• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Understanding alternative splicing of Cav1.2 calcium channels for a new approach towards individualized medicine

    2010-08-15 00:53:51PingLioTuckWhSoong
    THE JOURNAL OF BIOMEDICAL RESEARCH 2010年3期

    Ping Lio, Tuck Wh Soong,b*

    aNational Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433

    bDepartment of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597 Received 29 March 2010

    Calcium channel blockers (CCBs) are widely used to treat cardiovascular diseases such as hypertension, angina pectoris, hypertrophic cardiomyopathy, and supraventricular tachycardia. CCBs selectively inhibit the inward flow of calcium ions through voltage-gated calcium channels, particularly Cav1.2, that are expressed in the cardiovascular system. Changes to the molecular structure of Cav1.2 channels could affect sensitivity of the channels to blockade by CCBs. Recently, extensive alternative splicing was found in Cav1.2 channels that generated wide phenotypic variations. Cardiac and smooth muscles express slightly different, but functionally important Cav1.2 splice variants. Alternative splicing could also modulate the gating properties of the channels and giving rise to different responses to inhibition by CCBs. Importantly, alternative splicing of Cav1.2 channels may play an important role to influence the outcome of many cardiovascular disorders. Therefore, the understanding of how alternative splicing impacts Cav1.2 channels pharmacology in various diseases and different organs may provide the possibility for individualized therapy with minimal side effects.

    INTRODUCTION

    Calcium ions play a critical role in muscle function. Voltage-gated calcium channels (VGCCs) govern the depolarization induced Ca2+entry in many excitable cells, such as neurons, cardiac and smooth muscle cells[1]. Of the 10 known VGCCs, L-type Cav1.2 channel is the most widely expressed channel in the cardiovascular system and is essential for the contraction of heart and arterial smooth muscles. The T type Cav3.1 and L type Cav1.3 channels are expressed in the sinus node cells and modulate pacemaker activity[2].

    VGCCs are composed of multiple subunits. The pore forming α1subunit is the basic structure of the channel, while the β, α2δ and/or γ subunits interact with the α1subunit and play a modulatory role. Calcium channel blockers (CCBs) are widely used in clinical practice to treat cardiovascular disorders from hypertension to angina pectoris, arrhythmia, Raynaud syndrome, and cerebral vasospasm, etc. The basic effect of CCBs is to inhibit VGCCs by binding to the pore forming α1subunit and the Cav1.2 channel is the major target of CCBs.

    Three classes of small molecule CCBs are currently in clinical use: 1,4-dihydropyridines (DHPs), phenylalkylamines (PAAs), and benzothiazepines (BTZs). They all bind to the α1subunit of Cav1.2 channel[3,4]. After several decades of development, new generations of CCBs are more selective on target organs with fewer side effects. For example, the second- and third-generation of DHPs exhibit higher vascular selectivity with less negative inotropic effect and sympathetic activation compared with the firstgeneration blockers. However, variable responses still exist among patients. One example is that elderly or black patients are more sensitive to CCBs than young and white patients[5,6]. Such effects could be due to the presence of variable drug metabolizing enzymes, drug transportation systems or drug targets.

    Genetic factors determine drug response taking into consideration many other factors such as age, sex, body weight, and heath status. Pharmacogenomics provides information on the linkage of genetic factors to drug responses and may also provide the basis for the use of safer and more efficient medications to patients. In hypertension, genetic associations with antihypertensive response have been established for diuretics, beta-blockers, ACE inhibitors and angiotensin1 receptor blockers. However, most of the information is lacking in calcium channel blockers. Recently, three single nucleotide polymorphisms (SNPs) of Cav1.2 channel were identified to link with antihypertensive outcome[7]. Although pharmacogenomics is a useful tool to help understanding the variable response of drug sensitivity among patients with different genetic background, it cannot address the issue about the changes of drug response during the progress of a disease or development of a new disease. The response to drug of a patient could be different when he/she is healthy or sick. The patient can also respond by changing from a drug sensitive state to an insensitive state.

    Alternative splicing is a post-transcriptional modification process. Multiple functional variants could be generated from a single gene. Recently, a large number of alternatively spliced exons have been identified within the pore-forming α1subunit of Cav1.2 channel[8-10]. In this review, we will discuss the dynamic regulation of alternative splicing of Cav1.2 channels under physiological and pathophysiological conditions and the influence of such changes on pharmacology. The proteomic structure of Cav1.2 channels could change under pathological conditions due to alternative splicing. The way we view individualized medicine in treating cardiovascular diseases may need to be expanded beyond pharmacogenomics.

    ALTERNATIVE SPLICING AND CCB BINDING

    The human Cav1.2 gene, CACNA1C, codes for the α1subunit and contains 55 exons. At least 19 exons are subjected to alternative splicing[8-10]. The distribution of the splice sites could be found in our previous review[9]. The number is increasing with reports of the discovery of new splice variants. Exon 34 was recently added to the list[11]and a novel exon 1C was reported to exist in rat arterial smooth muscles[12]. If there were a human exon 1C, total of 21 exons could undergo alternative splicing. Theoretically there will be 221combinations. However, these splice variants are not expressed at the same level. Some alternatively spliced exons were found to be predominantly expressed in certain tissues[9,13-15].

    The binding site for CCBs is mainly composed of the transmembrane segments 5 and 6 (S5 and S6) of domainsⅠto Ⅳ. By using photoaffinity labeling, antibody mapping, and chimeric study, DHPs were found to bind ⅢS5, ⅢS6 and ⅣS6 segments, while ⅢS6 and ⅣS6 are the binding sites for PAAs and DTZs[16,17]. ⅢS5 segment was also suggested to participate in PAA inhibition[18]and IS6 in DHP inhibition[15]. Of these regions, IS6 is encoded by alternatively spliced exons 8 and 8a[15], while the rest of the binding sites are encoded by constitutive exons[9]. Although other alternatively spliced exons are not involved in drug binding, they can affect the channel sensitivity to CCBs by altering gating properties[13,19].

    T I S S U E S P E C I F I C S P L I C E VARIANTS CORRELATE WITH CCBS SENSITIVITY

    The pharmacological effect of CCBs depends on their inhibition of Ca2+influx through Ca2+channels in cardiac and vascular smooth muscles. However, there exist variable responses to blockade of Cav1.2 channels by CCBs within the two tissues. For example, vascular smooth muscles are more sensitive to DHPs than cardiac muscles. One obvious reason is that calcium channels in smooth muscle possess a higher binding affinity than in cardiac muscle[20]. The second reason is that vascular smooth muscles have a more depolarized membrane potential than cardiac cells[21,22]and as such more Cav1.2 channels are locked in an inactivated state which favors the DHP block[19]. Recently, the difference in the molecular structures within cardiac and smooth muscles generated by alternative splicing has emerged as a third determinant factor for CCBs block[13].

    Cav1.2 channel is generally divided into a cardiac isoform (Cav1.2a) and a smooth muscle isoform (Cav1.2b). Cav1.2a channel is the predominant channel in heart while Cav1.2b channel in smooth muscles. Cav1.2a channel contains the combination of exons 1a/8a/-9*/32/33[13,23], while the smooth muscle form (Cav1.2b) contained exons 1b/8/9*/32/33[24]. Exon 1b was named exon 1 in previous reports. Recently, an exon 1c was cloned from rat cerebral arteries and it was reported to be the predominant exon in smooth muscles[12]. However, the human exon 1c has not yet been discovered.

    The Cav1.2b channel is more sensitive to DHP block than Cav1.2a channel which is similar to the observations in native heart and blood vessels[15,25,26]. The molecular component for drug sensitivity was shown to be determined by the inclusion or exclusion of the mutually exclusive 8 and 8a exons that encode the IS6 transmembrane segment. Cav1.2 channels containing exon 8 is more sensitive to isradipine than channels containing exon 8a[15]. An early report showed that IS6 region is important for channel inactivation properties[27]. However, both Cav1.2a and Cav1.2b channels share similar activation and inactivation properties[15,25]. Thus, exons 8 and 8a were believed to affect DHP sensitivity through altering binding affinity rather than changing the inactivation properties of the channels[15]. Besides Cav1.2b channel, there exists a small population of channels in blood vessels named Cav1.2SM channel with exon 33 deletion. The altered inactivation property of Cav1.2SM channel directly affects the channel′s sensitivity to DHP[13].

    Cav1.2 channel activity is also regulated by phosphorylation[1,28-30]. The N-terminal region of Cav1.2 channel is the target for protein kinase C[1,31,32]. Exon 1a from cardiac isoform Cav1.2a channel contains two threonine sites at 27 and 31, and they are not present in smooth muscle Cav1.2b channel. There also exists a potential protein kinase A site within the alternatively spliced exon 9* within Ⅰ-Ⅱ loop[33]. However, it is unknown whether phosphorylation of the putative serine/threonine kinase sites found in the alternatively spliced exons might affect the sensitivity of cardiac or smooth muscle Cav1.2 channels to CCBs.

    Although there exist predominant Cav1.2 channels in heart and blood vessels, numerous splice variants are found to be expressed in cardiovascular system[34]. The presence of splice variants with lower expression could be of particular importance in physiology and pharmacology. For example, the deletion of exon 33 in a small population of Cav1.2 channels in arterial smooth muscles relates with the left shifted window currents recorded in native smooth muscles[13,35]. The DHP sensitivity was altered due to the changes of gating properties[13]. Other alternative spliced exons could also exhibit various CCB sensitivities. Mutually exclusive exon 31 at IVS3 region is more sensitive to DHPs block than exon 32[36]. Mutually exclusive exon 21 encoding ⅢS2 segment is less sensitive to DHP block than 22[36,37]. The results from 65 human heart samples showed the presence of a large number of alternative spliced exons within individual heart tissues[38]. Two human hearts expressed unusually high level of exon 8 instead of exon 8a. This information is of particular importance as exon 8 determines the higher sensitivity of blood vessels to DHP block. Abnormal expression of exon 8 in heart will generate critical side effect in heart if DHPs are used to treat hypertension in these patients. This data therefore underlies the importance of understanding the splicing profiles in individual patients.

    ALTERNATIVE SPLICING AND CARDIOVASCULAR DISORDERS

    Cav1.2 channels are crucial for cardiovascular functions as deletion of the gene in mouse leads to embryonic lethality[39]. Alternative splicing of Cav1.2 channels was linked to many diseases[40]. Mutations of Cav1.2 gene was reported in Timothy syndrome, a disorder characterized by dysfunction in multiple organ systems, including heart, skin, eyes, teeth, immune system and brain[41,42]. Patients usually die at an early age from lethal arrhythmia. The mutations are found at the mutually exclusive exons 8 and 8a and two mutations were found: G406R and G402S. Patients with G406R at exon 8 have a milder symptoms compared with patients with G406R and/or G402S at exon 8a. It should be noted that the exons 8/8a mentioned in the above two papers refer to exons 8a/8 respectively in other reports[9]. Channel inactivation properties are impaired by the mutations. As a consequence, a continuing influx of Ca2+ions will result in the lengthening of action potential, leading to cardiac arrhythmia and sudden death. The levels of expression of exon 8 and 8a is different in various organs and tissues and thus the location of the mutations in exon 8 or 8a would determine the severity of the symptoms and the involvement of other organs. CCBs are ideal to treat the patients by reducing the Ca2+influx from mutant channels.

    Alternative splicing of Cav1.2 channels has identified to be altered in cardiovascular disorders. Mutually exclusive exons 31 and 32 are developmentally regulated[43]and reemergence of fetal exon was found in hypertrophied or failing hearts[44,45]. Gidh-Jain et al[44]reported the switch to a fetal exon in the hypertrophied rat hearts 21 days post myocardial infarction. Yang et al[45]reported the increased expression of fetal exon in human failing hearts. Furthermore, a number of exons were found to be altered in vascular smooth muscles of patients with atherosclerosis[11]. Exon 9* was absent in blood vessels from patients while exon 21 was expressed in healthy arteries, but in patients a switch in expression to the mutually exclusive exon 22 was observed in almost all atherosclerotic arteries examined. Exon 41a was also expressed exclusively in normal arteries. In another report, alternative splicing profiles underwent changes in rats with hypertension. Such changes occurred at multiple splicing sites generating many splice variants[46]. We recently reported the alternative splicing of a number of exons was remodeled in a rat model of myocardial infarction[47]. The remodeling mainly occurred in the infarct area. In contrast to the predominant channels expressed in normal heart, channels with novel combinations of exons appeared in heart with myocardial infarction. Importantly, the alteration of channels in myocardial infarction, hypertension, and atherosclerosis exhibited channel properties changes by electrophysiology studies[11,46,47]. Such changes would potentially have great impact on CCBs sensitivity.

    PERSPECTIVES AND CHALLENGES

    The progress in the study of alternative splicing of Cav1.2 channels highlights a novel way towards individualized medication. Besides SNPs, post transcriptional modification produces Cav1.2 channels with huge variability both in structure and function. Each person could express slightly different splice variants in different tissues. But the functional impact could be enormous. Furthermore, under pathological conditions, the splice patterns can be altered. Such alteration could be variable at different stages of the disease. Thus, each patient could express a signature pattern of Cav1.2 channels generated by alternative splicing. This provides possible targets for individualized medication. However, many questions need to be addressed first and chief of which is how the splicing profile from different organs of a patients can be achieved. The nature of alternative splicing makes it impossible to get such information simply from blood. Also the length of the gene and multiple splicing sites makes it difficult to determine combinatorial profiles for the expression of the many alternatively spliced exons in the full length Cav1.2 channel transcripts. The next obstacle is to select suitable splice variants as targets for drug discovery and development. Most of the current CCBs in use are not designed against one splice variant without affecting others. The understanding of alternative splicing of Cav1.2 channels is far from complete. One example is the hemichannels generated by misspliced exons[48]. Hemichannels in other channels were found to relate with congenital disease[49]. The role of hemichannels or aberrant channels in Cav1.2 channels remains mostly unclear.

    In this review, we discussed the progress in relating alternative splicing of Cav1.2 channels to cardiovascular pharmacology and pathophysiology. However, the knowledge in other organs and systems are mostly lacking. For example, the splicing pattern in nervous system is not well studied. Considering the higher expression of Cav1.2 channels in neurons, CCBs in treating nervous system disorders could attract more attention if neuronal specific CCB is discovered one day in the future. In conclusion, we presented another consideration for the development or discovery of drugs against Cav1.2 channels that may be efficacious in the management of cardiovascular disorder.

    [1] Catterall WA. Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 2000;16:521-555.

    [2] Stieber J, Hofmann F, Ludwig A. Pacemaker channels and sinus node arrhythmia. Trends Cardiovasc Med 2004;14:23-28.

    [3] Abernethy DR, Schwartz JB. Calcium-antagonist drugs. N Engl J Med 1999;341:1447-1457.

    [4] Striessnig J, Grabner M, Mitterdorfer J, Hering S, Sinnegger MJ, Glossmann H. Structural basis of drug binding to L Ca2+ channels. Trends Pharmacol Sci 1998;19:108-115.

    [5] Erne P, Bolli P, Bertel O, Hulthen UL, Kiowski W, Muller FB, et al. Factors influencing the hypotensive effects of calcium antagonists. Hypertension 1983;5:II97-102.

    [6] Wilson TW, Quest DW. Comparative pharmacology of calcium antagonists. Can J Cardiol 1995;11:243-249.

    [7] Bremer T, Man A, Kask K, Diamond C. CACNA1C polymorphisms are associated with the efficacy of calcium channel blockers in the treatment of hypertension. Pharmacogenomics 2006;7:271-279.

    [8] Abernethy DR, Soldatov NM. Structure-functional diversity of human L-type Ca2+ channel: perspectives for new pharmacological targets. J Pharmacol Exp Ther 2002;300:724-728.

    [9] Liao P, Yong TF, Liang MC, Yue DT, Soong TW. Splicing for alternative structures of Cav1.2 Ca2+ channels in cardiac and smooth muscles. Cardiovasc Res 2005;68:197-203.

    [10] Tang ZZ, Liang MC, Lu S, Yu D, Yu CY, Yue DT, et al. Transcript scanning reveals novel and extensive splice variations in human l-type voltage-gated calcium channel, Cav1.2 alpha1 subunit. J Biol Chem 2004;279:44335-44343.

    [11] Tiwari S, Zhang Y, Heller J, Abernethy DR, Soldatov NM. Atherosclerosis-related molecular alteration of the human CaV1.2 calcium channel {alpha}1C subunit. Proc Natl Acad Sci U S A 2006;103:17024-17029.

    [12] Cheng X, Liu J, Asuncion-Chin M, Blaskova E, Bannister JP, Dopico AM, et al. A novel Ca(V)1.2 N terminus expressed in smooth muscle cells of resistance size arteries modifies channel regulation by auxiliary subunits. J Biol Chem 2007;282:29211-29221.

    [13] Liao P, Yu D, Li G, Yong TF, Soon JL, Chua YL, et al. A smooth muscle Cav1.2 calcium channel splice variant underlies hyperpolarized window current and enhanced state-dependent inhibition by nifedipine. J Biol Chem 2007;282:35133-35142.

    [14] Liao P, Yu D, Lu S, Tang Z, Liang MC, Zeng S, et al. Smooth muscle-selective alternatively spliced exon generates functional variation in Cav1.2 calcium channels. J Biol Chem 2004;279:50329-50335.

    [15] Welling A, Ludwig A, Zimmer S, Klugbauer N, Flockerzi V, Hofmann F. Alternatively spliced IS6 segments of the alpha 1C gene determine the tissuespecific dihydropyridine sensitivity of cardiac and vascular smooth muscle L-type Ca2+ channels. Circ Res 1997;81:526-532.

    [16] Hockerman GH, Peterson BZ, Johnson BD, Catterall WA. Molecular determinants of drug binding and action on L-type calcium channels. Annu Rev Pharmacol Toxicol 1997;37:361-396.

    [17] Striessnig J. Pharmacology, structure and function of cardiac L-type Ca(2+) channels. Cell Physiol Biochem 1999;9:242-269.

    [18] Huber IG, Wappl-Kornherr E, Sinnegger-Brauns MJ, Hoda JC, Walter-Bastl D, Striessnig J. Opposite effects of a single IIIS5 mutation on phenylalkylamine and dihydropyridine interaction with L-type Ca2+ channels. J Biol Chem 2004;279:55211-55217.

    [19] Lee KS, Tsien RW. Mechanism of calcium channel blockade by verapamil, D600, diltiazem and nitrendipine in single dialysed heart cells. Nature 1983;302:790-794.

    [20] Triggle DJ. Calcium-channel drugs: structure-function relationships and selectivity of action. J Cardiovasc Pharmacol 1991;18 Suppl 10:S1-6.

    [21] Nelson MT, Standen NB, Brayden JE, Worley JF, 3rd. Noradrenaline contracts arteries by activating voltagedependent calcium channels. Nature 1988;336:382-385.

    [22] Hadley RW, Lederer WJ. Properties of L-type calcium channel gating current in isolated guinea pig ventricular myocytes. J Gen Physiol 1991;98:265-285.

    [23] Mikami A, Imoto K, Tanabe T, Niidome T, Mori Y, Takeshima H, et al. Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel. Nature 1989;340:230-233.

    [24] Biel M, Ruth P, Bosse E, Hullin R, Stuhmer W, Flockerzi V, et al. Primary structure and functional expression of a high voltage activated calcium channel from rabbit lung. FEBS Lett 1990;269:409-412.

    [25] Hu H, Marban E. Isoform-specific inhibition of L-type calcium channels by dihydropyridines is independent of isoform-specific gating properties. Mol Pharmacol 1998;53:902-907.

    [26] Morel N, Buryi V, Feron O, Gomez JP, Christen MO, Godfraind T. The action of calcium channel blockers on recombinant L-type calcium channel alpha1-subunits. Br J Pharmacol 1998;125:1005-1012.

    [27] Zhang JF, Ellinor PT, Aldrich RW, Tsien RW. Molecular determinants of voltage-dependent inactivation in calcium channels. Nature 1994;372:97-100.

    [29] Keef KD, Hume JR, Zhong J. Regulation of cardiac and smooth muscle Ca(2+) channels (Ca(V)1.2a,b) by protein kinases. Am J Physiol Cell Physiol 2001;281:C1743-1756.

    [28] Kamp TJ, Hell JW. Regulation of cardiac L-type calcium channels by protein kinase A and protein kinase C. Circ Res 2000;87:1095-1102.

    [30] van der Heyden MA, Wijnhoven TJ, Opthof T. Molecular aspects of adrenergic modulation of cardiac L-type Ca2+ channels. Cardiovasc Res 2005;65:28-39.

    [32] McHugh D, Beech DJ. Protein kinase C requirement of Ca2+ channel stimulation by intracellular ATP in guinea-pig basilar artery smooth muscle cells. J Physiol 1997;500 ( Pt 2):311-317.

    [31] Shistik E, Ivanina T, Blumenstein Y, Dascal N. Crucial role of N terminus in function of cardiac L-type Ca2+ channel and its modulation by protein kinase C. J Biol Chem 1998;273:17901-17909.

    [33] Bielefeldt K. Molecular diversity of voltage-sensitive calcium channels in smooth muscle cells. J Lab Clin Med 1999;133:469-477.

    [34] Tang ZZ, Hong X, Wang J, Soong TW. Signature combinatorial splicing profiles of rat cardiac- and smooth-muscle Ca(v)1.2 channels with distinct biophysical properties. Cell Calcium 2007;41:417-428.

    [35] Fleischmann BK, Murray RK, Kotlikoff MI. Voltage window for sustained elevation of cytosolic calcium in smooth muscle cells. Proc Natl Acad Sci U S A 1994;91:11914-11918.

    [36] Zuhlke RD, Bouron A, Soldatov NM, Reuter H. Ca2+ channel sensitivity towards the blocker isradipine is affected by alternative splicing of the human alpha1C subunit gene. FEBS Lett 1998;427:220-224.

    [37] Soldatov NM, Bouron A, Reuter H. Different voltagedependent inhibition by dihydropyridines of human Ca2+ channel splice variants. J Biol Chem 1995;270:10540-10543.

    [38] Wang D, Papp AC, Binkley PF, Johnson JA, Sadee W. Highly variable mRNA expression and splicing of L-type voltage-dependent calcium channel alpha subunit 1C in human heart tissues. Pharmacogenet Genomics 2006;16:735-745.

    [39] Seisenberger C, Specht V, Welling A, Platzer J, Pfeifer A, Kuhbandner S, et al. Functional embryonic cardiomyocytes after disruption of the L-type alpha1C (Cav1.2) calcium channel gene in the mouse. J Biol Chem 2000;275:39193-39199.

    [40] Liao P, Zhang HY, Soong TW. Alternative splicing of voltage-gated calcium channels: from molecular biology to disease. Pflugers Arch 2009;458:481-487.

    [41] Splawski I, Timothy KW, Decher N, Kumar P, Sachse FB, Beggs AH, et al. Severe arrhythmia disorder caused by cardiac L-type calcium channel mutations. Proc Natl Acad Sci U S A 2005;102:8089-8096; discussion 8086-8088.

    [42] Splawski I, Timothy KW, Sharpe LM, Decher N, Kumar P, Bloise R, et al. Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 2004;119:19-31.

    [43] Diebold RJ, Koch WJ, Ellinor PT, Wang JJ, Muthuchamy M, Wieczorek DF, et al. Mutually exclusive exon splicing of the cardiac calcium channel alpha 1 subunit gene generates developmentally regulated isoforms in the rat heart. Proc Natl Acad Sci U S A 1992;89:1497-1501.

    [44] Gidh-Jain M, Huang B, Jain P, Battula V, el-Sherif N. Reemergence of the fetal pattern of L-type calcium channel gene expression in non infarcted myocardium during left ventricular remodeling. Biochem Biophys Res Commun 1995;216:892-897.

    [45] Yang Y, Chen X, Margulies K, Jeevanandam V, Pollack P, Bailey BA, et al. L-type Ca2+ channel alpha 1c subunit isoform switching in failing human ventricular myocardium. J Mol Cell Cardiol 2000;32:973-984.

    [46] Tang ZZ, Liao P, Li G, Jiang FL, Yu D, Hong X, et al. Differential splicing patterns of L-type calcium channel Cav1.2 subunit in hearts of Spontaneously Hypertensive Rats and Wistar Kyoto Rats. Biochim Biophys Acta 2008;1783:118-130.

    [47] Liao P, Li G, Yu de J, Yong TF, Wang JJ, Wang J, et al. Molecular alteration of Ca(v)1.2 calcium channel in chronic myocardial infarction. Pflugers Arch 2009;458:701-711.

    [48] Wielowieyski PA, Wigle JT, Salih M, Hum P, Tuana BS. Alternative splicing in intracellular loop connecting domains II and III of the alpha 1 subunit of Cav1.2 Ca2+ channels predicts two-domain polypeptides with unique C-terminal tails. J Biol Chem 2001;276:1398-1406.

    [49] Ophoff RA, Terwindt GM, Vergouwe MN, van Eijk R, Oefner PJ, Hoffman SM, et al. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 1996;87:543-552.

    精品久久蜜臀av无| 十八禁网站免费在线| 午夜福利视频精品| 91麻豆av在线| 一级片免费观看大全| 亚洲,欧美精品.| 丝瓜视频免费看黄片| 久久精品亚洲精品国产色婷小说| 午夜激情久久久久久久| 嫁个100分男人电影在线观看| 在线看a的网站| 欧美日韩亚洲综合一区二区三区_| 91麻豆精品激情在线观看国产 | 欧美激情久久久久久爽电影 | 一进一出抽搐动态| 亚洲av第一区精品v没综合| 国产不卡一卡二| 老熟女久久久| 午夜两性在线视频| 少妇猛男粗大的猛烈进出视频| 一级片'在线观看视频| 最黄视频免费看| 久久精品成人免费网站| 国产有黄有色有爽视频| 女同久久另类99精品国产91| 91精品国产国语对白视频| 亚洲伊人久久精品综合| 国产成人精品无人区| videosex国产| 在线观看一区二区三区激情| 黄网站色视频无遮挡免费观看| 中文字幕av电影在线播放| 可以免费在线观看a视频的电影网站| 一级,二级,三级黄色视频| 久久中文看片网| 日本欧美视频一区| 日韩成人在线观看一区二区三区| 欧美日韩黄片免| 两个人免费观看高清视频| 欧美在线黄色| 国产成人一区二区三区免费视频网站| 久久久欧美国产精品| 亚洲伊人色综图| 三上悠亚av全集在线观看| 国产无遮挡羞羞视频在线观看| 国产在视频线精品| 91精品国产国语对白视频| 91大片在线观看| 欧美一级毛片孕妇| 欧美中文综合在线视频| 亚洲色图综合在线观看| 成人影院久久| 亚洲综合色网址| 色婷婷av一区二区三区视频| 99香蕉大伊视频| av网站免费在线观看视频| 视频区图区小说| 高清av免费在线| 黄色毛片三级朝国网站| 国精品久久久久久国模美| 51午夜福利影视在线观看| 波多野结衣一区麻豆| svipshipincom国产片| 最近最新中文字幕大全电影3 | 肉色欧美久久久久久久蜜桃| 亚洲精品久久成人aⅴ小说| 欧美 亚洲 国产 日韩一| 国产精品久久久久成人av| 999久久久精品免费观看国产| 精品视频人人做人人爽| 一进一出好大好爽视频| 国产精品久久久av美女十八| 亚洲国产看品久久| 深夜精品福利| 一进一出好大好爽视频| 国产一区二区三区在线臀色熟女 | 香蕉久久夜色| 欧美乱码精品一区二区三区| 国产精品99久久99久久久不卡| 在线 av 中文字幕| 汤姆久久久久久久影院中文字幕| 99riav亚洲国产免费| 18禁美女被吸乳视频| 国产av精品麻豆| cao死你这个sao货| 69av精品久久久久久 | 五月开心婷婷网| 岛国毛片在线播放| 国产有黄有色有爽视频| 一级片免费观看大全| 69av精品久久久久久 | 久久久久精品国产欧美久久久| 中文字幕最新亚洲高清| 亚洲国产中文字幕在线视频| 久久精品国产99精品国产亚洲性色 | 日韩有码中文字幕| 视频在线观看一区二区三区| 国产黄色免费在线视频| 国产欧美日韩一区二区精品| 精品国产乱码久久久久久小说| bbb黄色大片| 中国美女看黄片| 亚洲黑人精品在线| 男女下面插进去视频免费观看| 黄频高清免费视频| 亚洲av欧美aⅴ国产| 日韩人妻精品一区2区三区| 日韩视频一区二区在线观看| 人妻一区二区av| 一进一出好大好爽视频| 国产精品久久久人人做人人爽| 久久久国产欧美日韩av| 欧美精品高潮呻吟av久久| 天堂俺去俺来也www色官网| 动漫黄色视频在线观看| 少妇 在线观看| 午夜激情av网站| 亚洲精品一卡2卡三卡4卡5卡| 国产亚洲精品一区二区www | 国产国语露脸激情在线看| 中国美女看黄片| 母亲3免费完整高清在线观看| 亚洲性夜色夜夜综合| 久久中文看片网| 日韩欧美一区视频在线观看| 亚洲欧美色中文字幕在线| 波多野结衣av一区二区av| 日韩成人在线观看一区二区三区| 日本欧美视频一区| 美女高潮喷水抽搐中文字幕| 欧美日韩亚洲国产一区二区在线观看 | 国产免费视频播放在线视频| 国产成人精品久久二区二区免费| 色播在线永久视频| 下体分泌物呈黄色| 自线自在国产av| 国产精品久久久人人做人人爽| 美女高潮喷水抽搐中文字幕| 黑丝袜美女国产一区| 性色av乱码一区二区三区2| 国内毛片毛片毛片毛片毛片| 日韩视频一区二区在线观看| 亚洲av日韩精品久久久久久密| 国产精品一区二区在线观看99| 91av网站免费观看| 纵有疾风起免费观看全集完整版| 亚洲精华国产精华精| 国产黄频视频在线观看| 首页视频小说图片口味搜索| 777米奇影视久久| 国产男女内射视频| 老司机福利观看| 久久久久国产一级毛片高清牌| 首页视频小说图片口味搜索| 日本撒尿小便嘘嘘汇集6| 国产精品秋霞免费鲁丝片| 日本wwww免费看| 十分钟在线观看高清视频www| 首页视频小说图片口味搜索| 亚洲一卡2卡3卡4卡5卡精品中文| 国产亚洲欧美在线一区二区| 精品人妻在线不人妻| 悠悠久久av| 老司机亚洲免费影院| 成人影院久久| 国产精品亚洲av一区麻豆| 夜夜爽天天搞| 啦啦啦 在线观看视频| 久久久精品免费免费高清| 免费看a级黄色片| 亚洲成人免费电影在线观看| 欧美精品人与动牲交sv欧美| 欧美av亚洲av综合av国产av| 亚洲 国产 在线| 亚洲自偷自拍图片 自拍| 欧美大码av| 女警被强在线播放| 久久精品国产亚洲av高清一级| 亚洲人成电影观看| 久久久国产成人免费| 别揉我奶头~嗯~啊~动态视频| 操出白浆在线播放| 国产国语露脸激情在线看| 精品久久蜜臀av无| 国产aⅴ精品一区二区三区波| 精品国产国语对白av| 亚洲色图av天堂| 欧美 日韩 精品 国产| 国产精品久久久久久精品古装| 亚洲av成人不卡在线观看播放网| 国产xxxxx性猛交| av欧美777| 亚洲,欧美精品.| 男女之事视频高清在线观看| 久久亚洲真实| a在线观看视频网站| 两性夫妻黄色片| 国产极品粉嫩免费观看在线| 国产精品香港三级国产av潘金莲| 国产主播在线观看一区二区| 久久国产精品男人的天堂亚洲| 国产精品二区激情视频| 国产亚洲精品久久久久5区| 亚洲一码二码三码区别大吗| 中国美女看黄片| 久久久国产成人免费| 多毛熟女@视频| 国产免费视频播放在线视频| 亚洲av成人一区二区三| 变态另类成人亚洲欧美熟女 | 一区二区三区国产精品乱码| www日本在线高清视频| 另类精品久久| 丁香欧美五月| www.999成人在线观看| 国产成人精品无人区| 菩萨蛮人人尽说江南好唐韦庄| 自拍欧美九色日韩亚洲蝌蚪91| 黑人欧美特级aaaaaa片| 一级毛片女人18水好多| netflix在线观看网站| 9热在线视频观看99| 成人av一区二区三区在线看| 天天影视国产精品| 亚洲av美国av| 日韩视频一区二区在线观看| 亚洲精品自拍成人| 免费在线观看黄色视频的| 夜夜夜夜夜久久久久| 青青草视频在线视频观看| 757午夜福利合集在线观看| 男女午夜视频在线观看| 国产在线视频一区二区| 丝袜人妻中文字幕| 女警被强在线播放| 最新美女视频免费是黄的| 欧美乱码精品一区二区三区| 国产精品99久久99久久久不卡| 自线自在国产av| 欧美激情 高清一区二区三区| 免费观看人在逋| 69精品国产乱码久久久| 国产成人欧美在线观看 | 亚洲五月婷婷丁香| 久久久精品94久久精品| 中文字幕高清在线视频| av电影中文网址| 亚洲色图av天堂| 每晚都被弄得嗷嗷叫到高潮| 无遮挡黄片免费观看| 十八禁网站网址无遮挡| 日韩人妻精品一区2区三区| 国产精品秋霞免费鲁丝片| 欧美久久黑人一区二区| 老司机深夜福利视频在线观看| 国产成人欧美| 美女视频免费永久观看网站| 1024香蕉在线观看| 国产av精品麻豆| 99香蕉大伊视频| 欧美日韩亚洲国产一区二区在线观看 | 黄色视频在线播放观看不卡| 日本黄色视频三级网站网址 | 成人特级黄色片久久久久久久 | 成人亚洲精品一区在线观看| 中国美女看黄片| 午夜激情久久久久久久| 亚洲国产欧美网| 午夜免费成人在线视频| 18禁国产床啪视频网站| 少妇裸体淫交视频免费看高清 | 国产精品麻豆人妻色哟哟久久| 精品一品国产午夜福利视频| 国产三级黄色录像| 欧美精品人与动牲交sv欧美| 18禁黄网站禁片午夜丰满| 欧美精品av麻豆av| 天天躁日日躁夜夜躁夜夜| 麻豆成人av在线观看| 新久久久久国产一级毛片| 免费在线观看完整版高清| 精品免费久久久久久久清纯 | 久久亚洲真实| 久久久久久亚洲精品国产蜜桃av| 50天的宝宝边吃奶边哭怎么回事| 老司机在亚洲福利影院| videos熟女内射| 国产午夜精品久久久久久| av超薄肉色丝袜交足视频| 老司机午夜福利在线观看视频 | 国产亚洲av高清不卡| 女人高潮潮喷娇喘18禁视频| 亚洲熟妇熟女久久| 老鸭窝网址在线观看| 欧美成人免费av一区二区三区 | 狠狠婷婷综合久久久久久88av| 香蕉国产在线看| 2018国产大陆天天弄谢| 香蕉久久夜色| 亚洲熟女毛片儿| 高清欧美精品videossex| 啦啦啦视频在线资源免费观看| 中文字幕av电影在线播放| 黄色毛片三级朝国网站| 91九色精品人成在线观看| 美女福利国产在线| 色综合婷婷激情| 脱女人内裤的视频| 黄色a级毛片大全视频| 制服人妻中文乱码| 成人18禁在线播放| 国产成人啪精品午夜网站| 久久久精品94久久精品| 国产人伦9x9x在线观看| 国产高清videossex| 美女高潮喷水抽搐中文字幕| 丁香六月天网| 19禁男女啪啪无遮挡网站| 亚洲人成电影观看| 大片电影免费在线观看免费| 王馨瑶露胸无遮挡在线观看| 午夜视频精品福利| 亚洲成av片中文字幕在线观看| 欧美日韩成人在线一区二区| 色尼玛亚洲综合影院| 女人爽到高潮嗷嗷叫在线视频| 日韩制服丝袜自拍偷拍| 国产午夜精品久久久久久| 麻豆国产av国片精品| 黄色a级毛片大全视频| 国产男靠女视频免费网站| 满18在线观看网站| 黄色a级毛片大全视频| 中文亚洲av片在线观看爽 | 国产精品99久久99久久久不卡| avwww免费| 大型av网站在线播放| 狂野欧美激情性xxxx| 精品久久久精品久久久| www.自偷自拍.com| 日韩视频一区二区在线观看| 免费不卡黄色视频| 国产成+人综合+亚洲专区| 午夜福利欧美成人| 亚洲精品自拍成人| 在线av久久热| 亚洲中文日韩欧美视频| 亚洲成人免费av在线播放| 免费观看人在逋| 大片电影免费在线观看免费| 一本大道久久a久久精品| 亚洲国产看品久久| 久久精品成人免费网站| 91麻豆av在线| 夜夜骑夜夜射夜夜干| 日韩成人在线观看一区二区三区| 亚洲av欧美aⅴ国产| 成人18禁高潮啪啪吃奶动态图| 欧美 日韩 精品 国产| 国产男女超爽视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 中文字幕精品免费在线观看视频| 国产真人三级小视频在线观看| 青草久久国产| 女性被躁到高潮视频| 国产主播在线观看一区二区| 欧美精品一区二区大全| 法律面前人人平等表现在哪些方面| 色播在线永久视频| 一区二区三区乱码不卡18| 亚洲欧美激情在线| 欧美日韩黄片免| 国产野战对白在线观看| 成年动漫av网址| 欧美午夜高清在线| 国产伦理片在线播放av一区| 亚洲av日韩精品久久久久久密| 成人免费观看视频高清| 成在线人永久免费视频| a级毛片在线看网站| 男人操女人黄网站| 国产精品亚洲av一区麻豆| 少妇猛男粗大的猛烈进出视频| 欧美成人午夜精品| 好男人电影高清在线观看| 国产又色又爽无遮挡免费看| 亚洲第一青青草原| 亚洲av电影在线进入| 中文字幕人妻丝袜制服| 中国美女看黄片| 亚洲人成电影免费在线| 91大片在线观看| 日韩一区二区三区影片| 黄片小视频在线播放| 香蕉国产在线看| 啦啦啦中文免费视频观看日本| 国产欧美日韩综合在线一区二区| 国产日韩一区二区三区精品不卡| 韩国精品一区二区三区| 啪啪无遮挡十八禁网站| 9色porny在线观看| 国产成人欧美| 亚洲av日韩在线播放| 国产在线精品亚洲第一网站| 12—13女人毛片做爰片一| 99精品欧美一区二区三区四区| 国产精品偷伦视频观看了| 国产日韩一区二区三区精品不卡| 日韩欧美国产一区二区入口| 久久中文字幕人妻熟女| 国产亚洲午夜精品一区二区久久| 飞空精品影院首页| 俄罗斯特黄特色一大片| 国产亚洲欧美精品永久| 国产日韩欧美视频二区| 国产亚洲欧美在线一区二区| 法律面前人人平等表现在哪些方面| 麻豆乱淫一区二区| 日韩熟女老妇一区二区性免费视频| 女人精品久久久久毛片| 色婷婷久久久亚洲欧美| 久久毛片免费看一区二区三区| 夜夜爽天天搞| 亚洲欧美日韩高清在线视频 | 国产av精品麻豆| 高清av免费在线| 妹子高潮喷水视频| 欧美日韩中文字幕国产精品一区二区三区 | 在线观看66精品国产| 高清视频免费观看一区二区| 18禁黄网站禁片午夜丰满| 超碰成人久久| h视频一区二区三区| 成年人黄色毛片网站| 国产1区2区3区精品| 少妇精品久久久久久久| 日韩人妻精品一区2区三区| 国产精品一区二区免费欧美| 自线自在国产av| 亚洲欧美一区二区三区黑人| 午夜久久久在线观看| 精品国产亚洲在线| 女人久久www免费人成看片| 桃花免费在线播放| 午夜激情av网站| 国产精品自产拍在线观看55亚洲 | 国产国语露脸激情在线看| 高清欧美精品videossex| 一区二区三区国产精品乱码| 久久国产精品大桥未久av| 波多野结衣一区麻豆| 大片电影免费在线观看免费| 国产在视频线精品| 97在线人人人人妻| 国产午夜精品久久久久久| 国产欧美日韩一区二区精品| 欧美精品av麻豆av| 国产精品国产高清国产av | 高清在线国产一区| 欧美精品啪啪一区二区三区| 波多野结衣av一区二区av| 欧美精品一区二区免费开放| 亚洲一区中文字幕在线| 国产亚洲欧美在线一区二区| 高清av免费在线| 18禁观看日本| 99riav亚洲国产免费| 黄色毛片三级朝国网站| 成年动漫av网址| 99久久国产精品久久久| 一二三四在线观看免费中文在| 大香蕉久久网| 在线播放国产精品三级| 精品人妻1区二区| 别揉我奶头~嗯~啊~动态视频| 水蜜桃什么品种好| 丝袜美腿诱惑在线| 精品高清国产在线一区| 久久久欧美国产精品| 精品国产一区二区久久| 色综合婷婷激情| 少妇精品久久久久久久| 美女主播在线视频| 亚洲一区中文字幕在线| 啦啦啦 在线观看视频| 黄色丝袜av网址大全| 人人妻,人人澡人人爽秒播| 国产黄色免费在线视频| 久久精品亚洲精品国产色婷小说| 一二三四社区在线视频社区8| 777米奇影视久久| 婷婷成人精品国产| 国产福利在线免费观看视频| 色视频在线一区二区三区| 久久精品熟女亚洲av麻豆精品| 日本撒尿小便嘘嘘汇集6| 丰满饥渴人妻一区二区三| 肉色欧美久久久久久久蜜桃| 人人妻人人添人人爽欧美一区卜| 欧美在线黄色| 亚洲免费av在线视频| 亚洲国产欧美日韩在线播放| 亚洲黑人精品在线| 在线观看免费高清a一片| 精品乱码久久久久久99久播| 久久久久国产一级毛片高清牌| 亚洲 国产 在线| 男女边摸边吃奶| 在线 av 中文字幕| 欧美激情高清一区二区三区| 精品国产乱子伦一区二区三区| 欧美老熟妇乱子伦牲交| 婷婷丁香在线五月| 少妇粗大呻吟视频| 欧美乱妇无乱码| 水蜜桃什么品种好| 丝袜美腿诱惑在线| 国精品久久久久久国模美| 深夜精品福利| 欧美大码av| 午夜福利欧美成人| 国产成人免费观看mmmm| 久久久精品区二区三区| 人成视频在线观看免费观看| 国产亚洲精品一区二区www | videos熟女内射| 精品国产乱码久久久久久小说| 岛国在线观看网站| 国产男女超爽视频在线观看| 国产av国产精品国产| 国产欧美日韩一区二区三| 欧美黄色淫秽网站| 12—13女人毛片做爰片一| 成人手机av| 久热爱精品视频在线9| 国产精品av久久久久免费| 人人妻人人添人人爽欧美一区卜| 久久久精品免费免费高清| 成人国产av品久久久| 国产又色又爽无遮挡免费看| 日韩一卡2卡3卡4卡2021年| 蜜桃国产av成人99| 超色免费av| 九色亚洲精品在线播放| 国产成人精品无人区| 美国免费a级毛片| 91成年电影在线观看| 国产1区2区3区精品| 19禁男女啪啪无遮挡网站| 精品第一国产精品| 宅男免费午夜| av天堂久久9| av视频免费观看在线观看| 婷婷丁香在线五月| 国产精品久久久av美女十八| 日本wwww免费看| 亚洲伊人色综图| 老司机午夜十八禁免费视频| 亚洲av成人不卡在线观看播放网| 成人黄色视频免费在线看| 久久精品亚洲熟妇少妇任你| 免费观看人在逋| 午夜91福利影院| 欧美激情高清一区二区三区| 一区二区三区乱码不卡18| 香蕉丝袜av| netflix在线观看网站| 精品久久久久久久毛片微露脸| 一级毛片精品| 十八禁网站网址无遮挡| 色视频在线一区二区三区| 亚洲成av片中文字幕在线观看| 午夜免费鲁丝| 国产一区二区激情短视频| 久久青草综合色| 亚洲久久久国产精品| 国产成人av激情在线播放| 国产91精品成人一区二区三区 | 日韩欧美国产一区二区入口| 久久这里只有精品19| 亚洲第一av免费看| 亚洲欧洲精品一区二区精品久久久| 高清视频免费观看一区二区| 一区二区三区国产精品乱码| 国产精品av久久久久免费| 老熟妇乱子伦视频在线观看| 国产成人影院久久av| 中文字幕制服av| 桃花免费在线播放| 精品一区二区三卡| 黑人猛操日本美女一级片| 国产伦理片在线播放av一区| 色综合欧美亚洲国产小说| 成年动漫av网址| 丰满迷人的少妇在线观看| 亚洲av美国av| 精品一区二区三区av网在线观看 | 黄片大片在线免费观看| 国产欧美日韩一区二区三区在线| e午夜精品久久久久久久| 丁香欧美五月| 久久久国产一区二区| 日韩精品免费视频一区二区三区| √禁漫天堂资源中文www| 午夜福利一区二区在线看| 国产成人啪精品午夜网站| 久久精品国产亚洲av香蕉五月 | 老司机午夜福利在线观看视频 | 午夜福利免费观看在线| 午夜日韩欧美国产| 亚洲人成77777在线视频| 美国免费a级毛片| 国产免费福利视频在线观看| 激情在线观看视频在线高清 | 丝袜美腿诱惑在线|