• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adaptive Inverse Control of Offshore Jacket Platform Based on Grey prediction and Rough Neural Network

    2010-06-07 10:22:02
    船舶力學(xué) 2010年9期

    (Department of Naval Architecture,Dalian University of Technology,Dalian 116085,China)

    1 Introduction

    The offshore jacket platform usually produces harmful vibration under the action of waves and winds loads.During the past decades,many domestic and overseas researchers have done lots of research on the problem for vibration control of the offshore jacket platform,and have made great achievements[1].Although the traditional passive method can control the harmful vibration in some extent by increasing the stiffness and damping of the platform,we still can not achieve the ideal effect utilizing the traditional passive method because of the complex structure and the variable parameters of the platform.The active control method can effectively reduce the vibration level of the offshore jacket platform in the whole frequency domain.However,the traditional active control method based on accurate mathematical model is not an ideal method because the offshore jacket platform is a non-linear,strong-coupling,multi-variation,uncertainty,time-varying and the control signal transmission delay problem.The intelligent methods[2]which are independent of the accurate mathematical model have the properties of strong stability,robustness and non-linear processing,such as neural network,so the problem of vibration control can be solved effectively.

    Grey prediction theory[3]finds out the law of system development from the raw data of the happened behaviors,and then determines the corresponding control decision according to the future developing trend of the system.The grey prediction is a lead control method,which has advantages of simple calculation frame,superior characteristics of adaptability,real-time and high accuracy.Rough set theory[4]can be used to analyze and process large amount of experiential data,discover hidden information and disclose potential rules effectively.The neural network has strong ability of anti-noise and generalization.The rough neural network(RNN)integrates the advantages of the rough set theory and the neural network,such as clear structure and strong error-tolerance capability.

    Dynamic stiffness matrix(DSM)method is a powerful tool for solving vibration problems in structural engineering.The DSM method can be devoted to calculate the natural frequency and mode shape by using fewer elements.The method can also decrease the degree-of-freedoms.With the increase of the calculated frequency,the DSM method does not require to further refine elements.When the W-W algorithm[5]is adopted,the calculation speed of the DSM method will be accelerated.

    In order to control the vibration of the platform,a method combining the grey prediction,the RNN techniques and the DSM which is used to build an adaptive inverse control model is proposed in this paper.The structure model of offshore jacket platform is built by the DSM method.The inverse model of the platform identified by the RNN combining the grey prediction is used as the adaptive feed-forward predictive inverse controller to carry out the predictive inverse control,and the time delay during the signal transmission is handled by this predictive control.The errors emerged during model-establishing,identifying and feed-forward control processing of the platform system and wind load are treated as the disturbance signals.The influence of the above factors on the control system performance is reduced by the disturbance eliminator which is the inverse model built by RNN.Experiments results show that our method is effective.

    2 Offshore jacket platform model based on DSM method

    2.1 Dynamic stiffness matrix method

    The element stiffness matrix of DSM was derived from the analytic solution of the element dynamic differential equations.The dynamic differential equation[5-6]of the Timoshenko beam may be written as:

    where w represents the transverse displacement,E is the Young’s modulus,G is the shear modulus,ρ is the density of the material,A is the cross section area,Asis the cross section shear area,I is the moment of inertia of cross section,and k is the shape factor for correction section.

    It is supposed that the transverse displacement w and the rotation angle ψ of the cross section vary with time t in a sinusoidal form when the beam is vibrating freely,that is where W(x) and Ψ (x) represent the amplitude of transverse displacement and rotation angle respectively.Let ξ=x/L,where L is the length of the beam element.Combined with beam coupling equations,Eq.(1)can be written as follows:

    When b2r2s2>1,the vibration frequency is so high that it exceed the using range of the Timoshenko beam theory.In this paper,it is assumed that b2r2s2<1,then the general solutions of the above differential equations are as follows:

    According to Fig.1,when bending vibration of the uniform straight Timoshenko beam element occurs,the boundary conditions of displacement and force are respectively given as

    The expressions of bending moment and shear force are shown as follows:

    Thus,a general expression can be obtained according to Eqs.(6)~(11):

    where F=[V1M1V2M2]Tis a force vector,Δ=[W1Ψ1W2ψ2]Tis a displacement vector of the element and Kdis DSM of the Timoshenko beam element.The detailed expressions of all the components of DSM are then given as follows:

    By using standard finite element assembly techniques,the global dynamic stiffness matrix D(ω ) which is the function of circular frequency ω can be obtained.The relationship between the global mass matrix of structure and the global dynamic stiffness matrix can be determined by the Leung’s theorem:

    where M(ω) is global mass matrix.

    2.2 Establishment of calculation model for the offshore jacket platform

    In this paper,the Timoshenko beam element based on the DSM method is used to establish the offshore jacket platform model.The offshore jacket platform is reduced to a plane rigid frame structure,the weights of machinery and equipment,etc,distributed on the corresponding rigid frames.The boundary condition is the rigid fastening at the distance of six times pile diameter under the platform.The well-known W-W algorithm is used to compute natural frequencies and mode shape of the simplified jacket platform model.Then the mode superposition method is applied to calculate the vibratory response of the platform.Then the motion equation of the controlled platform with n degrees of freedom can be written as:

    where M(ω) and D(ω)are the global mass and stiffness matrix of order(n×n),C(ω) is the global damping matrix of order(n×n),when Rayleigh damping is used,C(ω) can be replaced by α′D (ω)+β′M (ω),where α′and β′are proportional constants.Y (t),)and)are the n dimensional displacement,velocity and acceleration vector respectively,U(t)is the m dimensional control force vector;F(t)is the r dimensional external disturbance force vector;L1is the location matrix of order(n×m) control force,and L2is the location matrix of order(n×r) external disturbing force.Finally,the Duhamel integration is used directly to calculate the each mode responses of the controlled platform.The superposition of those responses is used to obtain the vibration response of the whole controlled platform system.

    3 Adaptive inverse control system based on grey prediction and RNN

    3.1 Grey prediction

    In this paper,GM(1,1)model[7]is applied to predict the system output at the time k+d.For SISO system,the time series of original input and output is denoted by where n is the number of modeling dimension.

    Because original series(16)and(17)are grey series influenced by random disturbances,the first-order accumulated generating operation(AGO)series of original series is Through the original series and the AGO series,the GM(1,1)model can be built:

    For previewing the system development rules,it is necessary to pick up the suitable number of modeling dimension and prediction steps in grey prediction control theory,which will improve the performance of the predictive control system,such as accuracy and real-time.The number of modeling dimension(n) of grey prediction is 5,and the prediction step(d) is 6 in this paper.

    3.2 Rough neural networks

    (1)Basic concept of the rough set

    An information system S′can be defined as:S′=(U′,A′,V′,F′).U′={x1,x2,…,xn}is a set of samples,A′={a1,a2,…,am}is a set of attributes,and V′is the attribute value domain defined as V′=∪a∈A′Va′,where Va′is the value domain of attribute a.F′:U′×A′→V′is an information function,that is,for every x∈U′,a∈A′has F′(x,a)∈Va′.If the set of attributes A′can be divided into the set of condition attributes C′and the set of decision attributes D′,then A′=C′∪D′,and the information system is called as decision system[8].

    For sets X′,X′?U′,R′is the equivalence relation about domain U′,that is,according to R′,U′can be divided into some disjoint sets of equivalence class U′/R′.[x]R′shows that the equivalence class in which element x is included;rough set can be expressed by two accurate sets,that is,the lower approximation′(X′)and the upper approximation′(X′)of the rough set:

    (2)Structure and training of RNN

    The rough set theory is used to extract rules from the given data,and establish the model structure of neural network by these rules.The RNN proposed in this paper consists of five layers:

    The first layer:Input layer.

    Input vector:x=(x1,x2,…,xn)T.

    The second layer:Classification layer of the input equivalence class.

    The n input components xi(i=1,2,…,n)are discretized into ridifferent values by some discretization method,the output of neuronis

    where cij,σijare the center and width value of jth(j=1,2,…,ri)class variable respectively.

    The third layer:Rule layer.

    The fourth layer:Classification layer of the output equivalence class.

    All outputs of the same class of the neurons in the third layer are taken as the inputs for the fourth layer.Let rdto be the discretization number of output variables,then the output of neuronis

    The fifth layer:Output layer.

    The output of the neural network yris

    where ydis the expected output of the network.

    3.3 Structure of adaptive inverse control system based on grey prediction and RNN

    For Adaptive inverse control method,the first step is to identify the inverse model of the controlled object,and then in order to control the dynamic performance,the identified model as a controller was linked with the controlled object[9].In this paper,RNN is used to identify the inverse model of the offshore jacket platform.The inverse model structure is shown in Fig.2,where the RNNis the platform inverse model identified by RNN,P is the platform system model,us(k) is the force which acts on the top of the platform,ys(k) is the response of the top of the platform under the force us(k),and(k) is the identification output of RNNThe platform system is regarded as SISO system for convenience of discussion,and the response can be showed in the following equation:

    where m<n,φ(·)is a non-linear function.As Eq.(35)shows,the reversible system of SISO system can be demonstrated as:

    When the training sample set{Xs(k),us(k)}of RNN is built,the inverse model of the platform system can be identified after the learning course of RNN,leads to(k)→us(k) and error es(k)→0.The output value(k) of RNNC^is the input value us(k) of the platform system P.For the new input data Xh(k),the output of inverse system RNNof the platform system is(k).Because of the existence of identification error in RNN,RNNcan be given by:

    There are two parts in the adaptive inverse control system:feed-forward control part and the disturbance elimination control part.In the feed-forward control part

    herein,the output signal of the controller RNN1 is taken as the input signal of the grey prediction model GM( 1,1),then the predictive control force u1can be obtained through the model GM( 1,1).This control signal u1is exerted on the top of the platform in order to control the response of vibration at the top of the platform system caused by the wave load fa.

    In the disturbance elimination control part

    The control force u2produced by disturbance elimination controller RNNis exerted on the top of the platform to control the response nbof the top of the platform system caused by the wind load and all the other forms of disturbance.When sampling at very high speed,the influence of unit delay is very small.

    In the adaptive inverse control system of the offshore jacket platform based on grey prediction and RNN,the feed-forward control error,dynamic stiffness matrix model error and RNN identification error can be treated as the additive noises of the platform control system response,and can be expressed by Nb(k),thus

    The control system structure is equivalent to the structure shown in Fig.4.

    In Fig.4,the response signal y on the top of the platform can be directly sampled by the sensor,which is also taken as the input signal of the disturbance elimination controller RNNC^2.This will be helpful to carry out the on-line real-time control.

    4 Numerical example

    4.1 Calculation model of the offshore jacket platform

    To verify the effectiveness of the proposed method in this paper,an example of offshore jacket platform is demonstrated.The water depth of the sea where the platform works is 80m.The total height of the platform is 140m.There are two equipment layers and three layers of the living area blocks on the top deck with the total height of 20m.The dimension of the deck is 60m×60m.And the section dimensions of vertical,horizontal and diagonal cylindrical steel tubes are Φ1.6×0.04m,Φ0.8×0.02m and Φ0.8×0.02m,respectively.The dimension of the legs cross section is Φ1.46×0.04m.The equivalent distributed weights of each storey from bottom to top are respectively:3 000t,2 500t,2 000t and 12 000t.The sketch of the simplified plane rigid frame model for calculated platform is shown in Fig.5.

    4.2 Response of the offshore jacket platform under loads

    For the numerical simulation of wave load,the improved P-M wave spectrum[10]is chosen as wave force spectrum with significant wave height 7.5m and wave period 8s.For the numerical simulation of wind load,the stipulated Davenport spectrum in Chinese wind load regulations[11-12]is chosen as power spectra density function of the fluctuating wind velocity.The ground roughness factor is 0.001 29,the ground roughness index is 0.12,the standard wind velocity of 10m elevation is 25m/s and the basic wind pressure is 0.5kN/m2.According to numerical stimulation of the platform,the time histories of the adopted 100s wave and wind loads are shown in Fig.6 and Fig.7 respectively.

    The time history of displacement response of the top of the offshore jacket platform under wave and wind loads is shown in Fig.8.The solid line is the time history of displacement response under wave load,and the dotted line represents the time history of displacement response under both wave and wind loads.Under wind load disturbance,it can be seen that the displacement response of the top of the offshore jacket platform changed obviously com-paring to the case where only wave load acted.

    4.3 Active control of the offshore jacket platform under wind disturbance

    (1)Inverse model of the offshore jacket platform identified by the RNN

    The inputs of RNN are the displacement response y(k),velocity response) and acceleration response) of the top of the platform;the output is the control force u(k) which acts on the top of the offshore jacket platform.Data set with length of 2 500 are extracted by the numerical simulation in this paper.The extracted training data of input variables and output variables of RNN are discretized into seven sections according to the same width.Then taking the input variables as condition attributes and the output variables as decision attributes,the information system decision table can be constructed based on the rough set theory.After analyzing each decision rule,the unnecessary condition attributes,low support degree rules and superfluous rules will be deleted.Finally,62 rules can be obtained and used to construct the simplest decision table.The typology structure of RNN is obtained according to the above data processing method.For this structure of RNN,the input layer has 3 neurons,the classifica tion layer of the input equivalence class has 21 neurons,the rule layer has 62 neurons,the classification layer of the output equivalence class has 7 neurons and the output layer has 1 neuron.The initial values of cijand σijin the network structure are determined in the light of the discretization region,the support degree of each rule is taken as the initial value of weight value,and random numbers are used as the initial value of the weight value.At last data sets with length of 2 500 are taken as the training examples,and after 45 times training,another 1 000 data sets are used to test the generalization capability of RNN,as shown in Fig.9.The solid line is the numerically simulated output of RNN,while the dotted line is the output of the trained RNN.It can be seen that RNN has strong generalization capability and the identified output of the platform inverse system is very close to the real platform inverse system.After connecting the identified inverse system and the controlled platform,the inverse control system can be finally established.

    (2)Active control of the offshore jacket platform

    The displacement response curve of the top of the platform under both the wave load(shown in Fig.6)and the wind load(shown in Fig.7)is shown in Fig.10 as dotted line.The corresponding displacement response curve after feed-forward control is also shown in Fig.10 as dash-dotted line.The solid line represents the time history of the displacement response of the top of the platform after both feed-forward control and disturbance elimination control.Thus,the control model proposed in this paper can significantly reduce the displacement response of the top of the platform and has excellent anti-disturbance capability.

    5 Conclusions

    Each time the grey prediction controller samples the data,a new model can be built,which enables the control system to have superior characteristics of adaptability,real-time and realization.Combining the advantages of rough set and neural network,RNN has powerful identification and generalization capability.Moreover,the DSM method has the advantage of fast calculation ability.This paper proposes a new method of inverse control based on grey prediction,DSM and RNN,and applies this method to actively control the harm vibration of offshore jacket platform.The numerical results show that the proposed method has strong stability and robustness,can effectively control the vibration response of the offshore jacket platform,successfully solve the instability and the system surge problem caused by the delay of control signal transmission.

    [1]Zhou Yajun,Zhao Deyou.Review on structural control for offshore platforms[J].Journal of Vibration and Shock,2004,23(4):40-43.

    [2]Zhou Yajun,Zhao Deyou.Neural network-based active control for offshore platforms[J].China Ocean Engineering,2003,17(3):461-468.

    [3]Deng Julong.The primary methods of grey system theory[M].Wuhan:Huazhong University of Science and Technology Press,2002.

    [4]Pawalk Z.International journal of computer and information science[J].Rough sets,1982,11(5):341-356.

    [5]Zhou Ping,Zhao Deyou.Application of dynamic stiffness matrix method to compute the vibration of ship hull[J].Journal of Ship Mechanics,2006,10(4):126-132.

    [6]Luis G,David G,Dario J.Timoshenko beam-column with generalized end conditions on elastic foundation:Dynamicstiffness matrix and load vector[J].Journal of Sound and Vibration,2008,310(4-5):1057-1079.

    [7]Liu S F,Dang Y G,Fang Z G.Grey Theory and applications[M].Beijing:Science Press,2004.

    [8]Chien C F,Chen L F.Using rough set theory to recruit and retain high-potential talents for semiconductor manufacturing[J].Semiconductor Manufacturing,2007,20(4):528-541.

    [9]Widrow Z,Walach E.Adaptive inverse control[M].New Jersey:Prentice-Hall Inc,1996.

    [10]Nie Wu,Liu Yuqiu.Dynamic analysis of offshore structure[M].Harbin:Harbin Engineering University Press,2002.

    [11]Shu Xinling,Zhou Dai.AR model of wind speed time series and its rapid implementation[J].Spatial Structures,2003,9(4):27-32.

    [12]Owen J S,Eccles B J,Choo B S,et al.The application of auto-regressive time series modelling for the time-frequency analysis of civil engineering structures[J].Engineering Structures,2001,23(5):521-536.

    亚洲一卡2卡3卡4卡5卡精品中文| 777久久人妻少妇嫩草av网站| 91成人精品电影| 夫妻午夜视频| 国产亚洲精品一区二区www | 美女午夜性视频免费| 老司机亚洲免费影院| 天堂8中文在线网| 老司机午夜十八禁免费视频| 一区在线观看完整版| 97在线人人人人妻| 国产亚洲一区二区精品| 欧美精品啪啪一区二区三区| 亚洲欧美一区二区三区久久| 久久精品国产亚洲av香蕉五月 | 欧美性长视频在线观看| 搡老乐熟女国产| av片东京热男人的天堂| 久久精品91无色码中文字幕| 亚洲精品自拍成人| 亚洲性夜色夜夜综合| 国产不卡av网站在线观看| 国产日韩欧美在线精品| 亚洲国产毛片av蜜桃av| 女人高潮潮喷娇喘18禁视频| 新久久久久国产一级毛片| 中文亚洲av片在线观看爽 | 色播在线永久视频| 丝袜美足系列| 亚洲午夜精品一区,二区,三区| 国产精品一区二区精品视频观看| 在线观看舔阴道视频| 色播在线永久视频| 真人做人爱边吃奶动态| 夜夜骑夜夜射夜夜干| 一本综合久久免费| 亚洲欧美日韩高清在线视频 | 在线观看人妻少妇| 日韩大码丰满熟妇| www.自偷自拍.com| 女同久久另类99精品国产91| 一级黄色大片毛片| 欧美国产精品一级二级三级| 操出白浆在线播放| 国产福利在线免费观看视频| 欧美日韩中文字幕国产精品一区二区三区 | 国产又爽黄色视频| 欧美在线黄色| 日韩成人在线观看一区二区三区| 亚洲美女黄片视频| 91字幕亚洲| 午夜两性在线视频| 日韩三级视频一区二区三区| 999久久久精品免费观看国产| 黄色成人免费大全| 50天的宝宝边吃奶边哭怎么回事| 超色免费av| 人人澡人人妻人| 黑人猛操日本美女一级片| 777米奇影视久久| 免费看十八禁软件| 人妻一区二区av| 亚洲国产欧美日韩在线播放| 欧美成人午夜精品| 欧美日韩精品网址| 精品少妇一区二区三区视频日本电影| 黄色毛片三级朝国网站| 成人国语在线视频| 国产成人免费观看mmmm| 成人18禁在线播放| av网站在线播放免费| 亚洲色图 男人天堂 中文字幕| 成年人黄色毛片网站| 欧美日韩福利视频一区二区| 国产成人av教育| 欧美一级毛片孕妇| 亚洲avbb在线观看| 99热网站在线观看| 男人操女人黄网站| 精品久久久久久电影网| 国产欧美日韩综合在线一区二区| 久久99一区二区三区| 国产色视频综合| 极品教师在线免费播放| 亚洲精品一二三| 国产日韩欧美在线精品| 啦啦啦免费观看视频1| 日韩 欧美 亚洲 中文字幕| 女同久久另类99精品国产91| 一区二区三区激情视频| 久久久精品区二区三区| 午夜免费成人在线视频| 亚洲午夜理论影院| 免费女性裸体啪啪无遮挡网站| 国产日韩欧美在线精品| 成人三级做爰电影| 国产在线一区二区三区精| 在线播放国产精品三级| avwww免费| 啦啦啦视频在线资源免费观看| 欧美精品一区二区大全| 国产人伦9x9x在线观看| 十八禁网站网址无遮挡| www日本在线高清视频| 精品免费久久久久久久清纯 | 黄色毛片三级朝国网站| 久久中文字幕人妻熟女| 精品福利观看| 一级毛片电影观看| 女人久久www免费人成看片| tube8黄色片| 在线十欧美十亚洲十日本专区| 欧美日韩国产mv在线观看视频| 亚洲专区国产一区二区| 动漫黄色视频在线观看| 午夜91福利影院| 亚洲国产av影院在线观看| 国产精品香港三级国产av潘金莲| 欧美性长视频在线观看| 欧美另类亚洲清纯唯美| 桃红色精品国产亚洲av| 国产成人精品在线电影| 欧美av亚洲av综合av国产av| 色视频在线一区二区三区| 精品人妻熟女毛片av久久网站| 精品一区二区三区四区五区乱码| 精品国产乱码久久久久久男人| 99国产极品粉嫩在线观看| 欧美国产精品一级二级三级| 国产一区二区三区综合在线观看| 亚洲精品在线美女| 亚洲精品av麻豆狂野| 久久久久久久久久久久大奶| 天天躁夜夜躁狠狠躁躁| 丝袜美足系列| 色综合欧美亚洲国产小说| 一边摸一边抽搐一进一小说 | 超色免费av| 蜜桃在线观看..| 欧美人与性动交α欧美软件| 人人妻人人澡人人看| 天堂动漫精品| 国产aⅴ精品一区二区三区波| 久久久久视频综合| 熟女少妇亚洲综合色aaa.| 在线观看免费视频日本深夜| 亚洲中文日韩欧美视频| 国产精品久久久久成人av| 一本大道久久a久久精品| 亚洲成人免费电影在线观看| 国产在线一区二区三区精| 国产精品久久久久久精品古装| 欧美黄色淫秽网站| 丰满迷人的少妇在线观看| 激情在线观看视频在线高清 | 欧美日韩福利视频一区二区| 日韩中文字幕视频在线看片| av网站在线播放免费| 日日夜夜操网爽| 亚洲自偷自拍图片 自拍| 午夜福利影视在线免费观看| 99九九在线精品视频| 亚洲五月色婷婷综合| 午夜激情av网站| 欧美精品高潮呻吟av久久| 99re6热这里在线精品视频| 久久久水蜜桃国产精品网| 亚洲久久久国产精品| a级毛片在线看网站| 日本vs欧美在线观看视频| 一区在线观看完整版| 99精品久久久久人妻精品| 久久久国产成人免费| 精品人妻熟女毛片av久久网站| 一本色道久久久久久精品综合| 亚洲av国产av综合av卡| 男女高潮啪啪啪动态图| 一区在线观看完整版| 国产精品av久久久久免费| 汤姆久久久久久久影院中文字幕| 嫁个100分男人电影在线观看| 操出白浆在线播放| 人妻久久中文字幕网| 色综合欧美亚洲国产小说| 国产99久久九九免费精品| 亚洲av片天天在线观看| 色尼玛亚洲综合影院| 国产无遮挡羞羞视频在线观看| 国产高清videossex| e午夜精品久久久久久久| 免费观看a级毛片全部| 狠狠狠狠99中文字幕| 亚洲少妇的诱惑av| 老司机深夜福利视频在线观看| 欧美亚洲 丝袜 人妻 在线| 满18在线观看网站| 成年人免费黄色播放视频| 新久久久久国产一级毛片| 久久婷婷成人综合色麻豆| 成人永久免费在线观看视频 | 亚洲av片天天在线观看| 91老司机精品| 精品国产一区二区久久| 波多野结衣一区麻豆| 两性夫妻黄色片| 国产高清激情床上av| 亚洲精品美女久久久久99蜜臀| 少妇裸体淫交视频免费看高清 | 欧美日韩视频精品一区| 熟女少妇亚洲综合色aaa.| 天天躁日日躁夜夜躁夜夜| 不卡一级毛片| 国产精品麻豆人妻色哟哟久久| 亚洲成人国产一区在线观看| 欧美黑人欧美精品刺激| 一级,二级,三级黄色视频| 狂野欧美激情性xxxx| 大片电影免费在线观看免费| 天天躁狠狠躁夜夜躁狠狠躁| 999精品在线视频| a级毛片黄视频| 午夜91福利影院| 91麻豆av在线| 又大又爽又粗| 国产三级黄色录像| 国产又爽黄色视频| 久久久久久久大尺度免费视频| av电影中文网址| 久久久久精品国产欧美久久久| 精品国产乱码久久久久久小说| 亚洲一码二码三码区别大吗| 美女高潮喷水抽搐中文字幕| 十八禁网站免费在线| 18禁国产床啪视频网站| 亚洲成人手机| 高清欧美精品videossex| 日日爽夜夜爽网站| 一二三四社区在线视频社区8| 考比视频在线观看| 精品亚洲成a人片在线观看| 国产欧美日韩一区二区三区在线| 黄色成人免费大全| 国产精品电影一区二区三区 | 涩涩av久久男人的天堂| 制服诱惑二区| 蜜桃在线观看..| 国产精品九九99| 久久久久久久精品吃奶| 成年人免费黄色播放视频| 国内毛片毛片毛片毛片毛片| 男女下面插进去视频免费观看| 满18在线观看网站| 亚洲人成伊人成综合网2020| 精品久久蜜臀av无| 日本av手机在线免费观看| 黑人操中国人逼视频| 在线观看免费高清a一片| 成人永久免费在线观看视频 | 日韩视频在线欧美| 国产欧美日韩精品亚洲av| 91成年电影在线观看| 男女边摸边吃奶| 午夜老司机福利片| 日本wwww免费看| 在线av久久热| 久久 成人 亚洲| 中文字幕色久视频| 2018国产大陆天天弄谢| 久久久精品国产亚洲av高清涩受| 精品熟女少妇八av免费久了| 国产精品成人在线| 国产欧美日韩一区二区精品| 欧美日韩成人在线一区二区| 十八禁人妻一区二区| 欧美一级毛片孕妇| 国产97色在线日韩免费| 看免费av毛片| 国产人伦9x9x在线观看| 午夜日韩欧美国产| 国产精品98久久久久久宅男小说| 日韩欧美国产一区二区入口| 欧美日本中文国产一区发布| 国产av精品麻豆| 男女免费视频国产| 黄频高清免费视频| 国产黄频视频在线观看| 99久久国产精品久久久| 欧美久久黑人一区二区| 久久香蕉激情| 日韩视频一区二区在线观看| 午夜福利乱码中文字幕| 亚洲av美国av| 岛国毛片在线播放| 18禁美女被吸乳视频| 一个人免费在线观看的高清视频| 欧美午夜高清在线| 99精国产麻豆久久婷婷| 亚洲成a人片在线一区二区| 中文字幕另类日韩欧美亚洲嫩草| 亚洲国产毛片av蜜桃av| 在线观看人妻少妇| 啦啦啦免费观看视频1| 久久99热这里只频精品6学生| 午夜福利视频精品| av免费在线观看网站| 新久久久久国产一级毛片| 十八禁网站网址无遮挡| 18在线观看网站| 国产区一区二久久| 国产精品 欧美亚洲| 在线观看舔阴道视频| 激情在线观看视频在线高清 | 久久久国产一区二区| 国产在线精品亚洲第一网站| 亚洲av成人一区二区三| av一本久久久久| 在线 av 中文字幕| 亚洲 国产 在线| av欧美777| 久久精品人人爽人人爽视色| 久久99一区二区三区| 欧美乱妇无乱码| 一本—道久久a久久精品蜜桃钙片| 淫妇啪啪啪对白视频| 一本大道久久a久久精品| 久久婷婷成人综合色麻豆| 极品少妇高潮喷水抽搐| 黄色视频不卡| 久久精品91无色码中文字幕| 亚洲人成伊人成综合网2020| 日韩中文字幕视频在线看片| 精品高清国产在线一区| 国产精品一区二区精品视频观看| 成年女人毛片免费观看观看9 | 啦啦啦免费观看视频1| 咕卡用的链子| 老司机深夜福利视频在线观看| 不卡一级毛片| 一进一出好大好爽视频| 中文字幕人妻丝袜制服| 久久久国产精品麻豆| 无人区码免费观看不卡 | 亚洲色图综合在线观看| a级毛片黄视频| 男女午夜视频在线观看| 精品人妻熟女毛片av久久网站| 免费女性裸体啪啪无遮挡网站| 一区在线观看完整版| 国产高清videossex| 99国产精品一区二区三区| 日韩制服丝袜自拍偷拍| 中文字幕人妻丝袜一区二区| 成人亚洲精品一区在线观看| 亚洲九九香蕉| 日本a在线网址| 日韩欧美三级三区| 亚洲国产欧美日韩在线播放| 日韩免费高清中文字幕av| 国产成人精品久久二区二区免费| 两个人看的免费小视频| 黑人猛操日本美女一级片| 久久久久久亚洲精品国产蜜桃av| 91大片在线观看| 国产精品自产拍在线观看55亚洲 | 国产色视频综合| 精品欧美一区二区三区在线| 日日爽夜夜爽网站| 亚洲自偷自拍图片 自拍| 久久中文看片网| 五月开心婷婷网| 国产精品成人在线| 国产高清国产精品国产三级| 欧美日韩av久久| 亚洲欧美色中文字幕在线| 成人亚洲精品一区在线观看| 国产精品美女特级片免费视频播放器 | 久久久久精品人妻al黑| 99香蕉大伊视频| 亚洲成人手机| 亚洲一区中文字幕在线| 丰满人妻熟妇乱又伦精品不卡| av电影中文网址| 久久精品aⅴ一区二区三区四区| 久久热在线av| 中文字幕av电影在线播放| 嫩草影视91久久| 欧美日本中文国产一区发布| 午夜福利在线免费观看网站| 69精品国产乱码久久久| av天堂久久9| 国产一区二区三区视频了| 人妻一区二区av| 男女边摸边吃奶| 欧美日韩亚洲国产一区二区在线观看 | 九色亚洲精品在线播放| 久久av网站| bbb黄色大片| 精品高清国产在线一区| 久久婷婷成人综合色麻豆| 老汉色av国产亚洲站长工具| 国产成人影院久久av| 一级片'在线观看视频| 在线观看舔阴道视频| 在线观看人妻少妇| 免费观看av网站的网址| 制服诱惑二区| 国产精品一区二区免费欧美| 精品国产超薄肉色丝袜足j| 国产精品二区激情视频| 超色免费av| 91大片在线观看| 激情视频va一区二区三区| 精品乱码久久久久久99久播| 成年人黄色毛片网站| 色视频在线一区二区三区| 美女视频免费永久观看网站| 国产亚洲欧美在线一区二区| 狂野欧美激情性xxxx| netflix在线观看网站| 人人澡人人妻人| 免费在线观看影片大全网站| 亚洲性夜色夜夜综合| 一二三四社区在线视频社区8| 亚洲成av片中文字幕在线观看| 国产国语露脸激情在线看| 搡老熟女国产l中国老女人| 丰满饥渴人妻一区二区三| 亚洲,欧美精品.| 电影成人av| 2018国产大陆天天弄谢| 女性被躁到高潮视频| 午夜免费成人在线视频| 老司机影院毛片| 亚洲人成伊人成综合网2020| 中文字幕高清在线视频| 日韩免费av在线播放| 国产麻豆69| 丰满迷人的少妇在线观看| 久久婷婷成人综合色麻豆| 成人亚洲精品一区在线观看| 精品一区二区三区四区五区乱码| av电影中文网址| 午夜福利乱码中文字幕| 久久久久国内视频| 我的亚洲天堂| 久久久久久久国产电影| 色94色欧美一区二区| 日本撒尿小便嘘嘘汇集6| 久久精品亚洲精品国产色婷小说| 亚洲精品久久成人aⅴ小说| 久久午夜亚洲精品久久| 欧美精品av麻豆av| 不卡av一区二区三区| 亚洲精品中文字幕在线视频| 久久99热这里只频精品6学生| 久久国产精品人妻蜜桃| 麻豆乱淫一区二区| 亚洲成人国产一区在线观看| 99精品久久久久人妻精品| 美女国产高潮福利片在线看| 国产免费av片在线观看野外av| 亚洲av第一区精品v没综合| 免费久久久久久久精品成人欧美视频| 国产熟女午夜一区二区三区| 亚洲国产中文字幕在线视频| 亚洲欧美精品综合一区二区三区| 久久av网站| 夜夜夜夜夜久久久久| 悠悠久久av| 大陆偷拍与自拍| 中文字幕色久视频| 亚洲欧美日韩另类电影网站| 国产伦理片在线播放av一区| 视频区图区小说| 丰满少妇做爰视频| 色在线成人网| 成人亚洲精品一区在线观看| 成人国语在线视频| 手机成人av网站| 亚洲精品一二三| 亚洲人成电影免费在线| 精品卡一卡二卡四卡免费| 国产伦理片在线播放av一区| 老司机午夜福利在线观看视频 | 亚洲精品中文字幕在线视频| 国产伦人伦偷精品视频| 亚洲情色 制服丝袜| 丝袜喷水一区| 一区二区三区精品91| 久久精品亚洲精品国产色婷小说| 另类亚洲欧美激情| 亚洲伊人久久精品综合| 建设人人有责人人尽责人人享有的| 90打野战视频偷拍视频| 一级毛片电影观看| 久久精品国产a三级三级三级| 亚洲精品自拍成人| 国产精品98久久久久久宅男小说| 男女下面插进去视频免费观看| 男女下面插进去视频免费观看| 国产精品电影一区二区三区 | 91字幕亚洲| 欧美日韩视频精品一区| 一级黄色大片毛片| 国产伦人伦偷精品视频| 女人爽到高潮嗷嗷叫在线视频| 俄罗斯特黄特色一大片| 久久热在线av| 国产欧美日韩一区二区三区在线| 国产欧美日韩一区二区精品| 欧美成人午夜精品| 纵有疾风起免费观看全集完整版| 激情在线观看视频在线高清 | 欧美日韩福利视频一区二区| 又黄又粗又硬又大视频| 亚洲男人天堂网一区| 伦理电影免费视频| 国产不卡av网站在线观看| 欧美精品av麻豆av| 国产男女内射视频| 搡老岳熟女国产| 2018国产大陆天天弄谢| av在线播放免费不卡| av片东京热男人的天堂| 丝袜在线中文字幕| 亚洲一卡2卡3卡4卡5卡精品中文| 999精品在线视频| 午夜精品久久久久久毛片777| 丝袜在线中文字幕| 精品熟女少妇八av免费久了| 999久久久国产精品视频| bbb黄色大片| 国产精品久久久久久精品电影小说| videosex国产| 亚洲中文日韩欧美视频| 久久av网站| 丁香六月欧美| cao死你这个sao货| 久久久精品区二区三区| 18禁裸乳无遮挡动漫免费视频| av线在线观看网站| www.精华液| 成人免费观看视频高清| 欧美精品亚洲一区二区| 国产成人一区二区三区免费视频网站| 国产亚洲精品第一综合不卡| 丰满迷人的少妇在线观看| 丝袜美腿诱惑在线| 国产精品一区二区精品视频观看| 99久久国产精品久久久| av视频免费观看在线观看| 丁香六月欧美| 最近最新免费中文字幕在线| 久久精品国产a三级三级三级| 高清在线国产一区| 成在线人永久免费视频| 激情在线观看视频在线高清 | 亚洲色图综合在线观看| 国产成人精品久久二区二区91| 女人被躁到高潮嗷嗷叫费观| 久久久久久亚洲精品国产蜜桃av| 深夜精品福利| 色婷婷久久久亚洲欧美| 欧美成狂野欧美在线观看| 亚洲美女黄片视频| 人人妻人人添人人爽欧美一区卜| 男女免费视频国产| 三上悠亚av全集在线观看| 午夜激情久久久久久久| 亚洲精品美女久久av网站| 亚洲一区中文字幕在线| 国产精品美女特级片免费视频播放器 | 亚洲av日韩在线播放| 国产高清视频在线播放一区| 法律面前人人平等表现在哪些方面| 国产免费现黄频在线看| 一边摸一边做爽爽视频免费| 免费不卡黄色视频| 男女床上黄色一级片免费看| 在线 av 中文字幕| 人人妻人人澡人人看| 亚洲视频免费观看视频| 成人永久免费在线观看视频 | 久久久久久免费高清国产稀缺| av又黄又爽大尺度在线免费看| 啦啦啦 在线观看视频| 在线十欧美十亚洲十日本专区| 亚洲人成电影免费在线| 日韩欧美一区二区三区在线观看 | 亚洲精品一卡2卡三卡4卡5卡| 老司机午夜十八禁免费视频| 欧美黄色片欧美黄色片| 午夜日韩欧美国产| 日本a在线网址| 亚洲专区中文字幕在线| 国产人伦9x9x在线观看| 免费观看av网站的网址| 久久久久久人人人人人| www.熟女人妻精品国产| 老司机影院毛片| 亚洲三区欧美一区| 婷婷丁香在线五月| 国产精品麻豆人妻色哟哟久久| 国产精品电影一区二区三区 | 欧美精品av麻豆av| 国产亚洲精品久久久久5区| 亚洲欧美精品综合一区二区三区| 成年人黄色毛片网站| 久久精品国产a三级三级三级| 久久久久国产一级毛片高清牌| 男女无遮挡免费网站观看| 丰满迷人的少妇在线观看| 美女高潮到喷水免费观看| 欧美国产精品va在线观看不卡| 母亲3免费完整高清在线观看|