• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optical sw itching based on magnetic resonance of sp lit ring resonator array

    2010-05-10 08:10:58SHOUXiang,GANBen-xin,SUHong-yan
    中國(guó)光學(xué) 2010年4期
    關(guān)鍵詞:當(dāng)涂杭州人紅艷

    Optical sw itching based on magnetic resonance of sp lit ring resonator array

    We demonstrate an all-optical switching of themagnetic resonance properties associated with ametallic Split Ring Resonator(SRR)array.The periodically spaced elements are fabricated on a high-resistivity silicon wafer and probed by using conventional Terahertz(THz)time-domain spectroscopy.We use a continuous-wave laser diode to generate carriers in the gaps of the SRR elements.Using a sufficient power,this optical excitation can create an effective short gap,which would switch the resonant properties of themetamaterial from that of an SRR array to that of a closed ring resonator array and leads to dramatic changes in the THz transmission.In the present experiment,the optically induced switching is associated with themagnetic resonance.However,with appropriate changes in the device structure,this approach can be extended to switch a medium with a negative real index of refraction to amedium with a positive real index of refraction.This opens the way to creat a broad new range of active devices.

    optical switching;magnetic resonance;ring resonator array

    1 Introduction

    In recent years,there has been a great interest in studying artificially structured materials.The appeal of these structures,often referred to asmetamaterials,may be attributed largely to the fact that such materials can be engineered to exhibit properties that can be varied over amuch wider range than naturally occurring materials.As an example,metamaterials may be used to gain greater control over the propagation properties of electromagnetic radiation.One class of structures that has elicited significant attention recently includes media that exhibit a negative effective permeability or a negative effective refractive index.The electromagnetic properties ofmedia exhibiting these properties are characterized by a number of unique and unusual properties that were first discussed theoretically by Veselago[1]in more than three decades ago.

    Since the initial demonstration of amaterial that exhibits a negative real index of refraction[2,3],numerous metal-dielectric structures have been proposed and fabricated that demonstrate equivalent properties[4-7].However,the structures used in the initial demonstration,composed of a combination of metallic split ring resonator(SRR)and thin metallic wire arrays,remain the most extensively studied.The SRR element is used to exhibit a negativemagnetic permeability[8],and the wires are used to exhibit a negative electric permittivity[9].With specific regard to split ring resonators,although the initialembodiments were designed for microwave studies,there has been significant work recently in demonstrating that these elements exhibit magnetic response at THz and mid-infrared frequencies[10-12].

    A significant challenge in this field is the realization of active devices.To our knowledge,all previous experimental studies have focused on structures that are static.Active devices,however,would require the ability to dynamically alter the properties of thesemetamaterials.In principle,there are a number ofways to accomplish the effect.Focusing solely on the properties of SRRs,the resonance properties can be altered by creating large scale changes in the dielectric properties of the substrate medium,causing dynamic changes in the spacing between the rings in conventional double split ring resonator designs,or causing dynamic changes in the gap properties of the SRR elements[8].

    In this paper,we experimentally demonstrate the all-optical switching of the magnetic resonance properties associated with a metallic SRR array.These periodically spaced magnetic elements are fabricated on a high-resistivity silicon wafer and probed by using conventional THz time-domain spectroscopy.Using an independent continuous-wave laser diode to illuminate the silicon surface,we generate charge carriers in the gaps of the SRR elements.With a sufficient optical power,this optical excitation can cause an effective short gap,which can switch the resonant properties of themetamaterial from that of an SRR array to that of a closed ring resonator array.This would correspond to the presence or elimination of the low frequency magnetic resonance.In presentexperimental embodiment,the probing THz beam is normally incident on the SRR array,so that themagnetic component of the electromagnetic field lies in the plane of the SRR.Therefore,if amagnetic response is observed,the associated permeability is not negative[12,13].However,with appropriate changes in the device structure,this approach can be extended to switch a medium with a negative real index of refraction to amedium with a positive real index of refraction.

    2 Experimental details

    Fig.1 Schematic diagrams of a square double-ring SRR and excitation geometry.

    We fabricate an SRR array on a 500μm thick,>10 kΩ·cm high-resistive silicon wafer.The individual array elements are patterned on a 300 nm aluminum layer using conventionalmetallization and photolithographic techniques.Fig.1(a)shows the schematic diagram of an individual SRR element along with the corresponding dimensions.The dimensions of the SRR elements used in this study are w=131μm,c=12.5μm,d=15μm,g=11μm and r=51μm and the space between the SRRs is 180μm on a square lattice.Themagnetic resonance frequency for the high-resistive silicon substrate lies at 0.13 THz,corresponding to a lattice spacing of~λ/13(λ=300μm at 1 THz).The SRR dimensions,lattice spacing,and magnetic resonance frequency are chosen based on power considerations of the optical(laser diode)excitation source described below.For the purposes of comparison,we also fabricate a nominally identical Closed Ring Resonator(CRR)array.

    A schematic diagram of the experimental setup used for THz time-domain spectroscopy[14]is shown in Fig.2.We use a mode-locked Ti:sapphire laser as the optical source to generate and detect the THz pulses.The laser oscillator operates at a central wavelength of 820 nm with a repetition rate of 89 MHz.Conventional photoconductive devices are used for both the emission and coherent detection of the transmitted THz electric field.The array is placed at the center of the two off-axis parabolicmirrors in the THz spectroscopy system as shown in Fig.2.The THz beam is normally incident on the structure and the array is aligned in the THz beam path where the incident electric field lies parallelly to the gaps in the individual SRR element.The THz field geometries are shown schematically in Fig.1(b)and Fig.1(c).

    In order to investigate the optical switching properties of the magnetic response associated with the SRR array,a continuous-wave laser diode which is operated at~830 nm and with an average power of up to 150 mW is used to alter the conductivity of the silicon regions located in the gaps of the SRR elements,as shown in Fig.2.The optical beam is focused to a spot size of~1 mm on the SRR array.And then we investigate the THz transmission properties through the SRR array as a function of optical power of incident laser diode.Upon optical illumination of the array,photoexcited charge carriers are generated near the surface of the semiconductor substrate.For themaximum optical excitation used,we estimate that the carrier density is approximately 3× 1014cm-3.Despite the spatial non-uniformity of the optical excitation beam,we expect the carrier density across the probed sample region to be approximately uniform,which is given by the long carrier recombination time(τr~25 ms)of high resistivity silicon[15].Optical excitation of the silicon in the gap regions of the SRR elements causes a sharp reduction in the resistance.In the presence of very high optical intensities,the gapswould be effectively shorted,so that the SRR elements would appear as Closed Ring Resonator(CRR)elements.The transmission properties of SRR arrays are dramatically different from those of CRR arrays[8,12].As a consequence of fabricating on a silicon wafer,the optical pump illumination increases the free charge carrier density across the entire sample,thereby the transmission of THz radiation through the wafer is reduced.Therefore,for each laser diode power level used,reference transmission spectra are taken by using an identical blank high-resistive silicon substrate under identical optical illumination conditions.

    Fig.2 Schematic diagram of experimental setup.

    In contrast to conventional optical measurementswhere the transmitted optical power is measured,THz time-domain spectroscopy allows for the directmeasurement of the THz electric field,yielding both amplitude and phase information[16,17].By transforming the time-domain data to frequency domain,we are able to determine the magnitude and phase of the amplitude transmission coefficient,t(v)independently,which is used for the SRR and CRR structures and has the relation as:

    In Eq.(1),ESRRand Esubstrateare the transmitted THz fields through the metallic array and a blank substrate,respectively;|t(v)|andφ(v)are the magnitude and phase of the amplitude transmission coefficient,and v is the THz frequency.As noted above,both time-domain waveforms are obtained under identical optical illumination conditions.

    3 Experimental results and discussion

    Fig.3 shows the amplitude and phase of the transmission spectra of the SRR array for both parallel and perpendicular to the gaps in the resonators,and the spectra for the CRR array aswell.Aswe can see above,the THz beam is normally incident on the SRR array.Therefore,themagnetic field lies in the plane of the resonators and can not contribute to the desired magnetic resonance.However,if the electric field of the THz pulse is aligned parallelly to the electric field direction within the capacitive gap of the SRR,the incident THz electric field can couple to the magnetic resonance.This result has been demonstrated experimentally[13].Thus,for the data corresponding to the parallel excitation geometry of the SRR,two separate resonances are observed in the amplitude transmission spectra of SRR.The magnetic resonance occurs at~0.13 THz,while the higher frequency electrical resonance occurs between 0.25 THz and 0.3 THz.It is worth while to note that the spectra for the SRR(perpendicular orientation)and CRR are almost identical.For last two measurements,there is a slight blue shift in the high frequency(electrical)resonance.This result is consistent with previous measurements with similar structures[12].

    Fig.3 Amplitude transmission coefficients of closed and open SRR structures.

    Fig.4 Transmission spectra for SRR array fabricated.

    Fig.4 shows the amplitude of the transmission spectrum through the SRR array(parallel orientation)as a function of the laser excitation power.There are several noteworthy points regarding the transmission resonances which appear in the amplitude spectra in Fig.4.The electrical resonance at~0.26 THz changes a little with increasing optical power.We note that the primary difference in the transmission spectrum between an appropriately oriented SRR array(Fig.1(b))and a CRR array is that the latter array does not exhibit amagnetic resonance and demonstrates a slight blue shift in the higher frequency electrical resonance.Even for the highest optical illumination power of150mW,we do not observe any significant spectral variation in the lineshape of the electrical resonance at~0.26 THz.It is necessary to observe this result if a far greater optical power is used.It is also worth noting that the transmission spectrum for the SRR array(perpendicular orientation)is essentially unchanged as a function of the laser diode optical power(not shown).It is not surprising,since the SRR array(perpendicular orientation)and a CRR array exhibit nearly identical transmission properties.

    With specific regard to the magnetic resonance at~0.13 THz as shown in Fig.4,it is apparent that the depth of the resonance is progressively reduced with the increase of optical power.This change in the resonance shape is directly related to the generation of charge carriers in the gap regions of the SRR elements,and it leads to a reduction of the resistance.In order to quantify this observation,we measure the magnitude of this transmission dip of four traces as shown in Fig.4.This data,as shown in Fig.5,depicts an approximately linear decrease as a function of optical intensity.If we assume a continued linear response in the magnitude of the resonance dip as a function of optical power,it should require~650 mW of laser diode power to completely switch off the magnetic resonance.Because this value appears very large,it is important to note that this is not the actual power which is necessary to switch the magnetic resonance.The gaps in the SRR elements represent less than 1%of the sample area,hence,if the optical illumination could be appropriately focused,only~7 mW of cw laser power would be necessary to completely switch the magnetic resonance.In principle,this may be accomplished using an appropriately designed plastic lens array.Such a plastic array should not appreciably absorb the incident THz radiation and can be largely non-perturbative to the propagation properties of the THz beam.

    Fig.5 Magnitude ofmagnetic resonance dip at~0.13 THz from the SRR array versus the laser diode optical illumination power.The line represents a linear least-squares fit to the data.

    4 Conclusions

    In conclusions,we have demonstrated an all-optical switching of themagnetic resonance properties associated with ametallic SRR array.We use a continuous-wave laser diode to generate carriers in the gaps of the SRR elements.With a sufficient optical power,this optical excitation can create an effective short across the gaps,which alter the resonant properties of themetamaterial from thatof a SRR array to that of a closed ring resonator array.Using only 150 mW to illuminate the entire sample surface,we observe a 33%reduction in themagnitude of themagnetic resonance.However,by appropriately focusing the optical source,we believe that relatively modest optical power levels(in the 10-20 mW range)are necessary to achieve the complete switching.Furthermore,the demonstration discussed here is not limited to magnetic resonance switching.With appropriate changes in the device structure,this approach can be extended to switch a medium with a negative real index of refraction to amedium with a positive real index of refraction.This opens the way to realize a broad new range of active devices.

    Reference:

    [1]VESELAGO V G.The electrodynamics of substances with simultaneously negative values ofεandμ[J].Sov.Phys.Usp.,1968,10:509-514.

    [2]SMITH D R,PADILLAW J,VIER D C,et al..Compositemedium with simultaneously negative permeability and permit-tivity[J].Phys.Rev.Lett.,2000,84:4184-4187.

    [3]SHELBY R A,SMITH D R,SCHULTZ S.Experimental verification of a negative index of refraction[J].Science,2001,292:77-79.

    [4]SHALAEV V M,CAIW,CHETTIAR U K,et al..Negative index of refraction in opticalmetamaterials[J].Opt.Lett.,2005,30:3356-3358.

    [5]BULU I,CAGLAYAN H,OZBAY E.Experimental demonstration of labyrinth-based left-handed metamaterials[J].Opt.Express,2005,13:10238-10247.

    [6]ZHANG S,F(xiàn)ANW,PANOIU N C,et al..Experimental demonstration of near-infrared negative-indexmetamaterials[J].Phys.Rev.Lett.,2005,95:137404/1-4.

    [7]ZHOU J,ZHANG L,TUTTLE G,et al..Negative indexmaterials using simple shortwire pairs[J].Phys.Rev.B,2006,73:041101/1-4.

    [8]PENDRY JB,HOLDEN A,ROBBINSD D,et al..Magnetism from conductors and enhanced nonlinear phenomena[J].IEEE Trans.Microwave Theory Technol.,1999,47:2075-2084.

    [9]PENDRY J B,HOLDEN A,STEWART W,et al..Extremely low frequency plasmons in metallic mesostructures[J].Phys.Rev.Lett.,1996,76:4773-4776.

    [10]KATSARAKISN,KONSTANTINIDISG,KOSTOPOULOSA,et al..Magnetic response of split-ring resonators in the farinfrared frequency regime[J].Opt.Lett.,2004,30:1348-1350.

    [11]YEN T J,PADILLAW J,F(xiàn)ANG N,et al..Terahertzmagnetic response from artificialmaterials[J].Science,2004,303:1494-1496.

    [12]LINDEN S,ENKRICH C,WEGENER M,et al..Magnetic response ofmetamaterials at100 terahertz[J].Science,2004,306:1351-1353.

    [13]KATSARAKISN,KOSCHNY T,KAFESAKIM,et al..Electric coupling to themagnetic response of split ring resonators[J].Appl.Phys.Lett.,2004,84:2943-2945.

    [14]GRISCHKOWSKY D.Frontiers in Nonlinear Optics[M].Philadelphia:Institute of Physics Publishing,1992.

    [15]SZE SM.Physics of Semiconductor Devices[M].New York:Wiley,1981.

    [16]NUSSM C,ORENSTEIN J.Terahertz time-domain spectroscopy[M].Berlin:Springer,1998.

    [17]HAN P Y,TANIM,USAMIM,et al..A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy[J].J.Appl.Phys.,2001,89(4):2357-2359

    SHOU Xiang1,GAN Ben-xin2,SU Hong-yan2,BAILu-guang1

    (1.Cao Group,Salt Lake City,USA;

    2.Huai′an College of Information Technology,Huai′an 223003,China)

    TB34;TN15

    A

    1674-2915(2010)04-0385-06

    2010-03-15;

    2010-05-13

    壽 翔(1973—),男,浙江杭州人,電子工程博士,主要從事醫(yī)用激光儀器的研究與開(kāi)發(fā)。

    蘇紅艷(1982—),女,江蘇淮安人,講師,碩士,主要從事控制工程及應(yīng)用的研究。

    E-mail:xiangshou@gmail.com

    甘本鑫(1982—),男,安徽當(dāng)涂人,講師,碩士,主要從事控制工程及應(yīng)用的研究。E-mail:tom_gbx@163.com

    猜你喜歡
    當(dāng)涂杭州人紅艷
    “卿今當(dāng)涂掌事”之“當(dāng)涂”辨正
    《謐》國(guó)畫
    與蓮共浴
    當(dāng)涂民歌現(xiàn)狀研究
    黃河之聲(2019年7期)2019-12-15 22:03:51
    當(dāng)涂方言與民歌的共生關(guān)系研究
    Temperature field analysis of two rotating and squeezing steel-rubber rollers①
    Forming mechanism of ink layer on the printing plate in inking process and influencing factors of its thickness①
    105對(duì)新杭州人圓了集體婚禮夢(mèng)
    杭州(2016年4期)2016-06-27 00:09:23
    Calculation of impact factor of vibrator oscillation in offset printing based on fuzzy controller and genetic algorithm*
    當(dāng)涂民歌的傳承與保護(hù)
    大眾文藝(2014年5期)2014-03-12 02:09:59
    午夜亚洲福利在线播放| 亚洲高清免费不卡视频| 日本-黄色视频高清免费观看| 欧美人与善性xxx| 国产大屁股一区二区在线视频| 青青草视频在线视频观看| 久久久久久久精品精品| 男男h啪啪无遮挡| 91在线精品国自产拍蜜月| 午夜福利视频精品| 亚洲高清免费不卡视频| 国产成人aa在线观看| 建设人人有责人人尽责人人享有的 | 五月开心婷婷网| 一区二区三区精品91| 一级a做视频免费观看| 热99国产精品久久久久久7| av黄色大香蕉| 亚洲欧美精品自产自拍| 一级毛片 在线播放| 嫩草影院入口| 丝袜喷水一区| 纵有疾风起免费观看全集完整版| 久久99热这里只有精品18| 一二三四中文在线观看免费高清| 99久久人妻综合| www.av在线官网国产| 国产一区二区三区av在线| 久久久精品欧美日韩精品| 日韩 亚洲 欧美在线| 精品一区二区三卡| 在线看a的网站| 成人国产av品久久久| 黄色日韩在线| 国产成人91sexporn| av卡一久久| 成人亚洲精品av一区二区| 十八禁网站网址无遮挡 | 亚洲欧美精品自产自拍| 国产精品三级大全| 99热6这里只有精品| 午夜免费观看性视频| 三级经典国产精品| 亚洲经典国产精华液单| 最近2019中文字幕mv第一页| 91精品国产九色| 成年女人在线观看亚洲视频 | 美女xxoo啪啪120秒动态图| 久久久久九九精品影院| 美女视频免费永久观看网站| 欧美潮喷喷水| 国产黄片美女视频| 亚洲欧美日韩无卡精品| 国国产精品蜜臀av免费| av女优亚洲男人天堂| 亚洲人成网站在线播| 熟女av电影| 我的老师免费观看完整版| 国产精品秋霞免费鲁丝片| 我要看日韩黄色一级片| 春色校园在线视频观看| 国产精品久久久久久久久免| 黄色欧美视频在线观看| 波多野结衣巨乳人妻| 内射极品少妇av片p| 久久久久久久久久人人人人人人| 欧美三级亚洲精品| 交换朋友夫妻互换小说| 哪个播放器可以免费观看大片| 七月丁香在线播放| 国产亚洲最大av| 国产成人免费无遮挡视频| 好男人在线观看高清免费视频| 国产精品一二三区在线看| 极品少妇高潮喷水抽搐| 亚洲av中文字字幕乱码综合| 伊人久久精品亚洲午夜| 免费观看av网站的网址| 免费看a级黄色片| 亚洲精品色激情综合| 精品少妇久久久久久888优播| 狂野欧美白嫩少妇大欣赏| 18禁动态无遮挡网站| 麻豆成人av视频| 深夜a级毛片| 午夜亚洲福利在线播放| 欧美高清性xxxxhd video| .国产精品久久| 亚洲av.av天堂| 禁无遮挡网站| 国产成人午夜福利电影在线观看| 最新中文字幕久久久久| 国产在线男女| 欧美日韩在线观看h| 我要看日韩黄色一级片| 如何舔出高潮| 精品熟女少妇av免费看| 在线观看国产h片| 青春草国产在线视频| 高清视频免费观看一区二区| 美女国产视频在线观看| 亚洲欧美一区二区三区国产| 少妇高潮的动态图| 一级片'在线观看视频| 国产精品99久久99久久久不卡 | 最近中文字幕高清免费大全6| 中文字幕亚洲精品专区| 亚洲成人av在线免费| 亚洲怡红院男人天堂| 日本一二三区视频观看| 波多野结衣巨乳人妻| 中文欧美无线码| 最近中文字幕高清免费大全6| 高清毛片免费看| 最近中文字幕2019免费版| 亚州av有码| 熟女人妻精品中文字幕| 国产欧美亚洲国产| 国产精品国产三级国产av玫瑰| 好男人在线观看高清免费视频| 亚洲人成网站在线观看播放| 日韩伦理黄色片| 精品久久久精品久久久| 国产成人午夜福利电影在线观看| 亚洲熟女精品中文字幕| 亚洲高清免费不卡视频| 国产成人a区在线观看| 亚洲欧美一区二区三区黑人 | 亚洲av免费在线观看| 简卡轻食公司| 色综合色国产| 色哟哟·www| 韩国高清视频一区二区三区| 99视频精品全部免费 在线| 中文精品一卡2卡3卡4更新| 水蜜桃什么品种好| 国产精品99久久久久久久久| 爱豆传媒免费全集在线观看| 欧美丝袜亚洲另类| 99视频精品全部免费 在线| 一边亲一边摸免费视频| 欧美 日韩 精品 国产| 免费av不卡在线播放| 国产欧美另类精品又又久久亚洲欧美| 超碰97精品在线观看| 网址你懂的国产日韩在线| 亚洲一级一片aⅴ在线观看| 国产人妻一区二区三区在| 人妻一区二区av| 日韩制服骚丝袜av| 一本一本综合久久| 欧美高清成人免费视频www| 亚洲成人中文字幕在线播放| 亚洲精品日本国产第一区| 亚洲欧美成人精品一区二区| 一级毛片 在线播放| 国产成人aa在线观看| 国产成人freesex在线| 99热网站在线观看| 又爽又黄无遮挡网站| av天堂中文字幕网| 国产精品精品国产色婷婷| 久久久久久久国产电影| av在线蜜桃| 国产精品女同一区二区软件| 99热这里只有是精品50| 美女主播在线视频| 国产精品99久久99久久久不卡 | 中文乱码字字幕精品一区二区三区| 亚洲视频免费观看视频| 亚洲欧洲国产日韩| 麻豆乱淫一区二区| 你懂的网址亚洲精品在线观看| 黑人猛操日本美女一级片| 欧美日韩亚洲高清精品| 亚洲av中文av极速乱| 久久 成人 亚洲| 午夜影院在线不卡| 日本一区二区免费在线视频| 久久久久网色| 亚洲人成77777在线视频| 国产激情久久老熟女| 飞空精品影院首页| 一级,二级,三级黄色视频| 亚洲精品av麻豆狂野| 97在线人人人人妻| 如日韩欧美国产精品一区二区三区| 天天躁日日躁夜夜躁夜夜| 考比视频在线观看| 日韩不卡一区二区三区视频在线| 亚洲欧美一区二区三区国产| 免费观看人在逋| 成人漫画全彩无遮挡| 涩涩av久久男人的天堂| 一区在线观看完整版| 不卡av一区二区三区| 久久av网站| 七月丁香在线播放| 丝袜在线中文字幕| 婷婷色麻豆天堂久久| 丝袜美足系列| 亚洲久久久国产精品| 亚洲成国产人片在线观看| 在线观看www视频免费| 精品国产一区二区三区久久久樱花| 国产片内射在线| 丝瓜视频免费看黄片| 亚洲一码二码三码区别大吗| 热re99久久国产66热| 一区福利在线观看| 亚洲美女视频黄频| 妹子高潮喷水视频| 天天躁夜夜躁狠狠久久av| 美女福利国产在线| 人人妻人人爽人人添夜夜欢视频| 亚洲国产中文字幕在线视频| 丝袜喷水一区| 69精品国产乱码久久久| 亚洲欧美日韩另类电影网站| 久久人妻熟女aⅴ| 日韩成人av中文字幕在线观看| 亚洲国产毛片av蜜桃av| 制服诱惑二区| 一二三四在线观看免费中文在| 久久精品人人爽人人爽视色| 人人妻人人添人人爽欧美一区卜| 午夜免费男女啪啪视频观看| 国产亚洲欧美精品永久| 精品亚洲乱码少妇综合久久| av免费观看日本| 成年人午夜在线观看视频| 黄色一级大片看看| 我的亚洲天堂| 午夜免费男女啪啪视频观看| 2018国产大陆天天弄谢| 新久久久久国产一级毛片| 国产精品成人在线| 国产av码专区亚洲av| 精品一区在线观看国产| 欧美97在线视频| 精品国产乱码久久久久久小说| 777久久人妻少妇嫩草av网站| 午夜福利在线免费观看网站| 亚洲国产精品一区三区| 亚洲精品久久成人aⅴ小说| 亚洲欧洲国产日韩| 欧美 日韩 精品 国产| 天天躁夜夜躁狠狠久久av| 咕卡用的链子| 欧美老熟妇乱子伦牲交| 国产成人啪精品午夜网站| 亚洲精品一区蜜桃| 美女主播在线视频| 超碰97精品在线观看| 天天操日日干夜夜撸| 国产99久久九九免费精品| 80岁老熟妇乱子伦牲交| 大片电影免费在线观看免费| 丝袜喷水一区| 日日撸夜夜添| 乱人伦中国视频| 欧美精品一区二区免费开放| 亚洲精品成人av观看孕妇| 免费女性裸体啪啪无遮挡网站| 久久97久久精品| av视频免费观看在线观看| 成人国语在线视频| 亚洲少妇的诱惑av| 久久久精品国产亚洲av高清涩受| 黄色 视频免费看| 男女边摸边吃奶| 中文字幕精品免费在线观看视频| 国产高清不卡午夜福利| 卡戴珊不雅视频在线播放| 国产不卡av网站在线观看| 成年女人毛片免费观看观看9 | 久热这里只有精品99| 少妇人妻久久综合中文| 天天躁夜夜躁狠狠躁躁| 美女主播在线视频| 黄色 视频免费看| 婷婷色麻豆天堂久久| 老司机亚洲免费影院| 美女高潮到喷水免费观看| 精品第一国产精品| 久久亚洲国产成人精品v| 啦啦啦在线观看免费高清www| 久久人人97超碰香蕉20202| 久久精品亚洲av国产电影网| 国产精品国产三级国产专区5o| 最近最新中文字幕大全免费视频 | videos熟女内射| av免费观看日本| 麻豆乱淫一区二区| 丝袜人妻中文字幕| 在线免费观看不下载黄p国产| 中文字幕人妻丝袜制服| 一本久久精品| 丝袜美腿诱惑在线| 国产免费一区二区三区四区乱码| 国产成人精品福利久久| 日日爽夜夜爽网站| 欧美激情极品国产一区二区三区| 免费观看性生交大片5| 久久婷婷青草| 成人三级做爰电影| 天天影视国产精品| 日韩中文字幕视频在线看片| 国产精品久久久av美女十八| 国产成人欧美在线观看 | av.在线天堂| 久久韩国三级中文字幕| 日韩熟女老妇一区二区性免费视频| 成人影院久久| 亚洲第一青青草原| 成人漫画全彩无遮挡| 考比视频在线观看| 亚洲欧洲精品一区二区精品久久久 | 国产精品一区二区在线观看99| 看免费av毛片| 亚洲精品美女久久av网站| 国产一区二区 视频在线| 赤兔流量卡办理| 国产亚洲欧美精品永久| 久久婷婷青草| 国产精品 欧美亚洲| 青春草视频在线免费观看| 18禁裸乳无遮挡动漫免费视频| 人人妻,人人澡人人爽秒播 | 男女国产视频网站| 免费看不卡的av| 国产精品免费大片| 亚洲精品久久成人aⅴ小说| 国产男人的电影天堂91| 国产日韩欧美在线精品| 一级片'在线观看视频| 亚洲欧美色中文字幕在线| 成人国产av品久久久| 色婷婷av一区二区三区视频| 97在线人人人人妻| 最近最新中文字幕免费大全7| 黑人巨大精品欧美一区二区蜜桃| 久久这里只有精品19| 免费看av在线观看网站| 69精品国产乱码久久久| 久久久久国产精品人妻一区二区| 最近中文字幕2019免费版| 9色porny在线观看| 精品亚洲乱码少妇综合久久| 丝袜人妻中文字幕| 午夜91福利影院| 国产精品久久久人人做人人爽| 成人国产麻豆网| 黄色视频在线播放观看不卡| 亚洲欧美成人精品一区二区| 欧美精品人与动牲交sv欧美| 成人18禁高潮啪啪吃奶动态图| 欧美日韩av久久| tube8黄色片| 欧美亚洲 丝袜 人妻 在线| 天天躁日日躁夜夜躁夜夜| 两个人免费观看高清视频| 少妇人妻 视频| 少妇人妻精品综合一区二区| 夫妻性生交免费视频一级片| av网站在线播放免费| 午夜精品国产一区二区电影| 高清黄色对白视频在线免费看| 精品少妇久久久久久888优播| 久久狼人影院| bbb黄色大片| 韩国av在线不卡| 免费女性裸体啪啪无遮挡网站| 免费观看性生交大片5| 捣出白浆h1v1| 精品少妇内射三级| 亚洲成人av在线免费| 天天躁日日躁夜夜躁夜夜| 最近中文字幕2019免费版| av电影中文网址| 中文字幕人妻丝袜制服| 国产精品久久久久久精品电影小说| 天天操日日干夜夜撸| 欧美日韩av久久| 日韩一本色道免费dvd| 最近2019中文字幕mv第一页| 在线观看免费日韩欧美大片| 欧美成人精品欧美一级黄| 69精品国产乱码久久久| av线在线观看网站| 国产精品亚洲av一区麻豆 | 久久热在线av| 日韩,欧美,国产一区二区三区| 久久97久久精品| 女人久久www免费人成看片| 男男h啪啪无遮挡| 人人妻人人澡人人爽人人夜夜| 色播在线永久视频| 欧美xxⅹ黑人| 久久久久国产精品人妻一区二区| 欧美精品一区二区免费开放| 熟妇人妻不卡中文字幕| 国产97色在线日韩免费| 美女中出高潮动态图| 多毛熟女@视频| 亚洲欧美成人精品一区二区| 久久精品久久精品一区二区三区| 波野结衣二区三区在线| 日本av免费视频播放| 婷婷成人精品国产| 少妇人妻 视频| 涩涩av久久男人的天堂| 高清av免费在线| 一区二区日韩欧美中文字幕| 久久综合国产亚洲精品| 黄色一级大片看看| 亚洲精品国产av成人精品| 亚洲国产精品一区二区三区在线| 97人妻天天添夜夜摸| 亚洲精品日韩在线中文字幕| 欧美亚洲日本最大视频资源| 亚洲国产av新网站| 免费少妇av软件| 夫妻午夜视频| 精品少妇黑人巨大在线播放| 久久韩国三级中文字幕| 亚洲第一区二区三区不卡| 一本大道久久a久久精品| 中文天堂在线官网| 久久久久久免费高清国产稀缺| 69精品国产乱码久久久| 精品亚洲成a人片在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 日韩精品免费视频一区二区三区| 9色porny在线观看| videosex国产| 老司机影院成人| 男女下面插进去视频免费观看| 少妇人妻精品综合一区二区| 亚洲一卡2卡3卡4卡5卡精品中文| 国产亚洲精品第一综合不卡| 欧美国产精品一级二级三级| 十八禁网站网址无遮挡| 女人爽到高潮嗷嗷叫在线视频| 国产成人精品无人区| 免费黄色在线免费观看| 欧美日韩一级在线毛片| 欧美av亚洲av综合av国产av | 国产在线视频一区二区| 女人爽到高潮嗷嗷叫在线视频| 国产成人精品无人区| 国产精品国产三级国产专区5o| 99精品久久久久人妻精品| 极品少妇高潮喷水抽搐| 免费av中文字幕在线| 人人妻人人爽人人添夜夜欢视频| 中文字幕精品免费在线观看视频| 中文天堂在线官网| 999精品在线视频| 久久久精品国产亚洲av高清涩受| 在线观看人妻少妇| 亚洲欧洲日产国产| 免费看不卡的av| 久久97久久精品| 欧美激情高清一区二区三区 | 欧美日韩一级在线毛片| 99久久人妻综合| 在线观看三级黄色| 高清视频免费观看一区二区| 久久精品久久精品一区二区三区| 欧美人与善性xxx| 毛片一级片免费看久久久久| 国产女主播在线喷水免费视频网站| 青春草国产在线视频| 又大又黄又爽视频免费| 国产xxxxx性猛交| 久久影院123| videosex国产| 欧美日韩精品网址| 免费观看a级毛片全部| 国产日韩欧美亚洲二区| 伦理电影免费视频| 90打野战视频偷拍视频| 下体分泌物呈黄色| 日本午夜av视频| 91成人精品电影| 亚洲欧洲精品一区二区精品久久久 | 亚洲色图 男人天堂 中文字幕| 精品亚洲乱码少妇综合久久| 欧美国产精品一级二级三级| 国产在线免费精品| 亚洲一区中文字幕在线| 亚洲天堂av无毛| 国产野战对白在线观看| 久久久久精品国产欧美久久久 | 韩国精品一区二区三区| 高清av免费在线| 亚洲在久久综合| 咕卡用的链子| 汤姆久久久久久久影院中文字幕| 久久精品国产a三级三级三级| 国产亚洲欧美精品永久| 亚洲国产日韩一区二区| 女性被躁到高潮视频| 欧美精品一区二区免费开放| 丝袜喷水一区| 国产精品女同一区二区软件| 国产av码专区亚洲av| 一级黄片播放器| 国产国语露脸激情在线看| 久久狼人影院| 亚洲色图综合在线观看| 国产成人精品久久二区二区91 | 亚洲av国产av综合av卡| 国产深夜福利视频在线观看| 欧美国产精品一级二级三级| 色94色欧美一区二区| 水蜜桃什么品种好| 少妇人妻 视频| 久热这里只有精品99| 国产成人免费无遮挡视频| 国产成人精品无人区| 老司机靠b影院| 亚洲av福利一区| 久久精品国产亚洲av涩爱| 2021少妇久久久久久久久久久| 91国产中文字幕| 精品亚洲成a人片在线观看| 中文字幕最新亚洲高清| 国产精品av久久久久免费| 日韩 亚洲 欧美在线| 欧美日韩成人在线一区二区| 亚洲av综合色区一区| 别揉我奶头~嗯~啊~动态视频 | 两个人看的免费小视频| 国产探花极品一区二区| 啦啦啦视频在线资源免费观看| 亚洲成色77777| 一区二区三区乱码不卡18| 最近最新中文字幕大全免费视频 | 啦啦啦啦在线视频资源| 哪个播放器可以免费观看大片| 在线亚洲精品国产二区图片欧美| 精品国产乱码久久久久久小说| 国产深夜福利视频在线观看| 少妇人妻 视频| 久久久国产欧美日韩av| 狂野欧美激情性xxxx| 九九爱精品视频在线观看| 国产精品国产三级专区第一集| 侵犯人妻中文字幕一二三四区| 天天躁夜夜躁狠狠久久av| 又黄又粗又硬又大视频| 国产成人精品福利久久| 一级毛片我不卡| 亚洲欧美一区二区三区黑人| 下体分泌物呈黄色| 汤姆久久久久久久影院中文字幕| 另类精品久久| 大码成人一级视频| 黄色一级大片看看| 国产精品免费视频内射| e午夜精品久久久久久久| 欧美黄色片欧美黄色片| 久久精品亚洲熟妇少妇任你| 99精品久久久久人妻精品| 日韩一区二区视频免费看| 男男h啪啪无遮挡| 18在线观看网站| tube8黄色片| av在线播放精品| 老鸭窝网址在线观看| 亚洲伊人色综图| 成人18禁高潮啪啪吃奶动态图| 狠狠婷婷综合久久久久久88av| 国产无遮挡羞羞视频在线观看| 午夜激情久久久久久久| 久久久国产精品麻豆| 亚洲熟女毛片儿| 狂野欧美激情性xxxx| 啦啦啦 在线观看视频| 欧美日韩精品网址| 性少妇av在线| 一本一本久久a久久精品综合妖精| 亚洲四区av| 日韩精品有码人妻一区| 亚洲视频免费观看视频| 亚洲成人手机| 亚洲av日韩在线播放| 亚洲精品在线美女| 精品一区二区免费观看| 69精品国产乱码久久久| 久久久久久人妻| 日日撸夜夜添| 国产淫语在线视频| 亚洲欧洲日产国产| 午夜免费男女啪啪视频观看| av卡一久久| 1024视频免费在线观看| 女人被躁到高潮嗷嗷叫费观| 亚洲欧美成人综合另类久久久| www.自偷自拍.com| 亚洲国产欧美在线一区| 宅男免费午夜| av卡一久久| 永久免费av网站大全| 亚洲熟女毛片儿| 亚洲欧洲国产日韩| 午夜影院在线不卡| 中国国产av一级| 黄色一级大片看看| 不卡av一区二区三区| 一区二区三区精品91| 黑人巨大精品欧美一区二区蜜桃| 国产男人的电影天堂91|