zhuǎn)差率)參數(shù)變化對系統(tǒng)穩(wěn)定性的影響規(guī)律。轉(zhuǎn)差率s由0增大至∞時,影響系統(tǒng)穩(wěn)定性的三個特征根(其他特征根始終具有較大的負實部)軌跡變化情況如圖12所示??芍斯r下,轉(zhuǎn)差率 0<s<0.0094時,系統(tǒng)不穩(wěn)定;0.0094<s<0.049時,系統(tǒng)穩(wěn)定,但當(dāng) s>0.049時系統(tǒng)又再次變?yōu)椴环€(wěn)定。但應(yīng)當(dāng)特別注意的是,s>0.049時的不穩(wěn)定并不是由于系統(tǒng)參數(shù)不匹配帶來的,而是由于感應(yīng)電機本身的Te-s曲線關(guān)系下穩(wěn)定運行區(qū)域決定的。同時,當(dāng)s=0時系統(tǒng)具有參數(shù)不匹配時帶來的最大的不穩(wěn)定性。
圖12 串入r0并改變負載量,f =6Hz、Urms=30V時根軌跡圖Fig.12 Roots locus of system with different loads
相應(yīng)地,可以得到在任意某指定工況下不同參數(shù)變化時系統(tǒng)的穩(wěn)定域邊界和穩(wěn)定裕度的變化規(guī)律。
各參數(shù)單獨變化時對系統(tǒng)穩(wěn)定性的影響規(guī)律總結(jié)見表 2。事實上,采用該方法對于多個參數(shù)共同變化時系統(tǒng)的不穩(wěn)定域變化規(guī)律也很容易得出,本文限于篇幅而省略。經(jīng)分析,交?直?交變頻驅(qū)動感應(yīng)電機系統(tǒng)中,電機的輸入電壓、定子頻率、負載量、定轉(zhuǎn)子的電阻與漏抗,以及死區(qū)時間(調(diào)制頻率)是影響穩(wěn)定性的主要因素。該結(jié)論有助于對此類系統(tǒng)進行合理的參數(shù)設(shè)計,以保證系統(tǒng)在開環(huán)調(diào)試狀態(tài)下能夠穩(wěn)定運行。
表2 各參數(shù)變化對系統(tǒng)穩(wěn)定性的影響規(guī)律Tab.2 Stability influence law of different parameters
本文以三相電機為例,建立了變頻驅(qū)動的感應(yīng)電動機系統(tǒng)的小擾動數(shù)學(xué)模型,利用現(xiàn)代控制理論中的赫爾維茲判據(jù)分析了系統(tǒng)的穩(wěn)定性,編程繪制出了其在不同工況時(不同定子電壓、定子頻率以及輸出轉(zhuǎn)矩時)的三維不穩(wěn)定區(qū)域。通過 Matlab/ Simulink仿真分析和模擬實驗研究表明,系統(tǒng)的振蕩區(qū)域與解析分析結(jié)論相吻合,證明了分析方法的正確性。
以定子電阻和負載量為例,通過根軌跡法對不同參數(shù)變化時系統(tǒng)的穩(wěn)定域邊界和穩(wěn)定裕度變化情況進行了詳細地分析,得出了各參數(shù)對系統(tǒng)穩(wěn)定性的影響規(guī)律,多個參數(shù)共同變化對不穩(wěn)定性的影響規(guī)律可類似分析。本文的數(shù)學(xué)推導(dǎo)與分析過程可以推廣到多相的變頻驅(qū)動感應(yīng)電機系統(tǒng)的穩(wěn)定性分析中,并可以為此類系統(tǒng)的參數(shù)設(shè)計和穩(wěn)定可靠運行起到一定的指導(dǎo)或借鑒作用。
[1] 馬偉明. 艦船動力發(fā)展的方向——綜合電力系統(tǒng)[J].海軍工程大學(xué)學(xué)報, 2002, 14(6): 1-5. Ma Weiming. Integrated power systems——trend of ship power development[J]. Journal of Naval University of Engineering, 2002, 14(6): 1-5.
[2] Nelson R H, Lipo T A, Krause P C. Stability analysis of a symmetrical induction machine[J]. IEEE Transactions on Power Apparatus and System, 1969, 88(11): 1710-1717.
[3] Lipo T A, Krause P C. Stability analysis of a rectifierinverter induction motor drive[J]. IEEE Transactions on Power Apparatus and System, 1969, 88(1): 55-66.
[4] Ueda R, Sonoda T, Koga K. Stability analysis in induction motor driven by V/f controlled generalpurpose inverter[J]. IEEE Transactions on Industry Applications, 1992, 28(2): 472-481.
[5] Ueda R, Sonoda T, Koga K. Experimental results and their simplified analysis on instability problems in PWM inverter induction motor drives[J]. IEEE Transactions on Industry Applications, 1989, 25(1): 86-95.
[6] Mutoh N, Ueda R, Sakai K, et al. Stabilizing control method for suppressing oscillations of induction motor drive by PWM inverters[J]. IEEE Transactions on Industrial Electronics, 1990, 37(1): 48-56.
[7] Banerjee S, Verghese G C. Nonlinear phenomena in power electronics[M]. New York: IEEE Press, 2001.
[8] 馬偉明, 胡安, 劉德志, 等. 同步發(fā)電機-整流器-反電動勢負載系統(tǒng)的穩(wěn)定性分析[J]. 電工技術(shù)學(xué)報, 2000, 15(1): 1-6. Ma Weiming, Hu An, Liu Dezhi, et al. Stability analysis of synchronous machine with diode-bridge rectifier and back-EMF load[J]. Transactions of China Electrotechnical Society, 2000, 15(1): 1-6.
[9] 楊青, 馬偉明, 吳旭升, 等. 3/3相雙繞組發(fā)電機系統(tǒng)的運行穩(wěn)定性[J]. 中國電機工程學(xué)報, 2003, 23(4): 86-90. Yang Qing, Ma Weiming, Wu Xusheng, et al. Stability of 3/3-phase double winding generator with simultaneous AC and rectified DC load[J]. Proceedings of the CSEE, 2003, 23(4): 86-90.
[10] 楊青, 馬偉明, 劉德志, 等. 3/3相雙繞組發(fā)電機系統(tǒng)的并聯(lián)運行穩(wěn)定性[J]. 中國電機工程學(xué)報, 2007, 27(15): 75-82. Yang Qing, Ma Weiming, Liu Dezhi, et al. Stability of paralleled 3/3-phase double winding generators with simultaneous AC and rectified DC load[J]. Proceedings of the CSEE, 2007, 27(15): 75-82.
[11] 李紅梅, 李忠杰, 劉良成. 逆變器供電下異步電動機低頻振蕩現(xiàn)象的研究[J]. 電工技術(shù)學(xué)報, 2000, 15(3): 16-19. Li Hongmei, Li Zhongjie, Liu Liangcheng. Analysis low frequency oscillation of inverter fed asynchronous motor[J]. Transactions of China Electrotechnical Society, 2000, 15(3): 16-19.
[12] 嚴干貴, 姜齊榮, 蔣霞,等. 變頻電源驅(qū)動下的中高壓異步電動機的振蕩分析[J]. 電力電子技術(shù), 2003, 37(3): 45-48. Yan Gangui, Jiang Qirong, Jiang Xia, et al. Oscillation analysis of induction motor driven by variable amplitude and frequency voltage source[J]. Power Electronics, 2003, 37(3): 45-48.
[13] 程夕明, 歐陽明高, 孫逢春. 基于鉛酸動力電池組供電的電壓源型逆變器-牽引感應(yīng)電機傳動系統(tǒng)的穩(wěn)定性研究[J]. 中國電機工程學(xué)報, 2003, 23(10): 137-141. Cheng Ximing, Ouyang Minggao, Sun Fengchun. Stability study of the voltage source inverter traction induction machine drive system feeding on a leadacid traction battery package[J]. Proceedings of the CSEE, 2003, 23(10): 137-141.
[14] Hiti S, Boroyevich D, Cuadros C. Small-signal modeling and control of three-phase PWM converters[C]. Industry Applications Society Annual Meeting, 1994: 1143-1150.
[15] 徐德鴻. 電力電子系統(tǒng)建模與控制[M]. 北京: 機械工業(yè)出版社, 2005.
[16] 陳明亮. 電力電子變換器端口特性分析及應(yīng)用研究[D]. 武漢: 海軍工程大學(xué), 2007.
Mathematical Deduction and Stability Analysis of Inverter-Fed Three-Phase Induction Motor Drive System
Guo Yunjun Wang Dong Liu Dezhi Chen Junquan Li Fuhua
(National Key Laboratory for Vessel Integrated Power System Technology Naval University of Engineering Wuhan 430033 China)
The inverter-fed induction motor drive system may become unstable at low frequencies and light load. Taking the inverter-fed three-phase induction motor drive system as an example, the small disturbance mathematic model of whole system is deduced. Based on small disturbance model of induction motor and switching model of inverter system, the three-dimensional unstable region is presented and discussed by Hurwitz stability criterion of modern control theory. The results of mathematic analysis, simulation and experiments are identical. The effect of different motor parameters, filter-inverter parameters, and operation conditions on system stability is studied in details. The analysis method can be applied to inverter-fed multiphase induction motor drive system, and the conclusion obtained in the paper may contribute to the design of parameters and stable operation of the system.
Inverter-fed, induction motor, small disturbance model, switching function, stability
TM343
國家自然科學(xué)基金創(chuàng)新研究群體(50721063)和國家自然科學(xué)基金(50877077)資助項目。
2009-06-22 改稿日期 2009-09-08
王 東 男,1978年生,博士,副教授,從事電力推進、獨立電源系統(tǒng)等方面的研究。