• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optical sw itching based on magnetic resonance of sp lit ring resonator array

    2010-05-10 08:10:58SHOUXiang,GANBen-xin,SUHong-yan
    中國(guó)光學(xué) 2010年4期
    關(guān)鍵詞:當(dāng)涂杭州人紅艷

    Optical sw itching based on magnetic resonance of sp lit ring resonator array

    We demonstrate an all-optical switching of themagnetic resonance properties associated with ametallic Split Ring Resonator(SRR)array.The periodically spaced elements are fabricated on a high-resistivity silicon wafer and probed by using conventional Terahertz(THz)time-domain spectroscopy.We use a continuous-wave laser diode to generate carriers in the gaps of the SRR elements.Using a sufficient power,this optical excitation can create an effective short gap,which would switch the resonant properties of themetamaterial from that of an SRR array to that of a closed ring resonator array and leads to dramatic changes in the THz transmission.In the present experiment,the optically induced switching is associated with themagnetic resonance.However,with appropriate changes in the device structure,this approach can be extended to switch a medium with a negative real index of refraction to amedium with a positive real index of refraction.This opens the way to creat a broad new range of active devices.

    optical switching;magnetic resonance;ring resonator array

    1 Introduction

    In recent years,there has been a great interest in studying artificially structured materials.The appeal of these structures,often referred to asmetamaterials,may be attributed largely to the fact that such materials can be engineered to exhibit properties that can be varied over amuch wider range than naturally occurring materials.As an example,metamaterials may be used to gain greater control over the propagation properties of electromagnetic radiation.One class of structures that has elicited significant attention recently includes media that exhibit a negative effective permeability or a negative effective refractive index.The electromagnetic properties ofmedia exhibiting these properties are characterized by a number of unique and unusual properties that were first discussed theoretically by Veselago[1]in more than three decades ago.

    Since the initial demonstration of amaterial that exhibits a negative real index of refraction[2,3],numerous metal-dielectric structures have been proposed and fabricated that demonstrate equivalent properties[4-7].However,the structures used in the initial demonstration,composed of a combination of metallic split ring resonator(SRR)and thin metallic wire arrays,remain the most extensively studied.The SRR element is used to exhibit a negativemagnetic permeability[8],and the wires are used to exhibit a negative electric permittivity[9].With specific regard to split ring resonators,although the initialembodiments were designed for microwave studies,there has been significant work recently in demonstrating that these elements exhibit magnetic response at THz and mid-infrared frequencies[10-12].

    A significant challenge in this field is the realization of active devices.To our knowledge,all previous experimental studies have focused on structures that are static.Active devices,however,would require the ability to dynamically alter the properties of thesemetamaterials.In principle,there are a number ofways to accomplish the effect.Focusing solely on the properties of SRRs,the resonance properties can be altered by creating large scale changes in the dielectric properties of the substrate medium,causing dynamic changes in the spacing between the rings in conventional double split ring resonator designs,or causing dynamic changes in the gap properties of the SRR elements[8].

    In this paper,we experimentally demonstrate the all-optical switching of the magnetic resonance properties associated with a metallic SRR array.These periodically spaced magnetic elements are fabricated on a high-resistivity silicon wafer and probed by using conventional THz time-domain spectroscopy.Using an independent continuous-wave laser diode to illuminate the silicon surface,we generate charge carriers in the gaps of the SRR elements.With a sufficient optical power,this optical excitation can cause an effective short gap,which can switch the resonant properties of themetamaterial from that of an SRR array to that of a closed ring resonator array.This would correspond to the presence or elimination of the low frequency magnetic resonance.In presentexperimental embodiment,the probing THz beam is normally incident on the SRR array,so that themagnetic component of the electromagnetic field lies in the plane of the SRR.Therefore,if amagnetic response is observed,the associated permeability is not negative[12,13].However,with appropriate changes in the device structure,this approach can be extended to switch a medium with a negative real index of refraction to amedium with a positive real index of refraction.

    2 Experimental details

    Fig.1 Schematic diagrams of a square double-ring SRR and excitation geometry.

    We fabricate an SRR array on a 500μm thick,>10 kΩ·cm high-resistive silicon wafer.The individual array elements are patterned on a 300 nm aluminum layer using conventionalmetallization and photolithographic techniques.Fig.1(a)shows the schematic diagram of an individual SRR element along with the corresponding dimensions.The dimensions of the SRR elements used in this study are w=131μm,c=12.5μm,d=15μm,g=11μm and r=51μm and the space between the SRRs is 180μm on a square lattice.Themagnetic resonance frequency for the high-resistive silicon substrate lies at 0.13 THz,corresponding to a lattice spacing of~λ/13(λ=300μm at 1 THz).The SRR dimensions,lattice spacing,and magnetic resonance frequency are chosen based on power considerations of the optical(laser diode)excitation source described below.For the purposes of comparison,we also fabricate a nominally identical Closed Ring Resonator(CRR)array.

    A schematic diagram of the experimental setup used for THz time-domain spectroscopy[14]is shown in Fig.2.We use a mode-locked Ti:sapphire laser as the optical source to generate and detect the THz pulses.The laser oscillator operates at a central wavelength of 820 nm with a repetition rate of 89 MHz.Conventional photoconductive devices are used for both the emission and coherent detection of the transmitted THz electric field.The array is placed at the center of the two off-axis parabolicmirrors in the THz spectroscopy system as shown in Fig.2.The THz beam is normally incident on the structure and the array is aligned in the THz beam path where the incident electric field lies parallelly to the gaps in the individual SRR element.The THz field geometries are shown schematically in Fig.1(b)and Fig.1(c).

    In order to investigate the optical switching properties of the magnetic response associated with the SRR array,a continuous-wave laser diode which is operated at~830 nm and with an average power of up to 150 mW is used to alter the conductivity of the silicon regions located in the gaps of the SRR elements,as shown in Fig.2.The optical beam is focused to a spot size of~1 mm on the SRR array.And then we investigate the THz transmission properties through the SRR array as a function of optical power of incident laser diode.Upon optical illumination of the array,photoexcited charge carriers are generated near the surface of the semiconductor substrate.For themaximum optical excitation used,we estimate that the carrier density is approximately 3× 1014cm-3.Despite the spatial non-uniformity of the optical excitation beam,we expect the carrier density across the probed sample region to be approximately uniform,which is given by the long carrier recombination time(τr~25 ms)of high resistivity silicon[15].Optical excitation of the silicon in the gap regions of the SRR elements causes a sharp reduction in the resistance.In the presence of very high optical intensities,the gapswould be effectively shorted,so that the SRR elements would appear as Closed Ring Resonator(CRR)elements.The transmission properties of SRR arrays are dramatically different from those of CRR arrays[8,12].As a consequence of fabricating on a silicon wafer,the optical pump illumination increases the free charge carrier density across the entire sample,thereby the transmission of THz radiation through the wafer is reduced.Therefore,for each laser diode power level used,reference transmission spectra are taken by using an identical blank high-resistive silicon substrate under identical optical illumination conditions.

    Fig.2 Schematic diagram of experimental setup.

    In contrast to conventional optical measurementswhere the transmitted optical power is measured,THz time-domain spectroscopy allows for the directmeasurement of the THz electric field,yielding both amplitude and phase information[16,17].By transforming the time-domain data to frequency domain,we are able to determine the magnitude and phase of the amplitude transmission coefficient,t(v)independently,which is used for the SRR and CRR structures and has the relation as:

    In Eq.(1),ESRRand Esubstrateare the transmitted THz fields through the metallic array and a blank substrate,respectively;|t(v)|andφ(v)are the magnitude and phase of the amplitude transmission coefficient,and v is the THz frequency.As noted above,both time-domain waveforms are obtained under identical optical illumination conditions.

    3 Experimental results and discussion

    Fig.3 shows the amplitude and phase of the transmission spectra of the SRR array for both parallel and perpendicular to the gaps in the resonators,and the spectra for the CRR array aswell.Aswe can see above,the THz beam is normally incident on the SRR array.Therefore,themagnetic field lies in the plane of the resonators and can not contribute to the desired magnetic resonance.However,if the electric field of the THz pulse is aligned parallelly to the electric field direction within the capacitive gap of the SRR,the incident THz electric field can couple to the magnetic resonance.This result has been demonstrated experimentally[13].Thus,for the data corresponding to the parallel excitation geometry of the SRR,two separate resonances are observed in the amplitude transmission spectra of SRR.The magnetic resonance occurs at~0.13 THz,while the higher frequency electrical resonance occurs between 0.25 THz and 0.3 THz.It is worth while to note that the spectra for the SRR(perpendicular orientation)and CRR are almost identical.For last two measurements,there is a slight blue shift in the high frequency(electrical)resonance.This result is consistent with previous measurements with similar structures[12].

    Fig.3 Amplitude transmission coefficients of closed and open SRR structures.

    Fig.4 Transmission spectra for SRR array fabricated.

    Fig.4 shows the amplitude of the transmission spectrum through the SRR array(parallel orientation)as a function of the laser excitation power.There are several noteworthy points regarding the transmission resonances which appear in the amplitude spectra in Fig.4.The electrical resonance at~0.26 THz changes a little with increasing optical power.We note that the primary difference in the transmission spectrum between an appropriately oriented SRR array(Fig.1(b))and a CRR array is that the latter array does not exhibit amagnetic resonance and demonstrates a slight blue shift in the higher frequency electrical resonance.Even for the highest optical illumination power of150mW,we do not observe any significant spectral variation in the lineshape of the electrical resonance at~0.26 THz.It is necessary to observe this result if a far greater optical power is used.It is also worth noting that the transmission spectrum for the SRR array(perpendicular orientation)is essentially unchanged as a function of the laser diode optical power(not shown).It is not surprising,since the SRR array(perpendicular orientation)and a CRR array exhibit nearly identical transmission properties.

    With specific regard to the magnetic resonance at~0.13 THz as shown in Fig.4,it is apparent that the depth of the resonance is progressively reduced with the increase of optical power.This change in the resonance shape is directly related to the generation of charge carriers in the gap regions of the SRR elements,and it leads to a reduction of the resistance.In order to quantify this observation,we measure the magnitude of this transmission dip of four traces as shown in Fig.4.This data,as shown in Fig.5,depicts an approximately linear decrease as a function of optical intensity.If we assume a continued linear response in the magnitude of the resonance dip as a function of optical power,it should require~650 mW of laser diode power to completely switch off the magnetic resonance.Because this value appears very large,it is important to note that this is not the actual power which is necessary to switch the magnetic resonance.The gaps in the SRR elements represent less than 1%of the sample area,hence,if the optical illumination could be appropriately focused,only~7 mW of cw laser power would be necessary to completely switch the magnetic resonance.In principle,this may be accomplished using an appropriately designed plastic lens array.Such a plastic array should not appreciably absorb the incident THz radiation and can be largely non-perturbative to the propagation properties of the THz beam.

    Fig.5 Magnitude ofmagnetic resonance dip at~0.13 THz from the SRR array versus the laser diode optical illumination power.The line represents a linear least-squares fit to the data.

    4 Conclusions

    In conclusions,we have demonstrated an all-optical switching of themagnetic resonance properties associated with ametallic SRR array.We use a continuous-wave laser diode to generate carriers in the gaps of the SRR elements.With a sufficient optical power,this optical excitation can create an effective short across the gaps,which alter the resonant properties of themetamaterial from thatof a SRR array to that of a closed ring resonator array.Using only 150 mW to illuminate the entire sample surface,we observe a 33%reduction in themagnitude of themagnetic resonance.However,by appropriately focusing the optical source,we believe that relatively modest optical power levels(in the 10-20 mW range)are necessary to achieve the complete switching.Furthermore,the demonstration discussed here is not limited to magnetic resonance switching.With appropriate changes in the device structure,this approach can be extended to switch a medium with a negative real index of refraction to amedium with a positive real index of refraction.This opens the way to realize a broad new range of active devices.

    Reference:

    [1]VESELAGO V G.The electrodynamics of substances with simultaneously negative values ofεandμ[J].Sov.Phys.Usp.,1968,10:509-514.

    [2]SMITH D R,PADILLAW J,VIER D C,et al..Compositemedium with simultaneously negative permeability and permit-tivity[J].Phys.Rev.Lett.,2000,84:4184-4187.

    [3]SHELBY R A,SMITH D R,SCHULTZ S.Experimental verification of a negative index of refraction[J].Science,2001,292:77-79.

    [4]SHALAEV V M,CAIW,CHETTIAR U K,et al..Negative index of refraction in opticalmetamaterials[J].Opt.Lett.,2005,30:3356-3358.

    [5]BULU I,CAGLAYAN H,OZBAY E.Experimental demonstration of labyrinth-based left-handed metamaterials[J].Opt.Express,2005,13:10238-10247.

    [6]ZHANG S,F(xiàn)ANW,PANOIU N C,et al..Experimental demonstration of near-infrared negative-indexmetamaterials[J].Phys.Rev.Lett.,2005,95:137404/1-4.

    [7]ZHOU J,ZHANG L,TUTTLE G,et al..Negative indexmaterials using simple shortwire pairs[J].Phys.Rev.B,2006,73:041101/1-4.

    [8]PENDRY JB,HOLDEN A,ROBBINSD D,et al..Magnetism from conductors and enhanced nonlinear phenomena[J].IEEE Trans.Microwave Theory Technol.,1999,47:2075-2084.

    [9]PENDRY J B,HOLDEN A,STEWART W,et al..Extremely low frequency plasmons in metallic mesostructures[J].Phys.Rev.Lett.,1996,76:4773-4776.

    [10]KATSARAKISN,KONSTANTINIDISG,KOSTOPOULOSA,et al..Magnetic response of split-ring resonators in the farinfrared frequency regime[J].Opt.Lett.,2004,30:1348-1350.

    [11]YEN T J,PADILLAW J,F(xiàn)ANG N,et al..Terahertzmagnetic response from artificialmaterials[J].Science,2004,303:1494-1496.

    [12]LINDEN S,ENKRICH C,WEGENER M,et al..Magnetic response ofmetamaterials at100 terahertz[J].Science,2004,306:1351-1353.

    [13]KATSARAKISN,KOSCHNY T,KAFESAKIM,et al..Electric coupling to themagnetic response of split ring resonators[J].Appl.Phys.Lett.,2004,84:2943-2945.

    [14]GRISCHKOWSKY D.Frontiers in Nonlinear Optics[M].Philadelphia:Institute of Physics Publishing,1992.

    [15]SZE SM.Physics of Semiconductor Devices[M].New York:Wiley,1981.

    [16]NUSSM C,ORENSTEIN J.Terahertz time-domain spectroscopy[M].Berlin:Springer,1998.

    [17]HAN P Y,TANIM,USAMIM,et al..A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy[J].J.Appl.Phys.,2001,89(4):2357-2359

    SHOU Xiang1,GAN Ben-xin2,SU Hong-yan2,BAILu-guang1

    (1.Cao Group,Salt Lake City,USA;

    2.Huai′an College of Information Technology,Huai′an 223003,China)

    TB34;TN15

    A

    1674-2915(2010)04-0385-06

    2010-03-15;

    2010-05-13

    壽 翔(1973—),男,浙江杭州人,電子工程博士,主要從事醫(yī)用激光儀器的研究與開(kāi)發(fā)。

    蘇紅艷(1982—),女,江蘇淮安人,講師,碩士,主要從事控制工程及應(yīng)用的研究。

    E-mail:xiangshou@gmail.com

    甘本鑫(1982—),男,安徽當(dāng)涂人,講師,碩士,主要從事控制工程及應(yīng)用的研究。E-mail:tom_gbx@163.com

    猜你喜歡
    當(dāng)涂杭州人紅艷
    “卿今當(dāng)涂掌事”之“當(dāng)涂”辨正
    《謐》國(guó)畫
    與蓮共浴
    當(dāng)涂民歌現(xiàn)狀研究
    黃河之聲(2019年7期)2019-12-15 22:03:51
    當(dāng)涂方言與民歌的共生關(guān)系研究
    Temperature field analysis of two rotating and squeezing steel-rubber rollers①
    Forming mechanism of ink layer on the printing plate in inking process and influencing factors of its thickness①
    105對(duì)新杭州人圓了集體婚禮夢(mèng)
    杭州(2016年4期)2016-06-27 00:09:23
    Calculation of impact factor of vibrator oscillation in offset printing based on fuzzy controller and genetic algorithm*
    當(dāng)涂民歌的傳承與保護(hù)
    大眾文藝(2014年5期)2014-03-12 02:09:59
    18禁动态无遮挡网站| 亚洲欧洲精品一区二区精品久久久 | 一本一本综合久久| 亚洲不卡免费看| 日韩在线高清观看一区二区三区| 成年美女黄网站色视频大全免费 | 成人国产av品久久久| 亚洲精品日韩在线中文字幕| 色哟哟·www| 午夜福利影视在线免费观看| 极品教师在线视频| 人妻 亚洲 视频| 国产免费福利视频在线观看| 亚洲综合色惰| 亚洲综合精品二区| 成人综合一区亚洲| 交换朋友夫妻互换小说| 国产精品欧美亚洲77777| 亚洲四区av| 精品99又大又爽又粗少妇毛片| 午夜视频国产福利| 亚洲av欧美aⅴ国产| 大码成人一级视频| 曰老女人黄片| 午夜免费男女啪啪视频观看| av在线观看视频网站免费| 免费久久久久久久精品成人欧美视频 | 国产av码专区亚洲av| 日韩伦理黄色片| 黄色怎么调成土黄色| 韩国高清视频一区二区三区| 欧美老熟妇乱子伦牲交| 日本av免费视频播放| 成人漫画全彩无遮挡| 欧美xxxx性猛交bbbb| 夜夜爽夜夜爽视频| 亚洲一区二区三区欧美精品| 狂野欧美激情性xxxx在线观看| 久久久久精品性色| 成年女人在线观看亚洲视频| 这个男人来自地球电影免费观看 | 亚洲欧美一区二区三区国产| 人妻一区二区av| 免费高清在线观看视频在线观看| 日本爱情动作片www.在线观看| 啦啦啦啦在线视频资源| 伦理电影大哥的女人| 视频区图区小说| 在线观看免费高清a一片| 特大巨黑吊av在线直播| 国产一区二区三区综合在线观看 | 国产永久视频网站| 搡老乐熟女国产| 免费黄色在线免费观看| 久久久久久久久久成人| 久久精品久久久久久噜噜老黄| av在线播放精品| 特大巨黑吊av在线直播| 国产熟女欧美一区二区| 一本色道久久久久久精品综合| 亚洲国产最新在线播放| 青春草视频在线免费观看| 国产成人精品久久久久久| 亚洲精品乱久久久久久| 乱系列少妇在线播放| 国产一区有黄有色的免费视频| 国产熟女欧美一区二区| 欧美另类一区| 女的被弄到高潮叫床怎么办| 日韩熟女老妇一区二区性免费视频| 最新中文字幕久久久久| 大香蕉97超碰在线| 久久精品熟女亚洲av麻豆精品| 欧美精品人与动牲交sv欧美| 成人影院久久| 建设人人有责人人尽责人人享有的| kizo精华| 精品国产乱码久久久久久小说| 啦啦啦中文免费视频观看日本| 香蕉精品网在线| 亚洲,欧美,日韩| 哪个播放器可以免费观看大片| 午夜免费鲁丝| 免费黄网站久久成人精品| 久久久久久久久久久免费av| 亚洲一级一片aⅴ在线观看| 婷婷色综合www| 国产高清三级在线| 亚洲精品乱码久久久久久按摩| av一本久久久久| 麻豆精品久久久久久蜜桃| 日韩成人伦理影院| 亚洲伊人久久精品综合| 国产 精品1| 久久婷婷青草| 伦理电影大哥的女人| 成人毛片a级毛片在线播放| av免费在线看不卡| 免费观看性生交大片5| 最近2019中文字幕mv第一页| 国产免费又黄又爽又色| 久久国产精品大桥未久av | 欧美3d第一页| 人妻 亚洲 视频| 亚洲精品aⅴ在线观看| 亚洲精品日韩av片在线观看| 亚洲精品国产色婷婷电影| 我要看黄色一级片免费的| 性色av一级| 精品一区二区三卡| av福利片在线观看| av在线观看视频网站免费| 黑人高潮一二区| 观看美女的网站| 黄色毛片三级朝国网站 | 久久99一区二区三区| 国产一区二区三区av在线| 又粗又硬又长又爽又黄的视频| 免费观看性生交大片5| 国产精品99久久99久久久不卡 | 欧美日韩av久久| 乱码一卡2卡4卡精品| 亚洲国产日韩一区二区| 亚洲第一区二区三区不卡| av免费在线看不卡| 99九九线精品视频在线观看视频| 久热久热在线精品观看| 丁香六月天网| 十八禁网站网址无遮挡 | 国产精品熟女久久久久浪| 亚洲国产成人一精品久久久| 午夜免费男女啪啪视频观看| 国产有黄有色有爽视频| 国产黄色免费在线视频| 国产精品免费大片| 99久久精品国产国产毛片| 女的被弄到高潮叫床怎么办| 国产在线男女| 91午夜精品亚洲一区二区三区| 久久午夜综合久久蜜桃| 自线自在国产av| 肉色欧美久久久久久久蜜桃| 国产精品一区二区在线不卡| 国产精品久久久久久久久免| 国产免费福利视频在线观看| 亚洲欧美日韩卡通动漫| 国产欧美日韩精品一区二区| 国产亚洲5aaaaa淫片| 综合色丁香网| 国产日韩欧美在线精品| 汤姆久久久久久久影院中文字幕| 精品少妇内射三级| 午夜免费男女啪啪视频观看| 少妇丰满av| 亚洲欧美清纯卡通| 国产成人午夜福利电影在线观看| 精品久久久久久电影网| 99热6这里只有精品| 国产一区二区三区综合在线观看 | 午夜av观看不卡| 热re99久久国产66热| 国产成人精品一,二区| 2022亚洲国产成人精品| 色视频www国产| 人人妻人人看人人澡| 日本色播在线视频| 成年人午夜在线观看视频| 91精品一卡2卡3卡4卡| 久久精品久久久久久噜噜老黄| 高清欧美精品videossex| 99久久精品一区二区三区| 欧美日韩视频精品一区| 久久久久网色| 久久女婷五月综合色啪小说| 国产亚洲午夜精品一区二区久久| 国产在线一区二区三区精| 永久免费av网站大全| 偷拍熟女少妇极品色| 亚洲图色成人| 日产精品乱码卡一卡2卡三| 亚洲色图综合在线观看| 午夜视频国产福利| 国产精品国产三级国产av玫瑰| 久久久久国产精品人妻一区二区| 久久国产精品大桥未久av | 人人妻人人看人人澡| 成人国产麻豆网| a 毛片基地| 人妻制服诱惑在线中文字幕| 国产成人精品婷婷| 一级av片app| 免费观看av网站的网址| 国精品久久久久久国模美| 一级爰片在线观看| 免费高清在线观看视频在线观看| 色婷婷久久久亚洲欧美| 免费av不卡在线播放| 亚洲内射少妇av| 国产一级毛片在线| 成人毛片a级毛片在线播放| 久久97久久精品| 日本欧美视频一区| 视频区图区小说| 日韩 亚洲 欧美在线| 五月开心婷婷网| 精品久久久久久久久av| 欧美成人午夜免费资源| 国产午夜精品久久久久久一区二区三区| 一区二区三区免费毛片| 亚洲国产精品999| 少妇被粗大猛烈的视频| 一区二区三区免费毛片| 国产色爽女视频免费观看| 成人毛片60女人毛片免费| 亚州av有码| 一本大道久久a久久精品| 国产乱人偷精品视频| 欧美高清成人免费视频www| 国产片特级美女逼逼视频| 我要看黄色一级片免费的| 18禁动态无遮挡网站| 乱码一卡2卡4卡精品| 精品人妻熟女毛片av久久网站| 精品人妻偷拍中文字幕| 各种免费的搞黄视频| 丰满少妇做爰视频| 免费黄频网站在线观看国产| 久久人妻熟女aⅴ| 大码成人一级视频| 精品一区二区三区视频在线| 青春草视频在线免费观看| 美女大奶头黄色视频| 一级毛片电影观看| 99热6这里只有精品| 国产成人一区二区在线| 成人黄色视频免费在线看| 午夜福利视频精品| 日日啪夜夜爽| 三级国产精品欧美在线观看| 我要看日韩黄色一级片| 91精品国产九色| 国产伦在线观看视频一区| 成人黄色视频免费在线看| 国产日韩一区二区三区精品不卡 | 国产av码专区亚洲av| 成人国产av品久久久| 高清视频免费观看一区二区| 国产午夜精品久久久久久一区二区三区| 久久青草综合色| 国产在线一区二区三区精| 在线天堂最新版资源| 色哟哟·www| 国产日韩欧美视频二区| 中文资源天堂在线| 久久国产乱子免费精品| av在线app专区| 久久国产精品大桥未久av | 欧美最新免费一区二区三区| 日韩强制内射视频| 日韩电影二区| 久久久久精品久久久久真实原创| 一级黄片播放器| 高清午夜精品一区二区三区| 91精品伊人久久大香线蕉| 中国美白少妇内射xxxbb| 亚洲精品色激情综合| 狠狠精品人妻久久久久久综合| 亚洲av国产av综合av卡| 国产精品99久久99久久久不卡 | 一本—道久久a久久精品蜜桃钙片| 国产亚洲一区二区精品| av网站免费在线观看视频| 一区二区三区免费毛片| 成人免费观看视频高清| 国产av国产精品国产| 欧美高清成人免费视频www| xxx大片免费视频| 国产91av在线免费观看| 哪个播放器可以免费观看大片| 狂野欧美激情性bbbbbb| 91久久精品电影网| 中文乱码字字幕精品一区二区三区| .国产精品久久| 校园人妻丝袜中文字幕| 亚洲,欧美,日韩| 国产亚洲午夜精品一区二区久久| 老熟女久久久| 22中文网久久字幕| 丰满乱子伦码专区| 日本黄色片子视频| 亚洲成色77777| 亚洲国产精品专区欧美| 日韩免费高清中文字幕av| 国产精品麻豆人妻色哟哟久久| 永久免费av网站大全| 在线观看美女被高潮喷水网站| 亚洲不卡免费看| 两个人的视频大全免费| 亚洲欧洲精品一区二区精品久久久 | 久久精品国产鲁丝片午夜精品| 亚洲性久久影院| av播播在线观看一区| 国产日韩一区二区三区精品不卡 | 国产精品久久久久成人av| 一级毛片aaaaaa免费看小| 欧美精品一区二区免费开放| 热re99久久国产66热| 日本欧美视频一区| 国产黄频视频在线观看| 久久 成人 亚洲| 丝袜喷水一区| 汤姆久久久久久久影院中文字幕| av卡一久久| 久久婷婷青草| 日本午夜av视频| 日韩欧美精品免费久久| 蜜桃在线观看..| 成人国产麻豆网| 在现免费观看毛片| 亚洲无线观看免费| 观看av在线不卡| 欧美 亚洲 国产 日韩一| 国产午夜精品一二区理论片| 亚洲精品日韩av片在线观看| 国产成人免费无遮挡视频| 中文字幕免费在线视频6| 欧美三级亚洲精品| 中国国产av一级| 国产爽快片一区二区三区| 国产精品久久久久久久电影| 欧美少妇被猛烈插入视频| 女的被弄到高潮叫床怎么办| 日本-黄色视频高清免费观看| 成人18禁高潮啪啪吃奶动态图 | 国产片特级美女逼逼视频| 欧美日本中文国产一区发布| 亚洲一级一片aⅴ在线观看| 性色av一级| av.在线天堂| 人人澡人人妻人| 蜜桃久久精品国产亚洲av| 成年美女黄网站色视频大全免费 | 啦啦啦中文免费视频观看日本| 国产在线一区二区三区精| 亚洲成色77777| √禁漫天堂资源中文www| av线在线观看网站| www.av在线官网国产| 国产精品国产三级国产av玫瑰| 少妇人妻精品综合一区二区| 国产在线免费精品| 多毛熟女@视频| 丝瓜视频免费看黄片| 亚洲精品久久午夜乱码| 久久99热6这里只有精品| 看免费成人av毛片| 成人国产av品久久久| 国产亚洲av片在线观看秒播厂| 亚洲av国产av综合av卡| 久久午夜福利片| 日韩在线高清观看一区二区三区| 亚洲国产精品专区欧美| 免费在线观看成人毛片| 免费av不卡在线播放| 在线观看国产h片| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品,欧美精品| 中文字幕精品免费在线观看视频 | 老司机影院成人| 亚洲国产日韩一区二区| 一级毛片电影观看| videos熟女内射| 婷婷色综合大香蕉| 中文乱码字字幕精品一区二区三区| 黄色配什么色好看| 十分钟在线观看高清视频www | 免费黄频网站在线观看国产| 免费高清在线观看视频在线观看| 精品国产国语对白av| 亚洲精品一二三| 亚洲精品乱久久久久久| 亚洲精品456在线播放app| 在线观看av片永久免费下载| 毛片一级片免费看久久久久| 成人午夜精彩视频在线观看| 精品一区二区免费观看| 国产精品一区二区在线不卡| 新久久久久国产一级毛片| 自拍偷自拍亚洲精品老妇| 老司机影院成人| 人人妻人人澡人人爽人人夜夜| 国产视频首页在线观看| av黄色大香蕉| 观看av在线不卡| 免费在线观看成人毛片| 人体艺术视频欧美日本| 我要看日韩黄色一级片| 免费黄网站久久成人精品| 亚洲欧美精品自产自拍| 成人18禁高潮啪啪吃奶动态图 | 国产精品一区www在线观看| 免费看光身美女| 国产亚洲91精品色在线| 18禁动态无遮挡网站| 91午夜精品亚洲一区二区三区| 精品久久久精品久久久| 99国产精品免费福利视频| 有码 亚洲区| videos熟女内射| 亚洲天堂av无毛| 亚洲欧美一区二区三区国产| 国产精品久久久久久久电影| 久久精品久久精品一区二区三区| 亚洲丝袜综合中文字幕| 99久久精品热视频| 香蕉精品网在线| 亚洲av国产av综合av卡| 五月天丁香电影| 黑丝袜美女国产一区| 免费观看性生交大片5| 午夜免费男女啪啪视频观看| 精品午夜福利在线看| 熟妇人妻不卡中文字幕| 亚洲真实伦在线观看| 男人和女人高潮做爰伦理| 国产男女超爽视频在线观看| 国产色爽女视频免费观看| 亚洲人成网站在线观看播放| 色吧在线观看| 亚洲精品国产av蜜桃| a级毛片在线看网站| 一本久久精品| 国产精品国产av在线观看| 日韩大片免费观看网站| 国产精品久久久久久久久免| 2022亚洲国产成人精品| 国产 精品1| 成人毛片60女人毛片免费| 22中文网久久字幕| 色婷婷av一区二区三区视频| 亚洲欧美日韩另类电影网站| 国产精品一区二区性色av| 久久国产亚洲av麻豆专区| 国产精品人妻久久久久久| 一边亲一边摸免费视频| 精品一品国产午夜福利视频| 亚州av有码| 国产一区有黄有色的免费视频| 丰满人妻一区二区三区视频av| 自线自在国产av| 亚洲欧美日韩东京热| 欧美xxⅹ黑人| 久久6这里有精品| 少妇的逼水好多| 久久久久久久久大av| 一级av片app| 一级,二级,三级黄色视频| 高清欧美精品videossex| 国产高清不卡午夜福利| 亚洲,一卡二卡三卡| 熟女av电影| 国产亚洲最大av| 久久精品熟女亚洲av麻豆精品| 女人精品久久久久毛片| 欧美一级a爱片免费观看看| 丰满乱子伦码专区| 国产在线免费精品| 国产精品嫩草影院av在线观看| 最新的欧美精品一区二区| 中文字幕制服av| 18禁裸乳无遮挡动漫免费视频| 两个人免费观看高清视频 | 国产色爽女视频免费观看| 男女边吃奶边做爰视频| 日本黄色日本黄色录像| 如日韩欧美国产精品一区二区三区 | 在线观看免费视频网站a站| 爱豆传媒免费全集在线观看| av黄色大香蕉| 少妇人妻久久综合中文| 熟妇人妻不卡中文字幕| 久久精品国产自在天天线| 色视频www国产| 这个男人来自地球电影免费观看 | 亚洲欧洲国产日韩| 如何舔出高潮| 欧美精品一区二区免费开放| 韩国av在线不卡| 亚洲精品视频女| 狂野欧美激情性bbbbbb| 22中文网久久字幕| 国产成人aa在线观看| 欧美日韩在线观看h| 又爽又黄a免费视频| 夫妻午夜视频| 伦理电影大哥的女人| 国产精品嫩草影院av在线观看| 亚洲精品,欧美精品| 亚洲国产精品国产精品| 国产亚洲午夜精品一区二区久久| 九草在线视频观看| 一本一本综合久久| 深夜a级毛片| 久久久a久久爽久久v久久| 成人影院久久| 久久国产精品大桥未久av | 日韩伦理黄色片| 成人美女网站在线观看视频| 国产日韩一区二区三区精品不卡 | 美女大奶头黄色视频| 如何舔出高潮| 高清av免费在线| 不卡视频在线观看欧美| 热99国产精品久久久久久7| 国产黄频视频在线观看| 91成人精品电影| 日韩强制内射视频| 成人亚洲欧美一区二区av| 少妇 在线观看| 亚洲美女视频黄频| 亚洲人成网站在线观看播放| 美女内射精品一级片tv| 亚洲一区二区三区欧美精品| 91精品国产九色| 久久精品久久久久久噜噜老黄| 九九爱精品视频在线观看| 少妇人妻久久综合中文| 十八禁高潮呻吟视频 | 婷婷色av中文字幕| 久久99蜜桃精品久久| 亚洲精品成人av观看孕妇| 亚洲伊人久久精品综合| 国产91av在线免费观看| 一边亲一边摸免费视频| 女人久久www免费人成看片| 曰老女人黄片| 在线观看免费日韩欧美大片 | 热re99久久精品国产66热6| 久久久午夜欧美精品| 男人爽女人下面视频在线观看| 人妻夜夜爽99麻豆av| 老司机影院成人| 欧美xxⅹ黑人| 精品人妻熟女av久视频| 男女免费视频国产| 国产老妇伦熟女老妇高清| 国内少妇人妻偷人精品xxx网站| 51国产日韩欧美| 国产精品福利在线免费观看| 91精品国产九色| 搡女人真爽免费视频火全软件| 十八禁高潮呻吟视频 | av专区在线播放| 丰满乱子伦码专区| 久久av网站| 精品少妇久久久久久888优播| 久久亚洲国产成人精品v| av天堂久久9| a级一级毛片免费在线观看| 我要看日韩黄色一级片| 在线播放无遮挡| 久久影院123| 亚洲久久久国产精品| 久久 成人 亚洲| 99视频精品全部免费 在线| 亚洲精品日本国产第一区| 亚洲一区二区三区欧美精品| 免费看av在线观看网站| 日韩伦理黄色片| 丁香六月天网| 日韩av免费高清视频| 久久久精品免费免费高清| 丰满迷人的少妇在线观看| 91精品一卡2卡3卡4卡| 久久久久久久精品精品| 看十八女毛片水多多多| 国语对白做爰xxxⅹ性视频网站| 日本黄大片高清| 国产精品99久久99久久久不卡 | 欧美日韩一区二区视频在线观看视频在线| 成人二区视频| 九色成人免费人妻av| 人人妻人人澡人人爽人人夜夜| 国产乱来视频区| 少妇人妻 视频| 日韩视频在线欧美| av天堂久久9| 人妻制服诱惑在线中文字幕| av卡一久久| 夜夜看夜夜爽夜夜摸| 老司机影院成人| 男女啪啪激烈高潮av片| 热re99久久精品国产66热6| 最新中文字幕久久久久| 国产高清三级在线| 亚洲精品国产成人久久av| 国产成人freesex在线| 国产免费一区二区三区四区乱码| 人妻夜夜爽99麻豆av| a级毛色黄片| 国产精品福利在线免费观看| 99热这里只有是精品50| 午夜福利视频精品| 自拍偷自拍亚洲精品老妇| 大又大粗又爽又黄少妇毛片口| 91精品国产国语对白视频| 国产亚洲5aaaaa淫片| 中文字幕久久专区| 王馨瑶露胸无遮挡在线观看| 国产精品偷伦视频观看了| 男女无遮挡免费网站观看| 成人无遮挡网站| 哪个播放器可以免费观看大片| av视频免费观看在线观看| 夜夜骑夜夜射夜夜干|