• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structure-borne Sound Attenuation in A Multi-corner Structure with Attached Blocking Masses

    2010-06-07 10:22:18
    船舶力學 2010年9期

    (School of Naval Architecture,Ocean&Civil Eng.,Shanghai Jiao Tong University,Shanghai 200030,China)

    1 Introduction

    The attenuation of structure-borne sound in built-up structures such as those of a ship has been an issue of great interest for years to researchers concerned with mitigation of vibration and noise.Vibration at high level not only affects operation of machinery and even causes structural fatigue destruction but also becomes the source of structure-borne sound,which is the main offender of ship cabin noise.With the increasing demand for better habitability on board,it is of significance to investigate the mechanism of structure-borne sound attenuation in complex structures.

    Elastic waves will be reflected at any discontinuity on traveling in structure and only part of its energy would be transmitted to the downstream section.This process is referred to as‘attenuation of structure-borne sound’by Cremer and Heckl[1],who provided the idea for preventing vibration energy from traveling without decay.Ship structure consists basically of steel plates and beams with very low loss factor and such structure must be not only statically stable but also watertight.It is not feasible to reduce vibration transmission by means of elastic connection for ship structure.Consequently,some rigid methods,e.g.setting discontinuity and attaching blocking masses may be considered as the effective way for structure-borne sound attenuation.

    The concept of blocking mass,which is usually a beam of relatively large mass and stiffness with rectangular cross section,rigidly attached at the corner interface of plates or mounted straight on a flat plate to block transmission of elastic wave,is also introduced early in Cremer and Heckl’s book[1]on structure-borne sound.In this regard,there are several papers published in literature.Liu Honglin and Wang Deyu analyzed the vibration of plate structure with blocking mass by FEM(Finite Element Method)and made computations of corresponding sound radiation from the structure.Liu Jianhua and Jin Xianding studied the attenuation of flexural(bending)wave transmission with single blocking mass or parallel multi-blocking masses mounted on an infinite flat plate by wave approach[2-3]and the experimental results match well with theoretical analysis in their work.But all above works are restricted to situations of blocking mass attached on single plate and no corner is involved in the structure.However,the problem is complicated for two plates joined at angles in that there are both bending and longitudinal waves in two plates coupled at the corner[4].For this reason,the authors of this paper carried out analyses on attenuation of structure-borne sound at corner interface of two semi-infinite plates with attached blocking mass,taking both bending and longitudinal waves into consideration[5-6].Some new non-dimensional numbers are introduced to simplify equations which govern transmission and reflection.Numerical results revealed that blocking mass attached at the corner is effective for attenuation at high frequencies and transmission loss depends mainly on the weight of blocking mass,which was validated by some simplified experiments.

    Considering a common ship structure,structure-borne waves generated by machineries in engine room will encounter several corners along the way of propagating to the superstructure.So wave analysis in multi-corner structure with attached blocking masses is carried out in this paper.

    2 Theoretical analysis

    2.1 Expressions of wave motion in multi-corner structure

    The multi-corner structure in this paper is modeled as a built-up structure with N corner interfaces consisting of N+1 thin plates of different material and thickness(the left part of Fig.1).The plates are numbered from plate 0 to plate N with finite length li(i=0,1,2,…N),which are supposed to be much longer than the wavelength of the waves propagating in these plates to get rid of the effect of near field.Set N+1 local coordinate systems on these plates in turn and make positive xi-direction along the length of plate i,as shown in the right part of Fig.1.Thus the plates are joined end to end at two parallel boundaries xi=0 and xi=li(i=0,1,2,…N-1).The two free boundaries x0=0 and xN=lNare modeled as ‘reflection-free’ boundaries which absorb most of the incident waves.For more attenuation of structure-borne sound,blocking masses(not shown in Fig.1)may be attached to the corner interface.

    Plane incident waves generated at x0=0 by line excitation propagate along the plates of the structure one by one via corner interface.For a given frequency,the incident waves in plate 0 may be expressed in the form of transverse and longitudinal velocity as

    For the plate of finite length joined at its two boundaries with other plates,primary waves transmitted from the ‘neighbor’ plates will be reflected by the two boundaries back and forth repeatedly,and secondary waves propagating in both positive and negative xi-direction are generated time and again.Consequently,the wave field in the plate is composed of an infinite number of components,which are also partly transmitted back to the ‘neighbor’ plates when impinging on the joints.Meanwhile,to ensure dynamic equilibrium at the corner interface of two plates,part of incident bending wave will be converted to transmitted and reflected longitudinal ones and vice versa[7],along with evanescent near-field generated at the interface.For the reason that near-field waves can only affect transverse motion in the vicinity of corner interface and have almost no influence on vibration energy transmission,they are always neglected in the analysis provided that the length of the plate is much longer than the wavelength.Supposing the total(sum of the resultant components in both positive and negative directions)transverse and longitudinal velocities in plate i( i=0,1,2…N)is expressed as where v+y,iand v-y,iare the transverse velocities at xi=0 and xi=lifor resultant(sum of the primary and all secondary components)bending wave propagating in positive and negative xi-direction respectively,v+x,iand v-x,ithe corresponding longitudinal velocities for resultant longitudinal waves,respectively.

    Thus there are altogether 4(N+1)unknown velocities to be solved for the whole structure.The dynamic equilibrium condition at the ith(i=0,1,2…N)corner interface gives:

    The 4N independent equations about the resultant wave components are deduced by applying Eqs.(5)~(8)to all corners from i=1 to i=N.It is noted that the ‘reflection-free’ boundary assumption at x0=0 and xN=lNassociated with Eqs.(1)and(2)gives:

    Then the rest 4N velocities can be solved if incident wave in plate 0 is known.And the total transverse and longitudinal velocities at any position in plate i( i=0,1,2…N)are ready to be obtained through Eqs.(3)and(4).

    For a certain frequency,the spatial averaged vibration energy density is deduced as:

    where ρiis the density of plate i,[]*denotes the complex conjugate.

    Then the energy density in a certain frequency band is calculated as:

    where ω1and ω2are the lower and upper cutoff frequency of the frequency band respectively.

    2.2 Transmission efficiency and transmission loss in double-corner structure

    The approach discussed above is then applied to investigate vibration energy transmission through the simplest multi-corner structure i.e.double-corner structure consisting of three plates with blocking masses attached at the two corner interfaces,as shown in Fig.2.

    Incident waves,either bending or longitudinal,generated at x0=0 propagate throughout the whole structure via each plate and generate secondary waves when encountering corner interfaces.Under conditions of incident waves expressed in Eqs.(1)and(2)and the ‘reflection-free’boundaries at x0=0 and x2=l2,the transverse and longitudinal velocities in plate 2 are written as:

    where TBB,TBLare bending and longitudinal transmission coefficient from plate 0 to plate 2 for bending wave incidence,numerically equal to corresponding bending and longitudinal velocities at x2=0 caused by unit velocity incidence of bending wave in plate 0,and TLB,TLLthe corresponding coefficient for longitudinal wave incidence respectively.By applying Eqs.(5)~(8)to both corners,the above transmission coefficients are solved as:

    representing the resultant bending or longitudinal waves propagating in the positive x1-direction at x1=0 caused by unit primary waves transmitted from plate 0 to plate 1,in which:

    representing secondary bending or longitudinal waves at x1=0 generated by unit primary waves after traveling one ‘round trip’in plate 1,which means the process that wave starting from the first corner is reflected at the second corner and travels back to the first one.

    It is noted that velocity fields in the structure are always complex.It is more meaningful to consider vibration transmission in terms of energy(or power)other than velocity.So transmission efficiencies τBB,τBL,τLBand τLLrepresenting the ratios of vibration energy outputted from x2=l2to those inputted at x0=0 are introduced.They are expressed by using corresponding transmission coefficients from Eqs.(17)~(20)as follows:

    where P represents the power flow(subscript I for input and O for output),density per unit area mi″=ρi·hi,in which hiis the thickness,CB,iand CL,ithe corresponding group velocities of bending or longitudinal wave respectively.

    As mentioned earlier,attenuation of structure-bore sound is the main aim.And transmission loss(TL)is more commonly used to evaluate structure-borne sound attenuation in engineering for the sake of intuition and convenience of measurement.TL is defined by using transmission efficiency as in which τ may be chosen as any one of the transmission efficiencies expressed in Eqs.(29)~(32)to gain the corresponding transmission loss.

    2.3 Notes

    (1)For the reason that the transmission and reflection coefficients for corners consisting of two semi-infinite places used in Eqs.(5)~(8)are deduced under Kirchhoff’s plate theory[8],plates discussed in this paper should be restricted to thin plates.This requires λB>6h which sets an upper frequency limit as[1]

    As for frequencies higher than fmax,shear deformations in the cross section should be taken into consideration so that equations will be deduced with Mindlin’s plate theory for thick plates[9].But for ship structures,fmaxdoes not add much inconvenience for the reason that thin plate assumption can be satisfied in most cases.For example,the common thickness of steel plate used in ship structure is about 20mm for which fmaxwill be 13.5kHz and that is high enough for general purpose of structure-borne sound investigation.

    (2)The wave number kBand kLin discussion are those without consideration of damping.If the internal distributed damping in the structure is included,kBand kLshould only be replaced by[1]:

    where η is the structural loss factor,cBand cLare phase velocities for bending and longitudinal waves without damping respectively.

    3 Numerical investigation

    Fig.3 to Fig.6 show the computational results of transmission losses in double-corner structure.All three plates of the structure are steel plates of 15mm in thickness and 1 000mm in length.Both corners are at the angle of π/4 with two attached steel beams of rectangular cross section 100mm×100mm as the blocking masses.The results are also compared with those of the same structure without blocking masses.

    It is seen from the comparison of TL curves that:

    (1)All TL curves fluctuate with frequency,which indicates transmission loss in doublecorner structure depends greatly on whether the intermediate plate(plate 1)responds at resonance.As has been discussed before,secondary wave will be generated at x1=0 after any wave finishing a ‘round trip’ in plate 1.If the primary and secondary waves are in phase with each other,then the resultant velocity in the positive x1-direction will be the largest and more vibration energy will be transmitted to plate 2,corresponding to the vales in figures.And if the pri-mary and secondary waves at the first corner are out of phase or,in other words,counteract with each other,less vibration energy will be transmitted to plate 2,corresponding to the peaks in the figures.

    (2)Though fluctuating acutely,values of TL in double-corner structure with attached blocking masses are larger than those without blocking mass at high frequencies,especially for TLBB,which indicates blocking masses attached to double-corner structure are effective for structure-borne sound attenuation at high frequencies.

    (3)TL curves with and without attached blocking masses have little difference at low fre-quencies except in the vicinity of certain special frequency.

    (4)Each TL curve without attached blocking masses has a vale with negative value of TL in the vicinity of 50Hz,which is more evident for TLBBand TLBL.This vale corresponds to the first resonant frequency for bending of plate 1,at which all primary and secondary bending waves at x1=0 are in phase with each other.In this case,the first corner acts as a kind of amplifier,which is bad for structure-borne sound attenuation.But value of TL at the vale is significantly increased in case of attached blocking masses.This indicates that blocking masses improve attenuation of vibration energy at resonant frequency of plate 1.

    (5)Difference between values of TL with and without attached blocking masses for TLBBand TLLBis larger than that for TLBLand TLLLat high frequencies,which indicates blocking masses are more effective for bending wave attenuation comparing with longitudinal one.

    4 Experiment

    An experiment on a simplified test sample analogous to the hull of a ship was carried out to validate the results from numerical computation.The test sample is a symmetrical structure consisting of six steel plates(2mm in thickness)numbered from①to⑥as shown in Fig.7.A rigid beam is attached to the joint of plate①and②at the centre line to ensure plane wave produced in plates of the sample by point excitation[6].The beam also divides the test sample into two double-corner subsystems on both sides i.e.plates①-③-⑤ without blocking masses on the left and plates②-④-⑥ with blocking masses on the right.The blocking masses attached on the right side subsystem are two steel beams of rectangular cross section 20mm×20mm.The sample was placed upside down with the free ends of plates⑤and⑥embedded in two sand boxes by 300mm to guarantee ‘reflection-free’ boundaries as shown in Fig.8.

    For the reason that machinery excitation on its foundation produces predominantly bending waves into the ship structure[10],only bending wave incidence is considered here.On testing,a broad band point excitation force exerted on the rigid beam generates incident bending waves of the same magnitude into both sides.And both transverse and longitudinal vibration re-sponse at four measurement points on plates①,②,⑤ and⑥ respectively were recorded and processed.This procedure was repeated for 9 times with locations of the measurement points changed for each time.The measurement points on the right side subsystem are shown in Fig.7(right)and those on the left side are allocated symmetrically.

    The measurement results from 9 measurement points on each plate are averaged and converted into transmission loss in 1/1 octave band with central frequency from 31.5Hz to 4kHz.Comparisons are shown in Fig.9 and Fig.10 and it is seen that:

    (1)TLBBand TLBLmeasured in double-corner subsystem with blocking masses show almost the same trends as predicted.

    (2)The values of measured TLBBand TLBLwith blocking masses are higher than those without blocking masses above 1kHz,which validate that blocking masses are effective for attenuation of structure-borne sound especially at high frequencies.

    (3)Certain discrepancy is observed in Fig.9,which may be caused by the following factors:

    (a)Plane wave assumption is no longer valid by point excitation on the rigid beam at frequencies much higher than the first mode(or resonant)frequency of the beam[5-6].

    (b)The blocking masses attached to the test sample are not ideally rigid.And the elastic deformations of them can not be neglected at high frequencies where the wave length is very short.

    (c)Under conditions of the free ends of the sample embedded in sand boxes,there are still some reflections remained,especially at low frequencies,which lower the transmission loss measured.

    (d)Near field effect at the joint of two plates is neglected in numerical computation,which causes discrepancy especially at low frequencies.

    (4)The discrepancy for TLBLis smaller than that for TLBBat high frequencies,which indicates violation of normal incidence of plane wave assumption and deformations of steel beam have less effect on longitudinal wave than bending one.This phenomenon is also observed in the simplified experiment on single corner structure[5].

    (5)The computed first resonant frequency for bending of plate③(intermediate plate)is about 20Hz and resonance of the plate makes negative effect on transmission losses.So TLBB(even be negative from measurement)and TLBLmeasured at 31.5Hz 1/1 octave in the left side double-corner subsystem without blocking masses are much lower than those at 63Hz.And about 6dB increasing of TLBBand TLBLare observed after attached blocking masses,which validate the results from numerical investigation.

    4 Conclusions

    The work in this paper provides a theoretical and experimental basis for applying blocking masses on structure-borne sound attenuation on board of a ship.The expressions of wave motions in multi-corner structure are deduced by wave approach.And the transmission losses in double-corner structure are investigated as well.It is concluded that

    (1)The transmission losses from bending wave incidence measured in the experiment matches well with those from prediction,which validate the effectiveness of wave approach used in prediction of structure-borne sound attenuation.

    (2)Large increasing of TLBBand TLBLin double-corner structure with blocking masses is measured comparing with those without blocking masses especially at high frequencies.This indicates blocking masses attached to double-corner structure act as a kind of low pass filter,which provides more transmission loss at high frequencies.

    (3)Energy transmission through double-corner structure depends mainly on whether the intermediate plate responds at resonance.And it is found that attenuation of vibration energy can be increased at the first resonant frequency of the intermediate plate in double-corner structure with attached blocking masses,which is also validated in the experiment.

    (4)The deformation of the beam used as blocking mass and the violation of plane wave assumption should be taken into consideration if more accurate prediction is demanded at high frequencies.So more refined modeling is needed for further research.

    [1]Cremer L,Heckl M,Ungar E E.Structure-borne sound[M].Second edition.Berlin:Springer-Verlag,1988.

    [2]Liu Jianhua,Jin Xianding,Li Xiaobin.Attenuation of the plate flexural wave transmission through a vibration isolation mass[J].Journal of Ship Mechanics,2006,10(6):131-137.

    [3]Liu Jianhua,Jin Xianding,Li Xiaobin.Impediment to structure-borne sound propagation from several paralleling arranged vibration isolation mass[J].Journal of Shanghai Jiaotong University,2003,37(8):1205-1208.

    [4]Bercin A N.An assessment of the effects of in-plane vibrations on the energy flow between coupled plates[J].Journal of Sound and Vibration,1996,191(5):661-680.

    [5]Che Chidong,Chen Duanshi.Attenuation effect of blocking mass attached at corner interface on transmission from plane longitudinal wave to bending wave[J].Journal of Ship Mechanics.(accepted and will be published)

    [6]Chen Duanshi,Che Chidong.Analysis of vibration transmission at the corner interface of two plates for reduction of structure-borne sound[C].The Thirteenth International Congress on Sound and Vibration(ICSV 13),2006.

    [7]Langley R S,Heron K H.Elastic wave transmission through plate/beam junctions[J].Journal of Sound and Vibration,1990,143(2):241-253.

    [8]Lowe P G.Basic principles of plate theory[M].Glasgow:Surrey University Press,1982.

    [9]Mindlin R D.Influence of rotatory inertia and shear on flexural motions of isotropic elastic plates[J].Journal of Applied Mechanics,1951,18:31-38.

    [10]Grice R M,Pinnington R J.A method for the vibration analysis of built-up structures,Part I:Introduction and analytical analysis of the plate-stiffened beam[J].Journal of Sound and Vibration,2000,230:825-849.

    国产91精品成人一区二区三区| 国产精品综合久久久久久久免费| 人妻丰满熟妇av一区二区三区| 乱系列少妇在线播放| 精品一区二区三区视频在线| 免费看美女性在线毛片视频| 日本a在线网址| 国产亚洲91精品色在线| 国产乱人视频| 亚洲中文字幕一区二区三区有码在线看| 国产老妇女一区| 国产白丝娇喘喷水9色精品| netflix在线观看网站| 人妻久久中文字幕网| 少妇人妻精品综合一区二区 | 色播亚洲综合网| 九色成人免费人妻av| 精品乱码久久久久久99久播| www.色视频.com| av在线观看视频网站免费| 欧美一级a爱片免费观看看| 久久久国产成人免费| 国产精品女同一区二区软件 | 日韩 亚洲 欧美在线| 国产精品一区二区三区四区久久| 自拍偷自拍亚洲精品老妇| 网址你懂的国产日韩在线| 精品一区二区三区av网在线观看| 在现免费观看毛片| 制服丝袜大香蕉在线| 噜噜噜噜噜久久久久久91| 午夜福利高清视频| 久久久久精品国产欧美久久久| 国产真实乱freesex| 亚洲va在线va天堂va国产| 色哟哟·www| 黄片wwwwww| 国产高清视频在线播放一区| 伊人久久精品亚洲午夜| 久久人妻av系列| 很黄的视频免费| 毛片一级片免费看久久久久 | 国产精品女同一区二区软件 | 精品午夜福利视频在线观看一区| 男人狂女人下面高潮的视频| 日韩高清综合在线| 听说在线观看完整版免费高清| 国产精品三级大全| 亚洲精品粉嫩美女一区| 高清日韩中文字幕在线| 国产精品无大码| 国产精品福利在线免费观看| 美女被艹到高潮喷水动态| 99热6这里只有精品| 午夜爱爱视频在线播放| 欧美在线一区亚洲| 深爱激情五月婷婷| 欧美性猛交╳xxx乱大交人| 18禁在线播放成人免费| 国产成年人精品一区二区| 国产一区二区三区av在线 | 亚洲av一区综合| 国产男人的电影天堂91| 久久国产乱子免费精品| 1000部很黄的大片| 亚洲色图av天堂| 国产精品人妻久久久久久| 国产又黄又爽又无遮挡在线| 亚洲成a人片在线一区二区| 性色avwww在线观看| 制服丝袜大香蕉在线| 国产精品三级大全| 久久这里只有精品中国| 亚洲精品一区av在线观看| 此物有八面人人有两片| 欧美+亚洲+日韩+国产| 自拍偷自拍亚洲精品老妇| 一级黄色大片毛片| 99久久九九国产精品国产免费| 看免费成人av毛片| 亚洲中文日韩欧美视频| 日本在线视频免费播放| 国产日本99.免费观看| 成年人黄色毛片网站| 日韩av在线大香蕉| 露出奶头的视频| 亚洲自偷自拍三级| 午夜a级毛片| 波多野结衣高清无吗| 国产极品精品免费视频能看的| 一个人看视频在线观看www免费| 中文资源天堂在线| 91狼人影院| 欧美不卡视频在线免费观看| 在线观看舔阴道视频| 欧美潮喷喷水| 日韩大尺度精品在线看网址| 欧美最黄视频在线播放免费| 啦啦啦韩国在线观看视频| 女人被狂操c到高潮| 狂野欧美白嫩少妇大欣赏| 99久久精品国产国产毛片| 久久久久久久精品吃奶| 噜噜噜噜噜久久久久久91| 九色成人免费人妻av| 亚洲一级一片aⅴ在线观看| eeuss影院久久| 久久精品国产自在天天线| 国产精品一及| 精品久久国产蜜桃| 有码 亚洲区| 亚洲av成人av| 亚洲欧美日韩无卡精品| 欧美又色又爽又黄视频| 中文字幕av成人在线电影| 国内精品美女久久久久久| 三级国产精品欧美在线观看| 不卡一级毛片| 在线观看免费视频日本深夜| 亚洲人成网站在线播放欧美日韩| 国产高潮美女av| 国产精品无大码| 国产高清激情床上av| 他把我摸到了高潮在线观看| 国产精品一区二区三区四区久久| 我要看日韩黄色一级片| 一个人观看的视频www高清免费观看| 一区二区三区四区激情视频 | 最新在线观看一区二区三区| 国产美女午夜福利| 别揉我奶头~嗯~啊~动态视频| 国产精品嫩草影院av在线观看 | 99久国产av精品| 日本撒尿小便嘘嘘汇集6| 很黄的视频免费| 国产日本99.免费观看| 亚洲人成伊人成综合网2020| 亚洲人与动物交配视频| bbb黄色大片| 国产淫片久久久久久久久| 最近在线观看免费完整版| 精品人妻熟女av久视频| 国产单亲对白刺激| 美女高潮的动态| 美女黄网站色视频| 国产精品久久久久久亚洲av鲁大| 人人妻人人澡欧美一区二区| 精品久久久久久久久亚洲 | 久久天躁狠狠躁夜夜2o2o| 性插视频无遮挡在线免费观看| av视频在线观看入口| 久久6这里有精品| 少妇猛男粗大的猛烈进出视频 | 91久久精品国产一区二区成人| 欧美一区二区亚洲| 极品教师在线免费播放| 色综合站精品国产| 亚洲最大成人av| 国产精品精品国产色婷婷| 观看美女的网站| 99国产精品一区二区蜜桃av| 亚洲aⅴ乱码一区二区在线播放| 99国产精品一区二区蜜桃av| 色播亚洲综合网| 99久久无色码亚洲精品果冻| 男插女下体视频免费在线播放| 国产成人aa在线观看| 亚洲男人的天堂狠狠| 桃色一区二区三区在线观看| 久久99热6这里只有精品| bbb黄色大片| aaaaa片日本免费| 干丝袜人妻中文字幕| 欧美极品一区二区三区四区| 又爽又黄a免费视频| 久久久久久久亚洲中文字幕| 大又大粗又爽又黄少妇毛片口| 国产亚洲精品综合一区在线观看| 国产精品1区2区在线观看.| 日韩人妻高清精品专区| 国产三级在线视频| 午夜免费成人在线视频| 一进一出好大好爽视频| 美女高潮喷水抽搐中文字幕| 久久婷婷人人爽人人干人人爱| 亚洲av中文av极速乱 | 嫩草影院精品99| 国产一区二区三区在线臀色熟女| 成人午夜高清在线视频| 别揉我奶头~嗯~啊~动态视频| 人妻久久中文字幕网| 日本一本二区三区精品| 男女那种视频在线观看| av专区在线播放| 中国美白少妇内射xxxbb| 黄色配什么色好看| 在线a可以看的网站| 国产精品亚洲一级av第二区| 免费观看在线日韩| 国产精品一区二区性色av| 日韩一本色道免费dvd| 日日啪夜夜撸| 国产精品av视频在线免费观看| 久久久成人免费电影| 男女边吃奶边做爰视频| 俺也久久电影网| 热99re8久久精品国产| 国产在视频线在精品| 色综合婷婷激情| 久久精品91蜜桃| 12—13女人毛片做爰片一| 国产av在哪里看| 精华霜和精华液先用哪个| 97超视频在线观看视频| 99久久无色码亚洲精品果冻| 国产美女午夜福利| 性欧美人与动物交配| 色尼玛亚洲综合影院| av在线老鸭窝| 欧美高清成人免费视频www| 一个人看视频在线观看www免费| 亚洲专区国产一区二区| 成人毛片a级毛片在线播放| 午夜影院日韩av| 精品一区二区免费观看| 波多野结衣高清作品| 舔av片在线| 欧美xxxx黑人xx丫x性爽| 成人av在线播放网站| 国产精品伦人一区二区| 淫妇啪啪啪对白视频| 国产成人一区二区在线| 一区二区三区激情视频| 精品国产三级普通话版| 偷拍熟女少妇极品色| 在线免费观看不下载黄p国产 | 国产午夜福利久久久久久| 亚洲专区国产一区二区| 婷婷六月久久综合丁香| 嫩草影院新地址| 国产成人av教育| 联通29元200g的流量卡| 在线观看免费视频日本深夜| 最新中文字幕久久久久| 亚洲av日韩精品久久久久久密| 女人十人毛片免费观看3o分钟| 51国产日韩欧美| 自拍偷自拍亚洲精品老妇| 亚洲一级一片aⅴ在线观看| 亚洲国产精品成人综合色| 男人和女人高潮做爰伦理| 亚洲av不卡在线观看| 久久久久免费精品人妻一区二区| 成人毛片a级毛片在线播放| 国产91精品成人一区二区三区| 深爱激情五月婷婷| 一边摸一边抽搐一进一小说| 美女 人体艺术 gogo| 日本在线视频免费播放| 波多野结衣巨乳人妻| 黄色日韩在线| 国产三级中文精品| 久久婷婷人人爽人人干人人爱| 亚洲无线在线观看| 嫩草影院入口| 国产日本99.免费观看| 九色国产91popny在线| 欧美日韩国产亚洲二区| 999久久久精品免费观看国产| 色在线成人网| 国产男人的电影天堂91| 岛国在线免费视频观看| 简卡轻食公司| 高清在线国产一区| av在线亚洲专区| 精品一区二区三区视频在线观看免费| 国产午夜精品久久久久久一区二区三区 | 亚洲精品国产成人久久av| 中亚洲国语对白在线视频| 一级黄片播放器| 亚洲在线观看片| av天堂中文字幕网| 深夜a级毛片| 琪琪午夜伦伦电影理论片6080| 亚洲最大成人手机在线| av在线老鸭窝| 婷婷精品国产亚洲av| 午夜影院日韩av| 丰满乱子伦码专区| av女优亚洲男人天堂| 国产大屁股一区二区在线视频| 中文资源天堂在线| 亚洲一区二区三区色噜噜| 少妇被粗大猛烈的视频| 少妇裸体淫交视频免费看高清| 久久午夜亚洲精品久久| 亚洲成a人片在线一区二区| 国产成人a区在线观看| 黄色一级大片看看| av天堂在线播放| 免费高清视频大片| 亚洲精品影视一区二区三区av| 色视频www国产| 可以在线观看毛片的网站| 欧美日韩综合久久久久久 | 国产精品人妻久久久影院| 色播亚洲综合网| 色视频www国产| 看片在线看免费视频| 亚洲成人免费电影在线观看| www.色视频.com| 69av精品久久久久久| 亚洲avbb在线观看| 国产毛片a区久久久久| 亚洲精品成人久久久久久| 欧美zozozo另类| 直男gayav资源| 欧美日韩瑟瑟在线播放| 12—13女人毛片做爰片一| 深夜精品福利| 春色校园在线视频观看| 国产 一区 欧美 日韩| 三级男女做爰猛烈吃奶摸视频| 日韩中字成人| 欧美一区二区亚洲| 日韩 亚洲 欧美在线| 国产在线精品亚洲第一网站| 成年版毛片免费区| 欧美日本亚洲视频在线播放| 男女边吃奶边做爰视频| 日本欧美国产在线视频| 黄色丝袜av网址大全| 国产精品国产高清国产av| 国产一区二区三区av在线 | 九色国产91popny在线| 国语自产精品视频在线第100页| 97人妻精品一区二区三区麻豆| 久久久精品欧美日韩精品| 精品人妻熟女av久视频| 久久久精品大字幕| 国产老妇女一区| 国产一区二区在线观看日韩| 日韩欧美免费精品| 日本 欧美在线| 一进一出抽搐动态| 欧美日韩亚洲国产一区二区在线观看| 成年女人毛片免费观看观看9| 欧美最黄视频在线播放免费| 在线观看66精品国产| 国产午夜精品久久久久久一区二区三区 | 狂野欧美激情性xxxx在线观看| 免费观看的影片在线观看| 亚洲av电影不卡..在线观看| 免费一级毛片在线播放高清视频| 国产视频一区二区在线看| 国产精品无大码| 综合色av麻豆| 精品人妻熟女av久视频| 欧美一级a爱片免费观看看| 国产老妇女一区| 久久久久久久久大av| 亚洲专区中文字幕在线| 美女黄网站色视频| 亚洲va在线va天堂va国产| 日韩欧美国产在线观看| 精品不卡国产一区二区三区| 婷婷六月久久综合丁香| 天美传媒精品一区二区| 97超级碰碰碰精品色视频在线观看| 久久久久久久久中文| 男人舔奶头视频| 日韩强制内射视频| 人妻少妇偷人精品九色| 真实男女啪啪啪动态图| 欧美不卡视频在线免费观看| 国产精品福利在线免费观看| 欧美日韩中文字幕国产精品一区二区三区| 亚洲四区av| 国产又黄又爽又无遮挡在线| 欧美区成人在线视频| 国产免费av片在线观看野外av| 岛国在线免费视频观看| 性欧美人与动物交配| 韩国av一区二区三区四区| 国产三级在线视频| 91在线精品国自产拍蜜月| 性欧美人与动物交配| 久久久久国产精品人妻aⅴ院| 久久精品国产亚洲av香蕉五月| 亚洲欧美清纯卡通| 午夜福利成人在线免费观看| 欧美精品啪啪一区二区三区| 18禁黄网站禁片免费观看直播| 一个人免费在线观看电影| 老司机福利观看| 伦精品一区二区三区| 国产精品久久久久久亚洲av鲁大| 91久久精品国产一区二区三区| 能在线免费观看的黄片| 中文字幕人妻熟人妻熟丝袜美| 黄色配什么色好看| 婷婷色综合大香蕉| av视频在线观看入口| 婷婷丁香在线五月| h日本视频在线播放| 日日撸夜夜添| 久久国内精品自在自线图片| 欧美极品一区二区三区四区| 国产精品乱码一区二三区的特点| 国产一区二区三区av在线 | 亚洲av一区综合| 久久草成人影院| 白带黄色成豆腐渣| 五月伊人婷婷丁香| 免费看美女性在线毛片视频| 欧美3d第一页| 成人国产综合亚洲| 高清日韩中文字幕在线| 美女cb高潮喷水在线观看| 亚洲欧美日韩高清在线视频| 97碰自拍视频| 欧美性猛交黑人性爽| 桃色一区二区三区在线观看| 亚洲va日本ⅴa欧美va伊人久久| 欧美bdsm另类| 欧美激情在线99| 亚洲av不卡在线观看| 老熟妇乱子伦视频在线观看| 国产伦精品一区二区三区视频9| 欧美成人a在线观看| 中文字幕人妻熟人妻熟丝袜美| 我的老师免费观看完整版| 十八禁网站免费在线| x7x7x7水蜜桃| 少妇高潮的动态图| 波多野结衣高清作品| 热99re8久久精品国产| 亚洲国产精品合色在线| 我的女老师完整版在线观看| 能在线免费观看的黄片| 老司机深夜福利视频在线观看| 久久久成人免费电影| 成人性生交大片免费视频hd| 欧美人与善性xxx| 99热网站在线观看| bbb黄色大片| 久久久久国产精品人妻aⅴ院| 国产精品免费一区二区三区在线| 51国产日韩欧美| 亚洲av二区三区四区| 亚洲内射少妇av| 精品午夜福利视频在线观看一区| 99久久久亚洲精品蜜臀av| 俺也久久电影网| 精品不卡国产一区二区三区| 国国产精品蜜臀av免费| 别揉我奶头 嗯啊视频| 99国产极品粉嫩在线观看| 性色avwww在线观看| 欧美激情国产日韩精品一区| 国产高清视频在线观看网站| 日本撒尿小便嘘嘘汇集6| 网址你懂的国产日韩在线| 一区福利在线观看| 亚洲国产精品成人综合色| 精品久久久噜噜| 日本五十路高清| 一区二区三区免费毛片| 大又大粗又爽又黄少妇毛片口| 亚洲乱码一区二区免费版| 久久午夜福利片| 看片在线看免费视频| 男女下面进入的视频免费午夜| 国产欧美日韩一区二区精品| 久久久久久久久久成人| 亚州av有码| 又爽又黄无遮挡网站| av.在线天堂| 欧美日韩乱码在线| 国产在线精品亚洲第一网站| 2021天堂中文幕一二区在线观| 国产精品久久视频播放| 看黄色毛片网站| 国产免费av片在线观看野外av| 一级黄片播放器| 欧美最新免费一区二区三区| 亚洲精品国产成人久久av| 亚洲人成网站高清观看| 午夜福利欧美成人| 美女 人体艺术 gogo| 91久久精品国产一区二区三区| 亚洲av电影不卡..在线观看| 日本黄色视频三级网站网址| 日韩欧美免费精品| 黄色欧美视频在线观看| avwww免费| 色视频www国产| 欧美三级亚洲精品| 啪啪无遮挡十八禁网站| 亚洲国产日韩欧美精品在线观看| 波多野结衣高清作品| 免费黄网站久久成人精品| 男人舔奶头视频| 久久国内精品自在自线图片| 亚洲性久久影院| 国产黄a三级三级三级人| 日本在线视频免费播放| 久久久午夜欧美精品| 亚洲精品久久国产高清桃花| 伦精品一区二区三区| 欧美一区二区国产精品久久精品| 欧洲精品卡2卡3卡4卡5卡区| 国产男靠女视频免费网站| 在线免费十八禁| av福利片在线观看| 日日干狠狠操夜夜爽| 在线国产一区二区在线| 欧美黑人欧美精品刺激| 欧美日韩亚洲国产一区二区在线观看| 国内少妇人妻偷人精品xxx网站| 最近最新免费中文字幕在线| 色5月婷婷丁香| 亚洲熟妇熟女久久| 精品人妻一区二区三区麻豆 | 成熟少妇高潮喷水视频| 此物有八面人人有两片| 一本久久中文字幕| 成人高潮视频无遮挡免费网站| 久久久久久国产a免费观看| a级毛片免费高清观看在线播放| 九九爱精品视频在线观看| 99国产极品粉嫩在线观看| 久久午夜亚洲精品久久| 欧美最新免费一区二区三区| 一级毛片久久久久久久久女| av专区在线播放| 美女黄网站色视频| 亚洲男人的天堂狠狠| 国产三级在线视频| 国产精品一区www在线观看 | 成人午夜高清在线视频| 欧美日本视频| 哪里可以看免费的av片| 亚洲天堂国产精品一区在线| 免费av毛片视频| 亚洲avbb在线观看| 少妇人妻一区二区三区视频| 午夜激情福利司机影院| 午夜福利高清视频| 亚洲国产色片| 免费观看在线日韩| 俺也久久电影网| av天堂中文字幕网| 色播亚洲综合网| 黄色一级大片看看| 天美传媒精品一区二区| 日韩欧美在线乱码| 色哟哟·www| a级一级毛片免费在线观看| 欧美性猛交黑人性爽| 欧美高清成人免费视频www| 黄色视频,在线免费观看| 看片在线看免费视频| 欧美黑人欧美精品刺激| 成人亚洲精品av一区二区| 男人舔奶头视频| 99精品久久久久人妻精品| 国产一区二区三区视频了| 日韩高清综合在线| 一个人看的www免费观看视频| 校园人妻丝袜中文字幕| 欧美日韩国产亚洲二区| 中文字幕熟女人妻在线| 国产亚洲精品综合一区在线观看| 亚洲精品粉嫩美女一区| 波多野结衣巨乳人妻| 狂野欧美激情性xxxx在线观看| 成人精品一区二区免费| 欧美日韩中文字幕国产精品一区二区三区| 国产探花在线观看一区二区| 亚洲熟妇中文字幕五十中出| 一本精品99久久精品77| 波多野结衣高清作品| 成人精品一区二区免费| 搡老妇女老女人老熟妇| 黄色日韩在线| 真人一进一出gif抽搐免费| 久久精品人妻少妇| 亚洲人与动物交配视频| 国产爱豆传媒在线观看| 熟女人妻精品中文字幕| 国产精品综合久久久久久久免费| 国产淫片久久久久久久久| 欧美一区二区精品小视频在线| 午夜爱爱视频在线播放| 悠悠久久av| 午夜爱爱视频在线播放| 国产高潮美女av| 成人av在线播放网站| 在线观看av片永久免费下载| 男插女下体视频免费在线播放| 日韩中文字幕欧美一区二区| 禁无遮挡网站| 人妻夜夜爽99麻豆av| 在线免费十八禁| 中文字幕av成人在线电影| 亚洲人与动物交配视频| 亚洲av中文av极速乱 | 亚洲va日本ⅴa欧美va伊人久久| 69人妻影院| 国产精品乱码一区二三区的特点| 欧美成人性av电影在线观看| 成人国产综合亚洲| 亚洲精品影视一区二区三区av| 波野结衣二区三区在线|