• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Edible Oil Classification Based on Molecular Spectra Analysis With SIMCA-SVDD Method

    2020-08-08 07:39:30ZHAOZhongLIBinWUYanxianYUANHongfu
    光譜學(xué)與光譜分析 2020年8期

    ZHAO Zhong, LI Bin,WU Yan-xian, YUAN Hong-fu

    1. College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China 2. College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China

    Abstract Edible oil is a necessity in daily life. The nutritional value and price of different types of edible oils on the market vary a lot. Because of the spurious activities in the market, it is necessary to establish effective detection methods to classify the quality of the edible oils in the market. Traditional edible oil classification methods are usually time-consuming and requiring complex pre-treatment in the lab. Molecular spectroscopy can elucidate the sample information of both compositions and properties at the molecular level, and molecular spectra analysis has the advantages of fast speed detection and non-destructive testing for edible oil classification. Molecular spectra analysis combined with the chemometrics is becoming a popular method for rapid classification of edible oil. SIMCA (Soft Independent Modeling of Class Analogy) is widely applied to molecular spectra analysis. However, the Euclidean distance is used in SIMCA to classify the extracted features with PCA and F test. Therefore it is difficult to classify the irregular feature spaces. When the molecular spectral differences among the different types of samples are tiny such as edible oils, it is usually difficult to identify them with the traditional SIMCA method. SVDD(Support Vector Domain Description)algorithm is a support domain method for solving the one-class classification problem. SVDD can get a hypersphere to include as many objective samples as possible by solving the convex quadratic programming problem. In this work, a method of molecular spectra analysis based on SIMCA-SVDD method for rapid classification of edible oils is proposed. In order to accomplish recognition of the different types of edible oils, the attenuated total reflectance infrared spectra of four types of edible oil are scanned on ATR-FTIR. SIMCA is applied to extract the classification features T2 and Q. Since the extracted edible oil classification features T2 and Q distribute irregularly, instead of classification with Euclidean distance in SIMCA, Support Vector Domain Description (SVDD) is applied in this work to classify the extracted features. Since SVDD can map the extracted classification features to high dimensional space by mapping functions, then an optimal classification hypersphere can be trained to classify the irregular distributing feature spaces by solving the convex quadratic programming problem. Comparative experiments to identify the same molecular spectra samples with the proposed SIMCA-SVDD method and the SIMCA method have also been done. Comparative experiment results have verified that the classification results with the proposed SIMCA-SVDD method are obviously better than that with SIMCA. The proposed SIMCA-SVDD method has provided a new way to classify the edible oil rapidly based on molecular spectra analysis.

    Keywords Edible oil;Molecular spectrum;SIMCA;Euclidean distance;SVDD

    Introduction

    Edible oil is a necessity of daily life. There are many kinds of edible oil such as the peanut oil, rapeseed oil, soybean oil, corn oil, tea seed oil, sesame oil and olive oil in the market. The nutritional value and prices of different types of edible oils vary a lot according to their composition change. In order to avoid market fraud, it is necessary to establish an effective detection method to classify edible oils. There are some methods that have been reported to detect the quality of edible oil[1-2]. However, these detection methods are usually time-consuming and requiring complex pre-treatment. Spectral analysisbased detection methods[3-4]have been developed to analyze the edible oils with the advantages of fast speed and non-destructive testing.

    SIMCA (Soft Independent Modeling of Class Analogy)[5]is the widely applied method to molecular spectra analysis and chemometrics. In SIMCA, PCA and F test are used to extractT2andQas the classification features. Then, Euclidean distance is used to classify the extracted features. The range defined by Euclidean distance, which is a circle in the plane ofT2vsQ, can not accurately classify the extracted features distributing in irregular feature spaces. Support Vector Domain Description (SVDD)[6]is a supervised machine learning method based on SVM theory. SVDD can map the nonlinear feature data to the high-dimensional space with different kernel functions. A closed and compact sphere can be optimized to classify the nonlinear feature data. Since SVDD can be optimized with the distribution of the classification data, it can be used to classify the irregular feature spaces[7-8]. In this work, a method of molecular spectra analysis based on SIMCA-SVDD method for rapid classification of edible oil is proposed. Comparative experiments to identify the same samples with the proposed SIMCA-SVDD method, and SIMCA have also been done. Comparative experiment results have verified that the classification results with the proposed SIMCA-SVDD method are obviously better than that with SIMCA.

    1 Methods

    1.1 SIMCA

    SIMCA is a supervised pattern recognition method, PCA is applied to decompose sample matrix of each class as

    (1)

    (2)

    whereEis residual matrix. The fraction of the total variation can be estimated as

    Q=1-PRESS/SS

    (3)

    where PRESS is the sum of squares of the prediction errors and SS is the sum of squares of the residuals of the previous component. According to selectedAcomponents, the HotellingT2for observationiis calculated as

    (4)

    (5)

    (6)

    (7)

    1.2 SIMCA-SVDD

    s.t. ‖xi-a‖2≤R2+ξi,ξi≥0

    (8)

    whereCis the penalty coefficient andξiis a relaxation factor. According to Eq. (8), the Lagrangian function is defined as

    (9)

    whereαi(αi≥0) andγi(γi≥0) are Lagrangian multipliers. The class center of the sphereaand the radiusRcan be obtained by solving MaxMinL(R,a,ξi,αi,γi). According to Eq.(9), there are

    (10)

    (11)

    (12)

    Substituting Eq.(10), Eq.(11) and Eq.(12) into Eq.(9), there is

    (13)

    Use kernel function to replace the inner product in Eq.(13) and maximizeL, then

    (14)

    According to Eq.(14) and definedC,αcan be solved for every feature sample. The radiusRcan be calculated as

    (15)

    wherepis the support vector. For multi-classification, the relative distance is defined as

    (16)

    According to the minimumDiin Eq.(16), the feature samples are classified.

    2 Experimental

    2.1 Materials

    54 edible oil samples are provided by the National Institute of Metrology (NIM) of China,which belong to four types of edible oil. 43 samples are chosen as the calibration set and the remaining 11 samples are chosen as the validation set with the Rank-KS method[9]. The number of calibration set and validation set for each types of samplesis shown in Table 1.

    Table 1 Statistics of samples

    2.2 Spectra measurement

    The infrared spectra of the samples are scanned by Attenuated Totalinternal Reflectance Fourier Transform Infrared (Agilent 5500) spectrometer. The spectra are collected from 650 to 4 000 cm-1with a resolution 4 cm-1and with 32 scans. Each sample is scanned three times and the average is used for analysis. The spectra of all samples measured on ATR instrument are shown in Fig.1.

    Fig.1 Original spectrum of four types of oil samples measured on ATR spectrometer

    2.3 Software

    All data have been analyzed with MATLAB 2017a (The Mathworks Inc.).

    2.4 Preprocessing

    Eliminate the side effects of surface scattering and the change of optical path on infrared diffuse reflection spectra, and spectral mean centeringis applied to the spectral data.

    2.5 Evaluation of classification results

    Correct classification rate (CCR) is applied to evaluate the qualitative recognition results[9].

    3 Results and discussion

    3.1 Feature extractionwith SIMCA

    Fig.2 PRESS and Q-T2 distributions for the spectra samples

    3.2 Classification results

    Fig.3 Euclidean distance discrimination for blended oil samples

    Fig.4 SVDD discrimination for blended oil samples

    The comparative experiments for edible oil classification based on molecular analysis with SIMCA and proposed SIMCA-SVDD have been done. The classification results are shown in Table 2. According to Fig.2, it is noticed that the extracted edible oil features based on molecular spectra analysis with SIMCA are different. Then, the extracted features can be used for classification. But, the extracted features based on molecular spectra analysis with SIMCA are not always linear separable. The discrimination area for feature spaces with Euclidean distance in SIMCA is a circle, and then it is difficult to classify the irregular feature spaces such as the linear inseparable feature spaces. SVDD can map the linear inseparable feature data to a high-dimensional space with kernel tricks. Then, the minimum hypersphereis trained with SQP to include as many class samples as possible. According to the comparative experiments, the blended oil samples in the validation set can be recognized with SIMCA-SVDD accurately.

    Table 2 Classification results of SIMCA and SIMCA-SVDD

    For SIMCA, the decision plane is a circle, and its indicator is the radius in which Judging indicator is too single. After the features are extracted, the characteristic distribution rules of single oil can be distinguished within the regular area. However, for mixed oil, changes in its composition lead to irregularities in the decision plane. The SIMCA-SVDD method can change the irregular decision area by the parameters of the kernel function, so better classification results are achieved.

    4 Conclusions

    In this work, a method of edible oil classification based on molecular spectra analysis with SIMCA-SVDD is proposed. The IR spectra of four types of edible oil are scanned on ATR-FTIR. For a single oil sample, SIMCA and the proposed SIMCA-SVDD method can better classify the sample. However, due to changes in the composition of the mixed oil and changes in the content of the components, SIMCA does not distinguish well between the mixed oil and the single oil. SIMCA-SVDD!can correctly distinguish mixed oils in many samples. SIMCA is applied to extract the classification featuresT2andQ. Instead of classification with Euclidean distance in SIMCA, SVDD is applied in this work to classify the extracted linear inseparable features. The comparative experiment results have verified that the proposed method had a better classification of edible oils than the traditional SIMCA method. The proposed method has provided a new way to classify the edible oil rapidly based onmolecular spectra analysis.

    www.色视频.com| 亚洲国产精品国产精品| 国产精品亚洲美女久久久| 全区人妻精品视频| 高清日韩中文字幕在线| 最后的刺客免费高清国语| 极品教师在线视频| 国产精品亚洲美女久久久| 日本免费a在线| 别揉我奶头~嗯~啊~动态视频| 久久久a久久爽久久v久久| 伦理电影大哥的女人| 国产一区二区三区av在线 | 国产精品女同一区二区软件| 麻豆av噜噜一区二区三区| 赤兔流量卡办理| 国产精品一区二区性色av| 色综合亚洲欧美另类图片| 欧美激情在线99| 国产单亲对白刺激| 亚洲国产精品合色在线| 午夜a级毛片| 九九热线精品视视频播放| 亚洲国产色片| 午夜免费男女啪啪视频观看 | 国产亚洲欧美98| 亚洲精华国产精华液的使用体验 | 欧美性猛交黑人性爽| 老司机影院成人| 观看免费一级毛片| 亚洲精品一卡2卡三卡4卡5卡| 亚洲欧美日韩无卡精品| 91在线精品国自产拍蜜月| 最新在线观看一区二区三区| 在线播放无遮挡| 男女啪啪激烈高潮av片| 99九九线精品视频在线观看视频| 亚洲精品456在线播放app| 尾随美女入室| 色在线成人网| 少妇裸体淫交视频免费看高清| 少妇熟女欧美另类| 国产免费男女视频| 18禁黄网站禁片免费观看直播| 乱人视频在线观看| 美女 人体艺术 gogo| 欧美成人精品欧美一级黄| 精品久久久久久久久久免费视频| 校园春色视频在线观看| 内地一区二区视频在线| 可以在线观看毛片的网站| 亚洲精华国产精华液的使用体验 | 夜夜夜夜夜久久久久| 99热这里只有是精品在线观看| 亚洲av免费高清在线观看| 夜夜夜夜夜久久久久| 国产大屁股一区二区在线视频| 久久久欧美国产精品| 黄色日韩在线| 又粗又爽又猛毛片免费看| 精品国产三级普通话版| 精品久久久久久久久av| 最近中文字幕高清免费大全6| 午夜激情福利司机影院| 特级一级黄色大片| 精品一区二区免费观看| 日本欧美国产在线视频| 在线国产一区二区在线| www日本黄色视频网| av视频在线观看入口| 老司机福利观看| 久久鲁丝午夜福利片| av国产免费在线观看| 岛国在线免费视频观看| 老女人水多毛片| 你懂的网址亚洲精品在线观看 | 婷婷色综合大香蕉| 一级毛片我不卡| 午夜久久久久精精品| 国产亚洲精品久久久久久毛片| 国产私拍福利视频在线观看| av女优亚洲男人天堂| 成人欧美大片| 成人三级黄色视频| 丝袜美腿在线中文| 99热这里只有是精品50| 日本五十路高清| 日韩欧美免费精品| 亚洲图色成人| 插逼视频在线观看| 麻豆国产97在线/欧美| 最近的中文字幕免费完整| 欧美高清成人免费视频www| av天堂在线播放| 综合色丁香网| 国产单亲对白刺激| 看黄色毛片网站| 亚洲色图av天堂| 日韩精品中文字幕看吧| 一个人看的www免费观看视频| 此物有八面人人有两片| 深夜a级毛片| 五月玫瑰六月丁香| 一区二区三区四区激情视频 | 久久久久性生活片| 国产在线精品亚洲第一网站| 国产成人freesex在线 | 精品人妻熟女av久视频| 九九爱精品视频在线观看| 午夜免费男女啪啪视频观看 | 1024手机看黄色片| 特级一级黄色大片| 国产成年人精品一区二区| 成人av在线播放网站| 久久久久久久久中文| 亚洲精品一区av在线观看| 精品免费久久久久久久清纯| 一本精品99久久精品77| 婷婷精品国产亚洲av在线| 我要搜黄色片| 丝袜喷水一区| 国产一区二区三区av在线 | 别揉我奶头 嗯啊视频| 插逼视频在线观看| 亚洲精品粉嫩美女一区| 久久久国产成人精品二区| 久久久久久久久久成人| 久久精品国产亚洲av香蕉五月| 97碰自拍视频| 日本免费a在线| 亚洲精品乱码久久久v下载方式| 亚洲成人av在线免费| 亚洲一级一片aⅴ在线观看| 老司机影院成人| 久久久久久久久中文| 97人妻精品一区二区三区麻豆| 日日摸夜夜添夜夜爱| 级片在线观看| 自拍偷自拍亚洲精品老妇| 亚洲av熟女| 午夜久久久久精精品| 一进一出抽搐gif免费好疼| 露出奶头的视频| 成年女人毛片免费观看观看9| 亚洲经典国产精华液单| 色哟哟·www| 亚洲一区高清亚洲精品| 亚洲经典国产精华液单| 露出奶头的视频| 亚洲av不卡在线观看| 成人亚洲欧美一区二区av| 国产高清视频在线观看网站| 麻豆乱淫一区二区| 成人亚洲欧美一区二区av| 少妇的逼好多水| 免费看av在线观看网站| 欧美日韩综合久久久久久| 免费高清视频大片| 亚洲成a人片在线一区二区| 国产精品国产高清国产av| 亚洲av美国av| 夜夜夜夜夜久久久久| 婷婷精品国产亚洲av| 欧美精品国产亚洲| 夜夜夜夜夜久久久久| 一个人看的www免费观看视频| 亚洲熟妇中文字幕五十中出| 97超级碰碰碰精品色视频在线观看| 国产精品国产高清国产av| 免费不卡的大黄色大毛片视频在线观看 | 精品人妻一区二区三区麻豆 | 最近手机中文字幕大全| 日韩成人伦理影院| 日韩三级伦理在线观看| 99久国产av精品| 成人特级黄色片久久久久久久| 女生性感内裤真人,穿戴方法视频| 干丝袜人妻中文字幕| 在线观看66精品国产| 色哟哟·www| 成人亚洲精品av一区二区| 亚洲第一区二区三区不卡| 久久久精品欧美日韩精品| 蜜桃久久精品国产亚洲av| 亚洲成人久久性| 一夜夜www| 久久久a久久爽久久v久久| 99国产极品粉嫩在线观看| 亚洲高清免费不卡视频| av在线亚洲专区| 日韩欧美一区二区三区在线观看| 美女 人体艺术 gogo| 国语自产精品视频在线第100页| 精品久久久久久久久av| 日韩欧美国产在线观看| 亚洲中文字幕日韩| 精品一区二区免费观看| 国产精品三级大全| 99久久精品国产国产毛片| 校园春色视频在线观看| 色5月婷婷丁香| 国产精品久久久久久亚洲av鲁大| 免费高清视频大片| 久久九九热精品免费| 国产 一区 欧美 日韩| 九九在线视频观看精品| 婷婷六月久久综合丁香| av视频在线观看入口| 国产精品久久久久久久久免| 特级一级黄色大片| 最好的美女福利视频网| 亚洲精品国产成人久久av| 亚洲av免费高清在线观看| av黄色大香蕉| 人人妻人人澡人人爽人人夜夜 | 观看免费一级毛片| 亚洲精品一区av在线观看| 亚洲精品国产av成人精品 | 国模一区二区三区四区视频| 久久精品国产亚洲av涩爱 | 国产淫片久久久久久久久| 国产精品乱码一区二三区的特点| 久久精品综合一区二区三区| 丝袜喷水一区| 亚洲欧美成人综合另类久久久 | 国产亚洲精品久久久com| 搞女人的毛片| 哪里可以看免费的av片| 久久久久精品国产欧美久久久| av天堂在线播放| 国产精华一区二区三区| 网址你懂的国产日韩在线| 国国产精品蜜臀av免费| 精品久久久久久久久久免费视频| 国产蜜桃级精品一区二区三区| 午夜激情福利司机影院| 99久久久亚洲精品蜜臀av| 色播亚洲综合网| 久久久欧美国产精品| 色吧在线观看| 亚洲国产精品久久男人天堂| 国产真实伦视频高清在线观看| 亚洲av免费高清在线观看| 国内精品一区二区在线观看| 97在线视频观看| 级片在线观看| www日本黄色视频网| 乱系列少妇在线播放| 国产黄片美女视频| 国产黄色小视频在线观看| 99热精品在线国产| 亚州av有码| 晚上一个人看的免费电影| 国产高清视频在线播放一区| 天天躁日日操中文字幕| 内射极品少妇av片p| 亚洲熟妇熟女久久| 亚洲国产精品久久男人天堂| 久久精品国产自在天天线| 亚洲国产精品成人久久小说 | 久久久久久久久久黄片| 国产乱人偷精品视频| 日产精品乱码卡一卡2卡三| 毛片女人毛片| 变态另类成人亚洲欧美熟女| 日韩成人av中文字幕在线观看 | 岛国在线免费视频观看| 国产精品亚洲美女久久久| 少妇的逼好多水| 亚洲第一电影网av| 五月伊人婷婷丁香| 又爽又黄无遮挡网站| 男人舔女人下体高潮全视频| 成人二区视频| 又粗又爽又猛毛片免费看| 男插女下体视频免费在线播放| 欧美激情久久久久久爽电影| 亚洲av第一区精品v没综合| 国产欧美日韩精品一区二区| 久久人人爽人人爽人人片va| 男女那种视频在线观看| 色综合亚洲欧美另类图片| 男人狂女人下面高潮的视频| 村上凉子中文字幕在线| 国产视频内射| 99国产极品粉嫩在线观看| 精品一区二区三区视频在线| 精品一区二区三区人妻视频| 国产亚洲av嫩草精品影院| 国产精品国产高清国产av| 欧美一区二区亚洲| 亚洲无线观看免费| 国产一区二区激情短视频| 老师上课跳d突然被开到最大视频| 一级a爱片免费观看的视频| 欧美xxxx性猛交bbbb| 精品一区二区三区视频在线观看免费| 69av精品久久久久久| 亚洲性久久影院| 成年女人永久免费观看视频| 免费一级毛片在线播放高清视频| 国产黄a三级三级三级人| 老师上课跳d突然被开到最大视频| 一a级毛片在线观看| 亚洲成a人片在线一区二区| 老熟妇仑乱视频hdxx| 国产成人影院久久av| 白带黄色成豆腐渣| 99国产精品一区二区蜜桃av| 大香蕉久久网| 免费搜索国产男女视频| 色综合色国产| 男女视频在线观看网站免费| 大香蕉久久网| 国产精品久久久久久av不卡| 欧美不卡视频在线免费观看| 日韩av在线大香蕉| 国内精品一区二区在线观看| 91在线精品国自产拍蜜月| 91狼人影院| 狂野欧美激情性xxxx在线观看| 青春草视频在线免费观看| 国产精品一及| 国产大屁股一区二区在线视频| 国产精品av视频在线免费观看| 男人狂女人下面高潮的视频| av国产免费在线观看| 最新在线观看一区二区三区| 国产午夜精品久久久久久一区二区三区 | 蜜桃久久精品国产亚洲av| 97人妻精品一区二区三区麻豆| 久久99热6这里只有精品| 嫩草影视91久久| 久久国内精品自在自线图片| 亚洲电影在线观看av| 最后的刺客免费高清国语| 黄色日韩在线| 日韩欧美精品免费久久| 国产视频一区二区在线看| 欧美成人a在线观看| 99久久九九国产精品国产免费| 一个人免费在线观看电影| 搡老熟女国产l中国老女人| 国产一区二区三区在线臀色熟女| 亚洲无线观看免费| 亚洲性夜色夜夜综合| 成人精品一区二区免费| or卡值多少钱| 国产成人一区二区在线| 日本爱情动作片www.在线观看 | 免费搜索国产男女视频| 亚洲精品一卡2卡三卡4卡5卡| 免费人成视频x8x8入口观看| 欧美最新免费一区二区三区| 久久久久九九精品影院| 国产精品亚洲一级av第二区| 国产精华一区二区三区| 国产免费一级a男人的天堂| 国产亚洲av嫩草精品影院| 夜夜看夜夜爽夜夜摸| 最近手机中文字幕大全| 三级男女做爰猛烈吃奶摸视频| 狂野欧美激情性xxxx在线观看| 午夜福利视频1000在线观看| 亚洲四区av| 久久久久免费精品人妻一区二区| 日韩欧美三级三区| 亚洲久久久久久中文字幕| 亚洲自拍偷在线| 亚洲成人久久爱视频| 亚洲中文字幕一区二区三区有码在线看| 一区二区三区四区激情视频 | 成人综合一区亚洲| 看非洲黑人一级黄片| 别揉我奶头~嗯~啊~动态视频| 一个人看视频在线观看www免费| 精品久久国产蜜桃| 免费黄网站久久成人精品| 亚洲第一区二区三区不卡| 淫秽高清视频在线观看| 亚洲欧美精品综合久久99| 成人亚洲欧美一区二区av| 国产成人福利小说| 免费看日本二区| 熟女电影av网| 综合色av麻豆| 午夜精品国产一区二区电影 | 国产亚洲av嫩草精品影院| 久久亚洲国产成人精品v| 久久国产乱子免费精品| 亚洲欧美清纯卡通| 中文字幕av在线有码专区| 国产 一区精品| 国产真实乱freesex| 亚洲av五月六月丁香网| a级毛片免费高清观看在线播放| 亚洲欧美精品综合久久99| 中文字幕av成人在线电影| av卡一久久| 国产激情偷乱视频一区二区| www.色视频.com| 麻豆乱淫一区二区| 你懂的网址亚洲精品在线观看 | 亚洲欧美精品自产自拍| 男女之事视频高清在线观看| 99热精品在线国产| 国产一区二区激情短视频| 国产精品人妻久久久久久| 久久综合国产亚洲精品| 国产免费男女视频| 亚洲婷婷狠狠爱综合网| 日本黄色视频三级网站网址| 午夜爱爱视频在线播放| 午夜影院日韩av| 老司机福利观看| 草草在线视频免费看| 国产乱人偷精品视频| 久久精品国产清高在天天线| 啦啦啦韩国在线观看视频| 九九热线精品视视频播放| 国产成人一区二区在线| 性插视频无遮挡在线免费观看| 在线a可以看的网站| 亚洲欧美清纯卡通| 91午夜精品亚洲一区二区三区| 夜夜夜夜夜久久久久| 3wmmmm亚洲av在线观看| 久久久a久久爽久久v久久| 亚洲熟妇熟女久久| 国产午夜精品论理片| 亚洲欧美日韩卡通动漫| 亚洲中文字幕日韩| 狂野欧美白嫩少妇大欣赏| 村上凉子中文字幕在线| 色尼玛亚洲综合影院| 深夜精品福利| 在线播放无遮挡| 一区二区三区四区激情视频 | 我的女老师完整版在线观看| 国产精品野战在线观看| 搡老妇女老女人老熟妇| 欧美区成人在线视频| 99在线视频只有这里精品首页| 亚洲av中文av极速乱| 久久久国产成人精品二区| 亚洲欧美成人综合另类久久久 | 欧美另类亚洲清纯唯美| 色吧在线观看| 久久久久久久久中文| 精品免费久久久久久久清纯| 99视频精品全部免费 在线| 春色校园在线视频观看| 男人舔奶头视频| 精品午夜福利视频在线观看一区| 男女做爰动态图高潮gif福利片| 别揉我奶头 嗯啊视频| 五月玫瑰六月丁香| 日韩成人伦理影院| av卡一久久| 亚洲一区二区三区色噜噜| 熟女人妻精品中文字幕| 婷婷色综合大香蕉| 亚洲av成人精品一区久久| 91久久精品国产一区二区三区| 伊人久久精品亚洲午夜| 国产精品久久视频播放| 日本免费一区二区三区高清不卡| 蜜桃亚洲精品一区二区三区| 色吧在线观看| 国产亚洲精品综合一区在线观看| 女人十人毛片免费观看3o分钟| 欧美日韩一区二区视频在线观看视频在线 | 搡老妇女老女人老熟妇| 熟女电影av网| 免费在线观看成人毛片| 日韩精品有码人妻一区| 国产探花在线观看一区二区| 国产精品女同一区二区软件| 国产精品1区2区在线观看.| 精品一区二区三区视频在线| 美女大奶头视频| 最近最新中文字幕大全电影3| 成人特级av手机在线观看| 中国美白少妇内射xxxbb| 欧美成人a在线观看| 亚洲成人久久性| 又爽又黄无遮挡网站| 亚洲av.av天堂| 赤兔流量卡办理| 日日摸夜夜添夜夜爱| 久久精品91蜜桃| 久久久久性生活片| 丰满的人妻完整版| a级一级毛片免费在线观看| 日本a在线网址| 插逼视频在线观看| 日本撒尿小便嘘嘘汇集6| 久久精品久久久久久噜噜老黄 | 久久久久精品国产欧美久久久| 女生性感内裤真人,穿戴方法视频| 伊人久久精品亚洲午夜| 午夜精品在线福利| 色在线成人网| 国产高清三级在线| 一级毛片久久久久久久久女| 你懂的网址亚洲精品在线观看 | 人妻少妇偷人精品九色| 搡老岳熟女国产| 真实男女啪啪啪动态图| av在线天堂中文字幕| 欧美日韩综合久久久久久| 少妇人妻精品综合一区二区 | 女生性感内裤真人,穿戴方法视频| 天天一区二区日本电影三级| 亚洲欧美日韩高清专用| 美女免费视频网站| 欧美一级a爱片免费观看看| 日本免费a在线| 精品熟女少妇av免费看| 国产单亲对白刺激| 国产精品一区二区三区四区久久| 一个人看视频在线观看www免费| 给我免费播放毛片高清在线观看| 婷婷精品国产亚洲av在线| 在线播放国产精品三级| 中文字幕熟女人妻在线| 国产视频一区二区在线看| 99热全是精品| 色吧在线观看| 欧美+日韩+精品| 春色校园在线视频观看| 国产真实伦视频高清在线观看| 国产在线精品亚洲第一网站| 搡老妇女老女人老熟妇| 免费在线观看影片大全网站| 校园春色视频在线观看| 欧美一区二区国产精品久久精品| 免费av不卡在线播放| 中文字幕精品亚洲无线码一区| 日韩制服骚丝袜av| 久久久久久久久中文| 欧美xxxx黑人xx丫x性爽| ponron亚洲| 亚洲不卡免费看| 国国产精品蜜臀av免费| 三级男女做爰猛烈吃奶摸视频| 久久精品国产亚洲网站| 在线免费观看的www视频| av在线亚洲专区| 毛片女人毛片| 五月伊人婷婷丁香| av专区在线播放| 毛片一级片免费看久久久久| 中文字幕av成人在线电影| 日本在线视频免费播放| 亚洲性夜色夜夜综合| 亚洲国产高清在线一区二区三| 免费看av在线观看网站| 国产国拍精品亚洲av在线观看| 少妇熟女aⅴ在线视频| 简卡轻食公司| 精品一区二区免费观看| 欧美日韩国产亚洲二区| 亚洲av免费高清在线观看| 黄片wwwwww| 免费一级毛片在线播放高清视频| 久久午夜福利片| 欧美日本亚洲视频在线播放| 午夜精品一区二区三区免费看| 99国产精品一区二区蜜桃av| 嫩草影视91久久| 国产大屁股一区二区在线视频| 日本免费a在线| 一区二区三区高清视频在线| 99热这里只有精品一区| 日韩强制内射视频| 免费观看在线日韩| 成熟少妇高潮喷水视频| 综合色av麻豆| 亚洲第一区二区三区不卡| 亚洲精品456在线播放app| 麻豆国产97在线/欧美| 国产高清不卡午夜福利| 免费看av在线观看网站| 亚洲熟妇熟女久久| 欧美最新免费一区二区三区| 欧美3d第一页| 国产av不卡久久| av福利片在线观看| 美女高潮的动态| 精品久久久久久久久av| 小说图片视频综合网站| 蜜桃亚洲精品一区二区三区| 国产精品日韩av在线免费观看| 一级黄色大片毛片| 久久草成人影院| 久久久精品94久久精品| 插逼视频在线观看| 欧美成人精品欧美一级黄| 欧美性猛交黑人性爽| 亚洲电影在线观看av| 精品99又大又爽又粗少妇毛片| 嫩草影院精品99| 我的老师免费观看完整版| 亚洲国产精品国产精品| 精品免费久久久久久久清纯| 日韩av不卡免费在线播放| 国产高清三级在线| 卡戴珊不雅视频在线播放| 欧美日本亚洲视频在线播放| 啦啦啦观看免费观看视频高清| 久久天躁狠狠躁夜夜2o2o| 成人三级黄色视频| 看黄色毛片网站| 毛片女人毛片|