• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of nitrogen gas flow and growth temperature on extension of GaN layer on Si*

    2021-11-23 07:31:56JianKaiXu徐健凱LiJuanJiang姜麗娟QianWang王茜QuanWang王權(quán)HongLingXiao肖紅領(lǐng)ChunFeng馮春WeiLi李巍andXiaoLiangWang王曉亮
    Chinese Physics B 2021年11期
    關(guān)鍵詞:李巍王茜王權(quán)

    Jian-Kai Xu(徐健凱) Li-Juan Jiang(姜麗娟) Qian Wang(王茜) Quan Wang(王權(quán))Hong-Ling Xiao(肖紅領(lǐng)) Chun Feng(馮春) Wei Li(李巍) and Xiao-Liang Wang(王曉亮)

    1Key Laboratory of Semiconductor Materials Science,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China

    2Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China

    3School of Microelectronics,University of Chinese Academy of Sciences,Beijing 100049,China

    4Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices,Beijing 100083,China

    5The State Key Laboratory of Crystal Materials,Shandong University,Jinan 250100,China

    6Institute of Novel Semiconductors,Shandong University,Jinan 250100,China

    Keywords: GaN extension,MOCVD,nitrogen flow,growth temperature

    1. Introduction

    GaN is an attractive material for application as highfrequency, high-power electronic devices, light-emitting diodes,and lasers,due to its wide band gap,high critical electric field strength, high electron saturation velocity, and high thermal stability.[1-6]Up to now,GaN compound semiconductor materials have received extensive attention.[7-14]Numerous studies have been conducted to determine the suitability of materials as substrates for GaN, such as GaN, SiC, sapphire,and Si.[15-21]Due to its cost-effectiveness,larger wafer diameter,higher thermal conductivity relative to sapphire,and the ability to integrate with mature Si-based processing technologies, Si is one of the best choices for substrates. However, the large lattice constant mismatch (?16.9%) and thermal expansion coefficient mismatch(56%)between GaN and Si substrate lead to high defect density and cracks.[22,23]Many groups have attempted to grow flat and crack-free GaN films in the past few decades with several methods, including the pre-deposition of Al on the Si surface, introduction of high temperature AlN(HT-AlN)buffer layers and adoption of stepgraded AlxGa1?xN interlayers. The pre-deposition of Al can effectively suppress the unnecessary formation of SiNx.[24]Introducing HT-AlN buffer layers compensates tensile stress in GaN and adopting step-graded AlxGa1?xN interlayers helps achieve a gradual change of lattice constants and thermal expansion coefficient from AlN to GaN.[17,25]

    The quest for cost reduction promoted the continuous increase in the size of Si substrates for GaN epitaxial growth,while uniformity of the crystal quality of the large size Si wafer has also come out. There are few reports about the uniformity of the crystal quality of the GaN epitaxial layer on the Si substrate.In 2014,Pinoset al.[26]reported the coefficient of variation of the 9.1%GaN(0002)XRD rocking curve FWHM on a 6-inch Si substrate. In 2017,Jiet al.[27]reported a 2.4%coefficient of variation of epitaxial wafers of the same size. In this paper,we realize 6-inch Si substrate high quality flat and crack-free GaN epitaxial growth by MOCVD through increasing the nitrogen flow and increasing the growth temperature of HT-AlN and AlGaN buffer layers near the primary flat of the wafer. The GaN layer has extended more adequately on the Si substrate.

    2. Experiments

    In this study, the samples were grown on 6-in(1 in=2.54 cm) Si (111) substrates by our group’s selfmade metal-organic chemical vapor deposition (MOCVD).Trimethylgallium (TMGa), trimethylaluminum (TMAl), and ammonia were used as the precursors for Ga, Al, and N,respectively. The initial 1-mm-thick Si (111) substrate was heated to 1050°C in the hydrogen atmosphere and annealed for about 5 min. The Al predeposition was firstly carried out on the Si surface for 15 s to avoid the formation of amorphous SiNx. The buffer layers consisted of a 150-nm HT-AlN buffer layer and three step-graded AlxGa1?xN intermediate layers withx=0.75, 0.5, and 0.25. The growth conditions for AlN and AlGaN buffer layer are above 1000°C at a pressure of 75 Torr(1 Torr=1.33322×102Pa). The outlet of the nitrogen flow gas is located in the center of the MOCVD gas/particle screening flange. The role of the nitrogen gas is to push various gases to the edge of the rotating wafer carrier. In the process of growing AlN and AlGaN layers,we adjusted different nitrogen flow rates for five samples named A-E(A:150 sccm,B: 200 sccm, C: 250 sccm, D: 350 sccm, E: 500 sccm). In samples F-I, in order to further relieve the tensile stress, an LT-AlN layer was grown between Al pre-deposition and HTAlN layer.[28-31]The growth temperature in HT-AlN and Al-GaN layers growing process near the primary flat of the wafers were changed from 1025°C to 1065°C for samples F-I.The detailed description of all the samples are listed in Table 1.The thicknesses of AlxGa1?xN layers were monitored byinsituinterferometer to be about 200 nm, 250 nm, and 300 nm for samples and then about 2-μm-thick GaN was overgrown on these buffers. The thickness of the layers was verified by Hitachi S-4800 scanning electron microscope(SEM).The crystalline quality of AlN and GaN layers were measured using PANalytical X’Pert PRO MRD(Malvern Panalytical,Almelo,The Netherlands). Olympus BX51M optical microscopy was used to characterize GaN surface morphologies.

    Table 1. Detailed description of the nine samples.

    3. Results and discussion

    The deposition of all samples was monitored byin-situinterferometer,and the wavelength of the light source used for the reflectometry was 900 nm. Figure 2(a) shows the typical trace of thein-situoptical reflectivity during MOCVD growth.The growth stages corresponding to Fig.2(a)are(i)HT-AlN,(ii)AlGaN-1 layer,(iii)AlGaN-2,(iv)AlGaN-3,and(v)GaN layers. The stage between(iv)and(v)is a conversion process from AlGaN growth to GaN growth. Figure 2(b) is a crosssectional view of the epitaxial structure measured by SEM,and it is clear that the thickness of each layer is quite close to the designed epitaxial structure of Fig.1. Additionally,during the epitaxial process,the substrate revolves around the center of the rotating wafer carrier at high speed with the primary flat of the substrate perpendicular to the radial direction of the rotating wafer carrier. Therefore, we selected 5 locations including the center point in the direction perpendicular to the primary flat on the wafer which is shown in Fig.3.

    Fig.1. Schematic structure of the samples grown.

    Fig. 2. (a) Typical traces of in-situ optical reflectivity at different growth stages, which are separated by dot lines: (i) AlN buffer, (ii)-(iv)AlGaN buffer,and(v)GaN epilayer. (b)Cross-sectional SEM images of the epilayers.

    Fig.3. Locations on top of the samples.

    Firstly,we studied the influence of different nitrogen gas flow rates on the extension of GaN on Si substrate. Figure 4 displays images of sample A to sample E after growth. It can be seen that each sample has two distinct areas, a bright area and a dark area. At the same time,with the increase of nitrogen flow rate,the bright areas increased significantly,while the dark area decreased.Further,figure 5 shows that the surface of the epitaxial wafer is observed through an optical microscope,and it is found that the surface of the bright area has no cracks,but the surface of the dark area is very rough. By increasing the nitrogen flow rate,the crack-free area on the surface of the epitaxial wafer gradually enlarged,and the rough area reduced to close to the primary flat. This indicates that increasing the nitrogen flow rate can effectively improve the extension of the epitaxial layers.

    Fig.4. The images of sample A(a),sample B(b),sample C(c),sample D(d),and sample E(e).

    Fig.5. Optical microscopy views of(a)surface without cracks(bright area of the wafer in Fig.4)and(b)rough surface(dark area of the wafer in Fig.4).

    It was proposed that adatom diffusion was considered to be responsible for the material quality and surface morphology.[32]During the growth of the epitaxial layers,nitrogen gas accelerates the precursor along the surface of the wafers and its pump out from the gas outlet near the edge of the rotating wafer carrier. As N2participates in the mixing of the reaction gases,the concentration of the reactants decreases,which reduces the speed of epitaxial growth. Increasing nitrogen gas flow may leads to the lower growth rate. Throughin-situinterferometer,we can get the total growth time of the AlN layer and three AlGaN layers on Si substrate under different nitrogen flow rate conditions,which is shown in Fig.6.Consistent with the above discussion,under the same epitaxial thickness,as the nitrogen flow rate increases,the total growth time of the AlN layer and the three AlGaN layers gradually increases. The lower growth rate allows more time to diffuse on the surface of the epitaxial layers, which was considered to be responsible for the material quality and surface morphology.[30]Flat and high quality AlN and AlGaN buffer layers can be the precondition of GaN growth.

    Fig. 6. Total growth time of AlN and three AlGaN layers on location(0,?40)of all samples with different nitrogen flow rates.

    Fig.7. XRD ω-2θ scan plots of GaN(0002)to AlN(0002)reflection of sample A(a)and sample E(b).

    Figures 7(a) and 7(b) show the XRDω-2θscan results of the epitaxial layer at different positions on sample A (nitrogen flow rate of 150 sccm) and sample E (nitrogen flow rate of 500 sccm), respectively. The diffraction peaks correspond to GaN,AlGaN-3,AlGaN-2,AlGaN-1,and AlN in the order from left to right. And the black, red, blue, pink, and green curves correspond to the x-rays diffraction results at the positions (0, 40), (0, 20), (0, 0), (0,?20), (0,?40) on the epitaxial wafer, respectively. When the nitrogen flow rate is 150 sccm, as shown in Fig. 7(a), the closer the test point to the primary flat, the weaker the diffraction peak intensity of the HT-AlN layer and the three AlGaN layers, especially the position (0,?40). At the same time, the diffraction peaks of each layer at the test point near the primary flat are not as sharp as the location far from the primary flat. It indicates that, in the wafer, the crystal quality distribution of the epitaxial layer is uneven along the direction perpendicular to the primary flat. When the flow rate increased to 500 sccm, the crystal quality distribution of the epitaxial layer is more uniform along the direction perpendicular to the primary flat,and the diffraction peaks are sharper for the HT-AlN and three Al-GaN layers at each position of the wafer, as can be seen in Fig. 7(b). Therefore, a higher nitrogen flow rate is beneficial to improve the uniformity of the epitaxial layer crystal quality on the Si substrate, which is consistent with the results of optical microscopy.

    Fig.8. XRD ω-2θ scan plots of GaN(0002)to AlN(0002)reflection of all samples on location(0,40)(a)and location(0,?40)(b).

    Further, the effect of nitrogen flow rate on the material quality at different positions on the epitaxial wafer is also studied. Figures 8(a) and 8(b) displays the XRDω-2θscan results on the wafer at locations far away from the primary flat (0, 40) with that near the primary flat (0,?40), respectively. The diffraction peaks correspond to GaN, AlGaN-3,AlGaN-2,AlGaN-1,and AlN in order from left to right. The black, red, blue, pink, and green curve correspond to the xray diffraction results under the nitrogen flow conditions of 150 sccm, 200 sccm, 250 sccm, 350 sccm, and 500 sccm,respectively. With the increase of nitrogen purge flow rate(150 sccm→500 sccm),the diffraction peak intensities of each epitaxial layer does not change significantly at the position(0,40) which is far away from the primary flat. However, at the position(0,?40)near the primary flat,the diffraction peak intensities of the HT-AlN layer and the three AlGaN layers are increased with the increase of the nitrogen flow.This indicates that increasing the nitrogen flow rate can significantly improve the material quality near the primary flat on the epitaxial wafer,and thus a more uniform material.

    In order to more intuitively characterize the effect of different nitrogen flow rate on the crystal quality of the epitaxial layers on the Si substrate, we performed an XRDωrocking scan at different positions on the samples A-E. As shown in Fig. 9(a), as the nitrogen purge flow rate increases, for samples A-E,the(0002)FWHM value of the AlN epitaxial layer is more consistent in the direction perpendicular to the primary flat,indicating a more uniform AlN crystal quality. And the significant improvement of the AlN crystal quality located close to the primary flat may account for it. The high crystal quality uniformity of AlN epitaxial layer is an important foundation for GaN epitaxial growth. From Fig.9(b),with the increase of nitrogen purge flow rate,for samples A-E,the(0002)FWHM value of the GaN epitaxial layer near the primary flat exhibits a considerable decrease. The crystal quality uniformity of the GaN epitaxial layer in the direction perpendicular to the primary flat has been improved,which is consistent with AlN epitaxial layer.

    Fig.9. (a)AlN(0002)and(b) GaN(0002)XRD FWHMs of samples A-E of different locations on the surface.

    In order to further improve the extension of the GaN layer,growth temperature of HT-AlN and AlGaN layers near the primary flat of the wafers were changed from 1025°C to 1065°C for samples F-I.Figure 10 shows the images of samples F-I.By increasing the local growth temperature of AlN and Al-GaN buffer layers near the primary flat,the crack-free area on the surface of the epitaxial wafer gradually enlarged, and the rough area reduced significantly,which is shown in Fig.10(i).For samples F-I,the sizes of the crack-free area are 129.1 cm2,146.3 cm2,159.1 cm2,and 168.6 cm2,respectively.Therefore,increasing the growth temperature can effectively improve the extension of the epitaxial layers.

    Fig.10. The images of sample F(f),sample G(g),sample H(h),sample I(i).

    It was proposed that with the increase of the temperature,the AlN nucleation probability increases,and the grain size decrease rapidly,so there is a more uniform and flat AlN buffer layer surface,as well as improved quality of AlN crystals.[33]XRDωrocking scan at different positions on the samples F-I has been measured and the result was shown in Fig. 11.With the increasing of the growth temperature near the primary flat of the wafers, as shown in Fig. 11(a), the (0002)FWHM value of the AlN epitaxial layer has been decreased.The (0002) FWHM value of the GaN has further decreased which is shown in Fig. 11(b). The variation of the (0002)FWHM value of the GaN has dropped to 2.3%. We can conclude that the crystal quality near the primary flat has been notably improved. Therefore,the crystal quality uniformity of the epitaxial layer in the direction perpendicular to the primary flat has been improved by indeed increasing the local growth temperature.

    Fig.11. (a)AlN(0002)and(b)GaN(0002)XRD FWHMs of samples A-E of different locations on the surface.

    4. Conclusion

    In this research,we adjusted the nitrogen flow rate and the local growth temperature near the primary flat of the wafers to study the influence on extension of GaN epitaxial layers on Si substrates. By increasing the nitrogen flow rate and the local growth temperature near the primary flat of the wafers,we have found that the crack-free area on the surface of the epitaxial wafer gradually enlarged,and the rough area reduced to close to the primary flat and at the same time,the crystal quality uniformity has been improved. This research provides an effective method for extension of GaN epitaxial layer growth on Si substrates.

    猜你喜歡
    李巍王茜王權(quán)
    王茜作品
    Dynamic development model for long gap discharge streamer-leader system based on fractal theory
    吐蕃王權(quán)研究海外學(xué)術(shù)史鉤沉①
    淺析赫梯國王維護(hù)王權(quán)統(tǒng)治的監(jiān)管措施
    王茜作品賞析
    程彥鵬、王茜、劉文作品
    如果歷史是一群喵
    老公“長大”了
    老公“長大”了
    愛你(2018年22期)2018-08-17 03:06:00
    同步衛(wèi)星相關(guān)問題釋疑
    国产老妇伦熟女老妇高清| 日本免费在线观看一区| 国产有黄有色有爽视频| 日日撸夜夜添| 一本久久精品| 国产精品蜜桃在线观看| 高清视频免费观看一区二区 | 在线观看一区二区三区| 激情五月婷婷亚洲| 老司机影院成人| 亚洲图色成人| 亚洲最大成人中文| 国产精品综合久久久久久久免费| 最新中文字幕久久久久| 国精品久久久久久国模美| 久久久久性生活片| a级一级毛片免费在线观看| 亚洲第一区二区三区不卡| eeuss影院久久| 国产亚洲午夜精品一区二区久久 | 亚洲国产欧美在线一区| 日本黄大片高清| 久久久亚洲精品成人影院| 亚洲av成人精品一二三区| 男女边吃奶边做爰视频| 日韩成人av中文字幕在线观看| 一边亲一边摸免费视频| 亚洲国产欧美在线一区| 肉色欧美久久久久久久蜜桃 | 国产黄色视频一区二区在线观看| 噜噜噜噜噜久久久久久91| 成人国产麻豆网| 只有这里有精品99| 永久免费av网站大全| 国产成人精品久久久久久| 深夜a级毛片| 搡老乐熟女国产| 亚洲欧美中文字幕日韩二区| 成人美女网站在线观看视频| 人妻夜夜爽99麻豆av| 少妇人妻一区二区三区视频| 日本猛色少妇xxxxx猛交久久| 国产高清国产精品国产三级 | 精品99又大又爽又粗少妇毛片| a级一级毛片免费在线观看| 久久久久久久久久成人| 欧美日韩精品成人综合77777| 日韩欧美三级三区| 亚洲国产欧美人成| 69av精品久久久久久| 男人爽女人下面视频在线观看| 女人被狂操c到高潮| 淫秽高清视频在线观看| 国产高潮美女av| 亚洲人与动物交配视频| 亚洲欧洲国产日韩| 看免费成人av毛片| 精品久久久久久久人妻蜜臀av| 午夜精品国产一区二区电影 | 国产一区亚洲一区在线观看| 亚州av有码| 99热网站在线观看| 好男人在线观看高清免费视频| 2021少妇久久久久久久久久久| 亚洲国产av新网站| 成人无遮挡网站| 女人被狂操c到高潮| 久久久a久久爽久久v久久| 久久亚洲国产成人精品v| 夜夜看夜夜爽夜夜摸| 人人妻人人澡人人爽人人夜夜 | 日韩伦理黄色片| 日韩三级伦理在线观看| 亚洲欧美日韩卡通动漫| 久热久热在线精品观看| 国产亚洲精品av在线| 成人一区二区视频在线观看| 国内精品一区二区在线观看| 永久免费av网站大全| 有码 亚洲区| 午夜福利视频精品| 麻豆av噜噜一区二区三区| 精品久久久久久久久久久久久| 又黄又爽又刺激的免费视频.| 成人午夜精彩视频在线观看| 欧美变态另类bdsm刘玥| 91av网一区二区| 免费av毛片视频| 搡老乐熟女国产| 亚洲精品日本国产第一区| 国产在线一区二区三区精| 三级男女做爰猛烈吃奶摸视频| 午夜福利网站1000一区二区三区| 亚洲美女视频黄频| 有码 亚洲区| 国产麻豆成人av免费视频| 三级国产精品片| av在线老鸭窝| 人人妻人人澡人人爽人人夜夜 | 青春草亚洲视频在线观看| 美女内射精品一级片tv| 国产精品久久久久久久久免| 亚洲国产高清在线一区二区三| 99久久九九国产精品国产免费| 午夜福利在线观看吧| 免费观看性生交大片5| 国产精品人妻久久久影院| 久久久午夜欧美精品| 久久久久久久久中文| 乱码一卡2卡4卡精品| 中文在线观看免费www的网站| 人妻系列 视频| 亚洲精品成人av观看孕妇| 色视频www国产| 特大巨黑吊av在线直播| 建设人人有责人人尽责人人享有的 | 美女高潮的动态| 欧美zozozo另类| 国产亚洲精品久久久com| 精品久久久久久久久亚洲| 午夜精品一区二区三区免费看| 日本爱情动作片www.在线观看| 亚洲美女视频黄频| av在线蜜桃| 亚洲欧洲日产国产| 五月伊人婷婷丁香| 九草在线视频观看| 欧美不卡视频在线免费观看| 在线播放无遮挡| 免费看不卡的av| 可以在线观看毛片的网站| 免费在线观看成人毛片| 成人漫画全彩无遮挡| 精品一区在线观看国产| 免费观看在线日韩| 成年女人看的毛片在线观看| 国产精品一区二区性色av| 国产免费福利视频在线观看| 国产综合懂色| 搡老乐熟女国产| av在线播放精品| 天美传媒精品一区二区| 亚洲欧美清纯卡通| 亚洲va在线va天堂va国产| 搡老乐熟女国产| 亚洲高清免费不卡视频| 亚洲精品国产成人久久av| 少妇的逼好多水| 国产成人福利小说| 激情五月婷婷亚洲| 日本免费a在线| 嫩草影院入口| 亚洲人成网站在线播| 亚洲,欧美,日韩| 男女啪啪激烈高潮av片| 69av精品久久久久久| 国产v大片淫在线免费观看| 日韩电影二区| 久久精品人妻少妇| 丰满乱子伦码专区| 三级国产精品片| 91精品一卡2卡3卡4卡| ponron亚洲| 欧美一区二区亚洲| 久热久热在线精品观看| 国产精品一区二区在线观看99 | 亚洲av中文字字幕乱码综合| 亚洲图色成人| 亚洲图色成人| 日韩在线高清观看一区二区三区| 啦啦啦啦在线视频资源| 老女人水多毛片| 欧美日韩国产mv在线观看视频 | www.色视频.com| 国产日韩欧美在线精品| 亚洲国产成人一精品久久久| 别揉我奶头 嗯啊视频| 老师上课跳d突然被开到最大视频| 91在线精品国自产拍蜜月| 男女国产视频网站| 一级毛片我不卡| 99热6这里只有精品| 精品99又大又爽又粗少妇毛片| 秋霞伦理黄片| 我的老师免费观看完整版| 777米奇影视久久| 一区二区三区乱码不卡18| 久久久久久久久久久丰满| 伦理电影大哥的女人| 91aial.com中文字幕在线观看| 综合色av麻豆| 三级国产精品片| 91狼人影院| av播播在线观看一区| 一区二区三区乱码不卡18| 成人性生交大片免费视频hd| 婷婷色麻豆天堂久久| 日日摸夜夜添夜夜添av毛片| 狂野欧美白嫩少妇大欣赏| 超碰av人人做人人爽久久| 精品久久久久久电影网| 又爽又黄无遮挡网站| 亚洲av男天堂| 久久99蜜桃精品久久| 三级经典国产精品| av.在线天堂| 国产一级毛片七仙女欲春2| 天堂网av新在线| 国产乱来视频区| av女优亚洲男人天堂| 亚洲一区高清亚洲精品| 三级毛片av免费| 成人av在线播放网站| av女优亚洲男人天堂| 欧美一级a爱片免费观看看| 欧美日韩综合久久久久久| 日日啪夜夜撸| 亚洲欧洲日产国产| 国国产精品蜜臀av免费| 国产黄色小视频在线观看| 日韩av在线免费看完整版不卡| 秋霞伦理黄片| 中文字幕av在线有码专区| 成年免费大片在线观看| 久久久精品欧美日韩精品| 久久久久久久久中文| 最近的中文字幕免费完整| 国产黄片美女视频| 国产亚洲一区二区精品| 天天躁日日操中文字幕| 日日干狠狠操夜夜爽| 一级a做视频免费观看| 国产av不卡久久| 亚洲欧美精品专区久久| 中文字幕人妻熟人妻熟丝袜美| 久久久久久久久久久丰满| 一级毛片久久久久久久久女| 精品不卡国产一区二区三区| 成人亚洲精品一区在线观看 | 欧美xxxx性猛交bbbb| av在线播放精品| 日韩精品有码人妻一区| 国产精品一区二区在线不卡| 极品人妻少妇av视频| 高清黄色对白视频在线免费看| 丝瓜视频免费看黄片| 美女中出高潮动态图| 亚洲精品美女久久久久99蜜臀 | 亚洲精品自拍成人| 黄色怎么调成土黄色| 97人妻天天添夜夜摸| 亚洲在久久综合| 久久免费观看电影| 亚洲精品国产色婷婷电影| 午夜福利视频在线观看免费| 91午夜精品亚洲一区二区三区| 国产精品 欧美亚洲| 啦啦啦啦在线视频资源| 电影成人av| 亚洲情色 制服丝袜| 欧美 日韩 精品 国产| 久久久久久久久久久免费av| 亚洲av电影在线观看一区二区三区| 午夜福利视频精品| 国产免费又黄又爽又色| 成人黄色视频免费在线看| 又黄又粗又硬又大视频| a级片在线免费高清观看视频| 国产黄色免费在线视频| 久久久久久久精品精品| 国产野战对白在线观看| 大香蕉久久成人网| 精品少妇内射三级| 午夜福利乱码中文字幕| 成人国产av品久久久| 久久亚洲国产成人精品v| 日韩人妻精品一区2区三区| 亚洲av电影在线观看一区二区三区| 亚洲精品日本国产第一区| 免费黄网站久久成人精品| a 毛片基地| 亚洲成av片中文字幕在线观看 | 亚洲国产最新在线播放| 亚洲精品久久成人aⅴ小说| 亚洲激情五月婷婷啪啪| 亚洲一级一片aⅴ在线观看| 日韩一区二区三区影片| 熟女av电影| 精品一区二区免费观看| 午夜福利影视在线免费观看| 国产精品麻豆人妻色哟哟久久| 久久女婷五月综合色啪小说| 爱豆传媒免费全集在线观看| 日韩中文字幕欧美一区二区 | 色婷婷久久久亚洲欧美| 尾随美女入室| 亚洲av国产av综合av卡| 9热在线视频观看99| 欧美激情极品国产一区二区三区| 亚洲国产av新网站| 麻豆精品久久久久久蜜桃| 亚洲成人av在线免费| 十分钟在线观看高清视频www| 欧美日韩国产mv在线观看视频| 久久人人97超碰香蕉20202| 狠狠婷婷综合久久久久久88av| 国产探花极品一区二区| 美女主播在线视频| 看免费av毛片| 欧美+日韩+精品| 日韩中文字幕视频在线看片| 免费黄色在线免费观看| 国产成人精品久久二区二区91 | 欧美精品一区二区免费开放| 免费不卡的大黄色大毛片视频在线观看| 久久国内精品自在自线图片| 日本欧美视频一区| 少妇人妻久久综合中文| 中文乱码字字幕精品一区二区三区| 欧美97在线视频| 1024视频免费在线观看| 热99国产精品久久久久久7| 亚洲欧美成人精品一区二区| 国产黄频视频在线观看| 中文字幕精品免费在线观看视频| 蜜桃在线观看..| 超色免费av| 色播在线永久视频| 热99久久久久精品小说推荐| 中文字幕最新亚洲高清| 亚洲欧美色中文字幕在线| 久久精品亚洲av国产电影网| 久久久久网色| a级片在线免费高清观看视频| 波多野结衣一区麻豆| 亚洲精品国产av成人精品| 国产精品香港三级国产av潘金莲 | 国产精品久久久久久精品古装| 精品人妻熟女毛片av久久网站| 婷婷色综合大香蕉| 欧美精品亚洲一区二区| 日韩在线高清观看一区二区三区| 69精品国产乱码久久久| 最近的中文字幕免费完整| 黄频高清免费视频| 亚洲精品久久午夜乱码| av视频免费观看在线观看| 两性夫妻黄色片| 丰满饥渴人妻一区二区三| 国产av精品麻豆| 国产人伦9x9x在线观看 | 国产精品成人在线| 日韩免费高清中文字幕av| 蜜桃在线观看..| 国产激情久久老熟女| 中文字幕制服av| 免费观看av网站的网址| 天堂8中文在线网| 久久久精品免费免费高清| 亚洲欧洲国产日韩| 老司机影院成人| 久久精品aⅴ一区二区三区四区 | 99热国产这里只有精品6| 久久人人爽人人片av| 欧美人与善性xxx| 久久精品国产自在天天线| 欧美 亚洲 国产 日韩一| 你懂的网址亚洲精品在线观看| 91久久精品国产一区二区三区| 久久精品久久久久久久性| 男女无遮挡免费网站观看| 人人妻人人澡人人看| 美女福利国产在线| 91精品三级在线观看| 国产一区二区三区av在线| 国产欧美日韩综合在线一区二区| 电影成人av| 男女啪啪激烈高潮av片| 久久99一区二区三区| 国产一区亚洲一区在线观看| 日韩成人av中文字幕在线观看| 亚洲色图综合在线观看| 97人妻天天添夜夜摸| 国产av一区二区精品久久| 成年动漫av网址| 久久这里有精品视频免费| 国产有黄有色有爽视频| 国产极品粉嫩免费观看在线| 国产 一区精品| 叶爱在线成人免费视频播放| 成人手机av| 欧美日韩亚洲国产一区二区在线观看 | 欧美国产精品va在线观看不卡| 热re99久久精品国产66热6| 久久av网站| 各种免费的搞黄视频| 在线亚洲精品国产二区图片欧美| 天天操日日干夜夜撸| 在线 av 中文字幕| 天堂中文最新版在线下载| 久久99热这里只频精品6学生| 两个人免费观看高清视频| 久久久精品国产亚洲av高清涩受| 亚洲伊人色综图| 女人精品久久久久毛片| 波多野结衣av一区二区av| 国产熟女午夜一区二区三区| 天天躁夜夜躁狠狠躁躁| 亚洲av男天堂| 人妻少妇偷人精品九色| 国产高清不卡午夜福利| 可以免费在线观看a视频的电影网站 | 精品国产乱码久久久久久小说| 丝袜美足系列| 国产精品一区二区在线观看99| 亚洲精品国产一区二区精华液| 亚洲精品中文字幕在线视频| 欧美精品人与动牲交sv欧美| 99热全是精品| 成年美女黄网站色视频大全免费| 最近中文字幕高清免费大全6| 老汉色av国产亚洲站长工具| www.精华液| tube8黄色片| 亚洲内射少妇av| 国产乱人偷精品视频| 久久久亚洲精品成人影院| 啦啦啦在线免费观看视频4| 女人久久www免费人成看片| 亚洲精品久久午夜乱码| 80岁老熟妇乱子伦牲交| 十分钟在线观看高清视频www| 9色porny在线观看| 丰满迷人的少妇在线观看| 国产日韩欧美视频二区| 美女中出高潮动态图| 国产福利在线免费观看视频| 国产精品一国产av| 大码成人一级视频| 99久国产av精品国产电影| 在线观看三级黄色| 欧美少妇被猛烈插入视频| 美女国产高潮福利片在线看| www.av在线官网国产| 人人澡人人妻人| 亚洲人成网站在线观看播放| 色吧在线观看| 天天躁夜夜躁狠狠躁躁| 制服诱惑二区| 免费看av在线观看网站| 一级片免费观看大全| 嫩草影院入口| 久久久久久久久久久免费av| 久久午夜福利片| 人妻一区二区av| 久久久久久久久久久免费av| 丝袜美足系列| 丝瓜视频免费看黄片| 国产精品av久久久久免费| 2018国产大陆天天弄谢| 新久久久久国产一级毛片| 久久久久精品久久久久真实原创| 欧美日韩视频高清一区二区三区二| 伊人久久国产一区二区| 91aial.com中文字幕在线观看| 中文乱码字字幕精品一区二区三区| 国产精品二区激情视频| 精品一区二区三区四区五区乱码 | 色网站视频免费| 黄色毛片三级朝国网站| 老司机影院毛片| 91在线精品国自产拍蜜月| 亚洲图色成人| 欧美亚洲 丝袜 人妻 在线| a 毛片基地| 女人久久www免费人成看片| 久久97久久精品| 欧美人与性动交α欧美软件| 成人漫画全彩无遮挡| 午夜日韩欧美国产| 新久久久久国产一级毛片| 男的添女的下面高潮视频| 女人精品久久久久毛片| 亚洲欧美一区二区三区国产| 欧美日本中文国产一区发布| 成人手机av| 美国免费a级毛片| 久久毛片免费看一区二区三区| 久久99精品国语久久久| 久久久久久久精品精品| 欧美日韩亚洲高清精品| 久久久欧美国产精品| 女性生殖器流出的白浆| 日韩一卡2卡3卡4卡2021年| 女性被躁到高潮视频| 99久久人妻综合| 久久亚洲国产成人精品v| 桃花免费在线播放| 久久精品国产综合久久久| 日韩一区二区视频免费看| 免费少妇av软件| 亚洲男人天堂网一区| 中文字幕人妻熟女乱码| 丝袜美足系列| 丁香六月天网| 国产av精品麻豆| 亚洲av.av天堂| 国产免费视频播放在线视频| 国产亚洲精品第一综合不卡| 交换朋友夫妻互换小说| 久久97久久精品| 美女中出高潮动态图| 一区在线观看完整版| 又黄又粗又硬又大视频| 午夜福利一区二区在线看| 日本色播在线视频| 亚洲,一卡二卡三卡| 丁香六月天网| 两性夫妻黄色片| 欧美亚洲日本最大视频资源| 美女大奶头黄色视频| 美女视频免费永久观看网站| 婷婷色综合大香蕉| 久久久久久免费高清国产稀缺| 天天操日日干夜夜撸| 9热在线视频观看99| 欧美人与性动交α欧美精品济南到 | 自线自在国产av| 国产精品秋霞免费鲁丝片| 免费少妇av软件| 日本av手机在线免费观看| 亚洲中文av在线| 国产片特级美女逼逼视频| 2022亚洲国产成人精品| 熟妇人妻不卡中文字幕| 亚洲精品国产一区二区精华液| 久久亚洲国产成人精品v| 精品少妇内射三级| 成人毛片60女人毛片免费| 国产黄色视频一区二区在线观看| 中文字幕人妻熟女乱码| 在线观看免费视频网站a站| 久久国产亚洲av麻豆专区| 精品福利永久在线观看| 韩国av在线不卡| 久久精品国产自在天天线| 国产免费又黄又爽又色| 高清不卡的av网站| 久久久亚洲精品成人影院| 欧美 日韩 精品 国产| 在线观看三级黄色| 黄色配什么色好看| 99九九在线精品视频| 汤姆久久久久久久影院中文字幕| 午夜精品国产一区二区电影| 国产精品 欧美亚洲| 免费高清在线观看日韩| 一区二区三区激情视频| 十分钟在线观看高清视频www| 亚洲视频免费观看视频| 最近手机中文字幕大全| 国产黄频视频在线观看| 天天影视国产精品| 最近中文字幕高清免费大全6| 久久久久久久久久久免费av| 免费在线观看视频国产中文字幕亚洲 | 夫妻午夜视频| 久久久久人妻精品一区果冻| 国产激情久久老熟女| 久久精品国产鲁丝片午夜精品| 老女人水多毛片| 亚洲av中文av极速乱| 亚洲精品av麻豆狂野| 九九爱精品视频在线观看| 久久久久久久久久久免费av| 亚洲综合色网址| 久久精品国产亚洲av天美| 亚洲精品视频女| 亚洲av免费高清在线观看| 亚洲第一av免费看| 亚洲欧洲国产日韩| 国产一级毛片在线| 国产成人一区二区在线| 日韩av在线免费看完整版不卡| 亚洲综合色网址| 精品亚洲乱码少妇综合久久| 国产熟女午夜一区二区三区| 中文乱码字字幕精品一区二区三区| 久久av网站| 精品久久蜜臀av无| 丝瓜视频免费看黄片| 人成视频在线观看免费观看| 国产1区2区3区精品| 波多野结衣av一区二区av| 视频区图区小说| 成人二区视频| 国产av精品麻豆| 91精品国产国语对白视频| 亚洲精品一二三| 大片电影免费在线观看免费| 国产乱人偷精品视频| 黄片无遮挡物在线观看| 人人妻人人添人人爽欧美一区卜| 国产免费视频播放在线视频| 91精品伊人久久大香线蕉| 日本欧美视频一区| 亚洲av.av天堂| 最近的中文字幕免费完整| 成人亚洲欧美一区二区av| 欧美另类一区| 熟妇人妻不卡中文字幕| 69精品国产乱码久久久| 亚洲欧美精品综合一区二区三区 | 美女中出高潮动态图| 亚洲欧洲精品一区二区精品久久久 |