• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    局部Bagging方法及其在人臉識別中的應用

    2010-05-05 22:55:38朱玉蓮
    關鍵詞:南京航空航天大學信息科學人臉識別

    朱玉蓮

    (南京航空航天大學信息科學與技術學院,南京,210016,中國)

    INTRODUCTION

    Ensemble algorithm trains multiple component classifiers and then combines their predictions using certain fusion rules.Since the generalization ability of the ensemble of multiple classifiers is significantly better than that of a single classifier,the ensemble algorithm has become an active area of research in pattern recognition and machine learning[1-3].In ensemble algorithm,the accuracy of component classifiers and diversity between classifiers are two key properties[4].High diversity assures that different component classifiers make different errors on the same patterns,which means that,by combining classifiers,one can arrive at an ensemble with more accurate decisions.So the diversity greatly affects the recognition performance of the classifier ensemble.Perturbing the training set and perturbing the feature set are two popular schemes to achieve the diversity[5]. Among the methods based on perturbing the training set,Bagging[6]is one of the most famous ensemble construction algorithms.Bagging firstly generates many sample sets from the original data set via bootstrap sampling,then trains a single component learner on each of these sample sets and finally forms an ensemble using certain combining way.Bagging has been achieved great successes in machine learning. However,Bagging often encounters two problems:(1)it hardly works on stable component classifiers,such as nearest neighbor classifiers due to the lack of so-desired diversity among component classifiers,notwithstanding the nearest neighbor classifiers have superior error rate fallen into the range between Bayes error and two times Bayer error[7]and are very useful in the real application;(2)Bagging is difficult to be directly applied to the face recognition task with the small sample size(SSS)[8]property since the component classifiers of Bagging are constructed just on smaller bootstrap sample sets.In this paper,the approach,termed as local Bagging(L-Bagging),is proposed to apply Bagging to nearest neighbor classifiers and face recognition.The major difference between Bagging and L-Bagging is that Bagging establishes component classifiers on different sample sets bootstrapped from the whole training face set while L-Bagging performs bootstrap sampling on each local region[1,9,10].More specifically,the original face images are firstly partitioned into local regions in a deterministic way to form local region training sets,then component classifiers are constructed on different bootstrapped sample sets from each local region,and finally a combination of all the component classifiers is formed for the final decision.Since the dimensionality of local region is usually far less than the number of samples,and the component classifiers are constructed in different local regions,L-Bagging cannot only effectively deals with SSS problem of face recognition,but also generates diverse component classifiers.

    There are four major characteristics of the proposed L-Bagging. Firstly, L-Bagging constructs diverse component classifiers,so it can work well on stable classifiers such as nearest neighbor classifiers;Secondly,L-Bagging relaxes SSS problem of the face recognition,so it can be directly applied to the face recognition task;Thirdly,L-Bagging can simultaneously train a set of classifiers corresponding to different local regions and thus is quite suitable for parallel computation to greatly improve the computational efficiency;Finally,the partition of local regions in L-Bagging is independent on the dimension of the face image,therefore it can also escape the latent dimensional curse when the dimension of the images is quite large.

    1 LOCAL BAGGING

    In this section,L-Bagging approach is proposed by performing bootstrap sampling on different local region sets. The goal of performing bootstrap sampling on different local region sets is three-fold:(1)to constructe diverse component classifiers and adapt Bagging to nearest neighbor classifiers;(2)to solve SSS problem and further make Bagging apply to face recognition task;(3)to use as much local information hidden on face images as possible to relax the influence of local variation for recognition.The L-Bagging of structure is illustrated in Fig.1.

    Fig.1 L-Bagging structure

    From Fig.1,it can be observed that L-Bagging involves three main steps:partitioning local region,training component classifiers and classifying an unknown image.

    Step 1 Partitioning local region.There are two popular techniques to implement the image partition: facial components and local regions.Since local region method usually can obtain better performance than facial component method[11],in this paper,the simplest rectangular region is selected to the partition image.Supposing that there are Mm×nimages belonging to C individuals in the whole training set,each image is firstly divided into L equally sized local regions in a nonoverlapping way which are further concatenated into corresponding column vectors with dimensionality of(m×n)/L.Then,these vectors are collected at the same position of all face images to form a specific local region training set,thus,L separating local region sets(Local1,…,LocalL)are formed.This process is illustrated in Fig.2.

    Fig.2 Construction of local region sets of face images(images from Yale face database)

    Step 2 Training component classifiers.After forming the local region sets,multiple classifiers are trained on each local region set.For each local region set Locali(i= 1,…,L),a bootstrap replication is generated by random sampling from the local region set,then a nearest neighbor classifier Ci,1is constructed on the bootstrap replication. The process is independently repeated t times,so t classifiers Ci,j(j= 1,…,t)are constructed on each local region set.Since there are L local region sets for the whole train sample set,L* t the nearest neighbor classifiers are constructed.

    Step 3 Classifying an unknown image.When an unknown face images A is given,it is firstly partitioned into L local regions(A1,…,AL)according to the same partition way on the training images,then each region Ai(i=1,…,L)is classified using component classifiersCi,j(j=1,…,t).Since there are t classification results for each local region Aiand A consists of L local regions,there are L* t total classification results for the unknown image A.Majority voting rule is used to combine these classification results,i.e.,if the probability of the image A belonging to the cth class is

    then the finalclassification resultofA is:Identity(A)=argmax(Pc).

    2 EXPERIMENTAL RESULTS AND ANALYSIS

    In order to evaluate the performance of LBagging,experiments are carried out on four standard face image databases:AR,Yale B,Yale and ORL.

    2.1 Face image databases

    The used face database AR contains 2 600 frontal face images of 100 different individuals(50 men and 50 women).Each individual has 26 different images in two different sessions separated by two week intervals and each session consists of 13 faces with different facial expressions,illumination conditions and occlusions.Fig.3 shows all samples of one person in AR.

    The extended Yale face database B contains 1 920 single light source images with the frontal pose for 30 subjects(delete the 11 th-18 th individuals due to some bad or damaged images).The image size is resized to 48×42 and the same strategy in Ref.[12]is adopted to divide the images of each individual into five subsets according to the angle of the light source direction.

    The Yale face database consists of 165 face images of 15individuals,each providing 11 different images.While the ORL database contains images from 40 subjects with 10 different images for each subject.

    In the preprocessing step,face images in AR database and Yale database are rotated to make eyes horizontal and cropped to size 66× 48 and 50×50,respectively.In the ORL and Yale B databases,face images are resized to 56×46 and 48×42 without any other preprocessing.

    Fig.3 Example images in face database AR

    2.2 Experimental results

    In the experiments,for the AR database,the first seven images in Session 1 are selected for training and the rest images which are divided into six subsets according to the variation category(AR73Exp:2nd—4th in Session 2;AR73Illu:5th—7th in Session 2;AR73SungS1:8th—10th in Session 1;AR73Scarf1:11th—13th in Session 1;AR73SungS2:8th—10th in Session 2;AR73-Scarf2: 11th—13th in Session 2)are utilized to examine the performance of proposed methods under variance conditions.For Yale B database,The images in SubSet 1 are selected for training,and the images in the other four subsets are selected for testing,respectively.While for Yale and ORL databases,a random subset with five images per person is taken to form training set and the rest of the database is considered to be the testing set.In experiments,the sizes of local region for AR,Yale B,Yale and ORL databases are 6×6,6×7,5×5 and 7×2,respectively and Mahcosine[13]metric is used to construct the nearest neighbor classifiers.

    To evaluate the performance of L-Bagging,L-Bagging is compared with single classifier methods including Baseline(directly use the nearest neighbor classifiers without preprocessing),Eigenfaces,Fisherfaces,M-Eigenfaces which is based on local recognition,and with the ensemble algorithms Nitesh′RS[2]and Bagging.The corresponding classification results are listed in Table 1.

    From the experimental results,one can achieve several conclusions:(1)the recognition accuracy of Bagging is very similar with of Baseline,i.e.,Bagging is not superior to Baseline.It indicates that Bagging does not work well for the nearest neighbor classifier with Mahcosine distance metric;(2)on all of test sets,L-Bagging is significantly superior to all compared methods including Baseline,Bagging,Eigenfaces,Fisherfaces and Nitesh′RS(the minimal improvement is over 1.6%and the maximal one is close to 60%),especially when the test image contains serious occlusion,which indicates that L-Bagging is more effective and competitive;(3)L-Bagging is also effective to slight variations at pose angle and alignment one.Therefore,L-Bagging not only can obtain high recognition accuracy,but also is suitable to the nearest neighbor classifiers.

    2.3 Comparison of computation time

    In this section,experiments are performed to compare the cost time of different methods,and computation time including training and testing time is shown in Table 2.Table 2 shows that althought L-Bagging is more time-consuming than Nitesh′RS,it does not cost more time than Bagging,especially when the size of block is very small.So L-Bagging is superior to Bagging at the computation time.

    Table 1 Classification performance comparison with different methods %

    Table2 Comparison of computation time s

    3 CONCLUSION

    The L-Bagging approach is proposed to simultaneously make Bagging capable of applying to both nearestneighbor classifiers and face recognition.L-Bagging performs bootstrap sampling in different local region sets,as a result,it not only effectively deals with SSS problem,but also generates more diverse component classifiers.Experimental results on standard face image databases demonstrate the good classification performance and computational efficiency of LBagging.It is worth to note that,although the whole paper concentrates on Bagging,the proposed line of the research about L-Bagging is general.Through combining the spatial and geometrical information of facial components in local way,many current multi-category classifiers can also be applied on the face recognition and may obtain better recognition performance.Furthermore,tensor subspace models are one of the modern research directions in the face recognition.Many researches have showed that representing the images as tensors of arbitrary order can further improve the performance of algorithms in most cases[14,15].Consequently,how to generalize L-Bagging to tensor learning is another interesting topic for future study.

    [1] Zhu Yulian,Liu Jun,Chen Songcan.Semi-random subspace method for face recognition[J].Image and Vision Computing,2009,27(9):1358-1370.

    [2] Nitesh V,Chawla,Bowyer K.Random subspaces and subsampling for 2-D face recognition[C]∥IEEE Conference on Computer Vision and Pattern Recognition.[S.l.]:IEEE Computer Society,2005:582-589.

    [3] Wang Xiaogang,Tang Xiaoou.Random sampling forsubspace face recognition [J].International Journal of Computer Vision,2006,70(11):91-104.

    [4] Dietterich T G.Ensemble methods in machine learning[J].Lecture Notes in Computer Science,2000,1857:1-15.

    [5] Kuncheva L I,Witaker C J.M easures of diversity in classifier ensembles and their relationship with the ensemble[J].Machine Learning,2003,51(2):181-207.

    [6] Breiman L.Bagging predictors[J].Machine Learning,1996,24(2):123-40.

    [7] Duda R O,Hart P E,Stork D G.Pattern Classification.2nd Edition ed[M].New York:Wliey-Interscience Press,2000:78

    [8] Tan Xiaoyang,Chen Songcan,Zhou Zhihua.Face recogntion from a single image per person:A survey[J].Pattern Recognition,2006,39(9):1725-1745.

    [9] Pentand A,Moghaddam B,Starner T.View-based and modular eigenspaces for face recognition[C]∥IEEE Computer Society Conference on Computer Vision ans Pattern Recognition,2T.[S.l.]:IEEE Computer Society,1994:84-91.

    [10]Tan Keren,Chen Songcan. Adaptivelyweighted sub-pattern PCA for face recognition[J].Neurocomputing,2004,64:505-511.

    [11]Zou Jie,Ji Qiang,Nagy G.A comparative study of local matching approach for face recognition[J].IEEE Transactions on Image Processing,2007,16(10):2617-2628.

    [12]Lee K,Ho J,Kriegman D.Acquiring linear subspaces for face recognition under variable lighting[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005.27(5):1-15.

    [13]Beveridge J R,Bolme D,Draper B A,et al.The CSU face identification evaluation system:its purpose,features,and structure[J].Machine Vision Application,2005,16(2):128-138.

    [14]Zhou Huiyu,Yuan Yuan,Sadka A H.Application of semantic features in face recognition[J].Patter Recognition,2008,41(10):3251-3256.

    [15]Xu Dong,Yan Shuicheng, Tao Dacheng,et al.Marginal fisher analysis and its variants for human gait recognition and content-based image retrieval[J].IEEE Trans on Image Processing,2007,16(11):2811-2821.

    猜你喜歡
    南京航空航天大學信息科學人臉識別
    南京航空航天大學機電學院
    南京航空航天大學機電學院
    人臉識別 等
    作文中學版(2022年1期)2022-04-14 08:00:34
    山西大同大學量子信息科學研究所簡介
    南京航空航天大學
    南京航空航天大學生物醫(yī)學光子學實驗室
    三元重要不等式的推廣及應用
    揭開人臉識別的神秘面紗
    學生天地(2020年31期)2020-06-01 02:32:06
    光電信息科學與工程專業(yè)模塊化課程設計探究
    基于文獻類型矯正影響因子在信息科學與圖書館學期刊中的實證分析
    日韩欧美免费精品| 悠悠久久av| 简卡轻食公司| 看十八女毛片水多多多| 亚洲欧美日韩卡通动漫| 欧美人与善性xxx| 观看美女的网站| 国产精品不卡视频一区二区| 床上黄色一级片| 欧美一级a爱片免费观看看| 精品午夜福利在线看| 国产精品一区二区免费欧美| 最新中文字幕久久久久| 男人狂女人下面高潮的视频| 日本色播在线视频| 中文字幕免费在线视频6| 精品久久久久久,| 亚洲国产精品sss在线观看| 国产69精品久久久久777片| 亚洲乱码一区二区免费版| 国产成人aa在线观看| 久久热精品热| bbb黄色大片| 91午夜精品亚洲一区二区三区 | 久久久精品大字幕| 免费高清视频大片| 大又大粗又爽又黄少妇毛片口| 在线免费观看的www视频| 直男gayav资源| eeuss影院久久| 中文字幕免费在线视频6| 免费av毛片视频| 午夜精品一区二区三区免费看| 五月玫瑰六月丁香| av黄色大香蕉| 最好的美女福利视频网| 18禁黄网站禁片午夜丰满| av天堂在线播放| 如何舔出高潮| 一进一出好大好爽视频| 国产av一区在线观看免费| 亚洲成人精品中文字幕电影| 国产单亲对白刺激| 午夜福利18| 蜜桃亚洲精品一区二区三区| 国产午夜精品久久久久久一区二区三区 | 露出奶头的视频| 免费看光身美女| 免费人成视频x8x8入口观看| 欧美日韩综合久久久久久 | 国产69精品久久久久777片| 在线观看一区二区三区| 久久国产精品人妻蜜桃| 精品久久久久久久久av| 亚洲无线观看免费| 亚洲五月天丁香| 国产女主播在线喷水免费视频网站 | 91久久精品国产一区二区成人| 在线观看66精品国产| 久9热在线精品视频| 免费看a级黄色片| 免费黄网站久久成人精品| 亚洲精品色激情综合| 午夜免费男女啪啪视频观看 | www.色视频.com| 人妻丰满熟妇av一区二区三区| 日韩强制内射视频| 色综合色国产| 真人一进一出gif抽搐免费| av中文乱码字幕在线| 亚洲美女搞黄在线观看 | 99久久精品国产国产毛片| 亚洲一区高清亚洲精品| 一边摸一边抽搐一进一小说| 国产精品日韩av在线免费观看| 草草在线视频免费看| 国产精品av视频在线免费观看| 丰满乱子伦码专区| 国产欧美日韩精品亚洲av| 最新中文字幕久久久久| 少妇被粗大猛烈的视频| 熟女电影av网| 国产三级在线视频| 黄色一级大片看看| 国产伦精品一区二区三区视频9| 夜夜看夜夜爽夜夜摸| 午夜视频国产福利| 真实男女啪啪啪动态图| 男女那种视频在线观看| 成年女人看的毛片在线观看| 丰满的人妻完整版| 床上黄色一级片| 99在线视频只有这里精品首页| 特大巨黑吊av在线直播| 亚洲国产精品合色在线| 精品一区二区三区视频在线观看免费| 午夜影院日韩av| 精品久久国产蜜桃| 色播亚洲综合网| 他把我摸到了高潮在线观看| 国产成人aa在线观看| 国产精品女同一区二区软件 | 99久久中文字幕三级久久日本| 中国美白少妇内射xxxbb| 国产亚洲精品久久久com| 精华霜和精华液先用哪个| 国产在线男女| 国产成人影院久久av| 十八禁网站免费在线| 久久亚洲真实| 美女cb高潮喷水在线观看| 校园人妻丝袜中文字幕| 久久中文看片网| 一a级毛片在线观看| 精品人妻1区二区| 悠悠久久av| 日本色播在线视频| 99热精品在线国产| 毛片女人毛片| 国产免费av片在线观看野外av| 亚洲,欧美,日韩| 午夜激情欧美在线| 久久精品影院6| 亚洲中文字幕日韩| a级一级毛片免费在线观看| 亚洲第一区二区三区不卡| 国产人妻一区二区三区在| 国产精品久久久久久精品电影| 亚洲午夜理论影院| 国产成人aa在线观看| 亚洲18禁久久av| 小说图片视频综合网站| 人妻久久中文字幕网| 99九九线精品视频在线观看视频| 亚洲成人久久性| 国产精品一区二区免费欧美| 最近最新免费中文字幕在线| 18禁黄网站禁片免费观看直播| 亚洲无线观看免费| 精品无人区乱码1区二区| 精品午夜福利在线看| 日韩中文字幕欧美一区二区| 直男gayav资源| 欧美黑人巨大hd| 一区福利在线观看| 欧美精品啪啪一区二区三区| 真人一进一出gif抽搐免费| 美女黄网站色视频| 在线观看66精品国产| 亚洲精品乱码久久久v下载方式| 欧美日韩乱码在线| 12—13女人毛片做爰片一| 国产在线精品亚洲第一网站| 欧美成人性av电影在线观看| 最好的美女福利视频网| 日韩欧美在线乱码| 在线免费观看不下载黄p国产 | 国产精品伦人一区二区| 亚洲性夜色夜夜综合| 国产乱人视频| 老师上课跳d突然被开到最大视频| 在线看三级毛片| 成人国产麻豆网| 欧美不卡视频在线免费观看| 亚洲av电影不卡..在线观看| 天美传媒精品一区二区| 欧美一区二区精品小视频在线| 精品久久久噜噜| 亚洲欧美清纯卡通| 日韩欧美一区二区三区在线观看| 天堂av国产一区二区熟女人妻| 久久久色成人| 美女黄网站色视频| 国产视频一区二区在线看| 成年女人毛片免费观看观看9| 99九九线精品视频在线观看视频| 欧美又色又爽又黄视频| 国产精品人妻久久久久久| 午夜激情欧美在线| 噜噜噜噜噜久久久久久91| 日韩欧美国产一区二区入口| 国产精品人妻久久久久久| 精品无人区乱码1区二区| 久久久精品欧美日韩精品| 亚洲真实伦在线观看| 中国美白少妇内射xxxbb| 色视频www国产| 我要搜黄色片| 成人三级黄色视频| 成人高潮视频无遮挡免费网站| 亚洲成a人片在线一区二区| 深爱激情五月婷婷| 97人妻精品一区二区三区麻豆| 不卡视频在线观看欧美| 亚洲avbb在线观看| 岛国在线免费视频观看| 午夜福利欧美成人| 伦理电影大哥的女人| 亚洲图色成人| 亚洲欧美清纯卡通| 久久久久久久久久黄片| 成人av一区二区三区在线看| 日日摸夜夜添夜夜添小说| aaaaa片日本免费| 乱码一卡2卡4卡精品| 少妇的逼水好多| 免费一级毛片在线播放高清视频| 亚洲人成网站高清观看| 亚洲三级黄色毛片| 亚洲中文日韩欧美视频| 亚洲av二区三区四区| 联通29元200g的流量卡| 欧美日韩综合久久久久久 | 欧美绝顶高潮抽搐喷水| 蜜桃亚洲精品一区二区三区| 一边摸一边抽搐一进一小说| 亚洲内射少妇av| 午夜福利18| 黄色配什么色好看| 色5月婷婷丁香| 国产单亲对白刺激| 成人二区视频| 中文字幕精品亚洲无线码一区| 变态另类丝袜制服| 国产白丝娇喘喷水9色精品| 最近最新中文字幕大全电影3| bbb黄色大片| 免费人成视频x8x8入口观看| 免费电影在线观看免费观看| 一区二区三区高清视频在线| 国产伦在线观看视频一区| 麻豆精品久久久久久蜜桃| 亚洲aⅴ乱码一区二区在线播放| 亚洲一级一片aⅴ在线观看| 国产爱豆传媒在线观看| 日韩国内少妇激情av| 国产高清三级在线| 国产淫片久久久久久久久| 久久久久久九九精品二区国产| av在线亚洲专区| 老司机福利观看| 国产欧美日韩一区二区精品| 一级毛片久久久久久久久女| 久久久成人免费电影| 永久网站在线| 两性午夜刺激爽爽歪歪视频在线观看| 色av中文字幕| 午夜精品在线福利| 欧美日韩乱码在线| 亚洲精品色激情综合| 国产 一区精品| 在线天堂最新版资源| netflix在线观看网站| 乱码一卡2卡4卡精品| 啦啦啦啦在线视频资源| 亚洲四区av| 精品免费久久久久久久清纯| 国产精品免费一区二区三区在线| 精品人妻1区二区| 99视频精品全部免费 在线| 免费人成在线观看视频色| 午夜福利成人在线免费观看| 成人av在线播放网站| 99久久无色码亚洲精品果冻| 九九热线精品视视频播放| 国产精品久久久久久精品电影| 精品人妻1区二区| 日本黄色视频三级网站网址| 老司机深夜福利视频在线观看| 国内精品久久久久精免费| 亚洲av电影不卡..在线观看| 可以在线观看的亚洲视频| 亚洲五月天丁香| 国产精品精品国产色婷婷| 99久久中文字幕三级久久日本| 国产三级在线视频| av在线蜜桃| 国产白丝娇喘喷水9色精品| 午夜日韩欧美国产| 久久人妻av系列| 99久国产av精品| 国产成人av教育| 国产亚洲av嫩草精品影院| 俺也久久电影网| 免费电影在线观看免费观看| 一级a爱片免费观看的视频| 免费在线观看影片大全网站| 国产精品一区二区三区四区免费观看 | 国产一区二区三区av在线 | 亚洲精品一区av在线观看| 亚洲精华国产精华精| 国产在线精品亚洲第一网站| 日本黄色视频三级网站网址| 久久精品国产自在天天线| 又粗又爽又猛毛片免费看| 亚洲第一区二区三区不卡| 亚洲精品一卡2卡三卡4卡5卡| 日日摸夜夜添夜夜添av毛片 | 无遮挡黄片免费观看| 国内少妇人妻偷人精品xxx网站| 国产精品99久久久久久久久| 赤兔流量卡办理| 啦啦啦韩国在线观看视频| 老女人水多毛片| 婷婷丁香在线五月| 夜夜夜夜夜久久久久| 国产麻豆成人av免费视频| 一本一本综合久久| 日本 欧美在线| 国产高清有码在线观看视频| 淫秽高清视频在线观看| 国产av不卡久久| 国产高清视频在线观看网站| 国产私拍福利视频在线观看| 热99在线观看视频| 嫩草影院入口| 午夜久久久久精精品| 在线观看66精品国产| 2021天堂中文幕一二区在线观| 国产高清视频在线观看网站| 丝袜美腿在线中文| 在线看三级毛片| 最新中文字幕久久久久| 国产三级在线视频| 村上凉子中文字幕在线| 最好的美女福利视频网| 欧美日本亚洲视频在线播放| 婷婷精品国产亚洲av在线| 日韩人妻高清精品专区| 色哟哟哟哟哟哟| av在线蜜桃| 一区二区三区高清视频在线| 免费在线观看影片大全网站| 国产免费一级a男人的天堂| 亚洲中文字幕一区二区三区有码在线看| 国产视频一区二区在线看| 男女啪啪激烈高潮av片| 黄色视频,在线免费观看| 亚洲一区高清亚洲精品| 亚洲三级黄色毛片| 日本成人三级电影网站| 国产男靠女视频免费网站| 免费高清视频大片| www.www免费av| 在线看三级毛片| 人妻制服诱惑在线中文字幕| 国产三级在线视频| 一级a爱片免费观看的视频| 国产不卡一卡二| 久久99热这里只有精品18| 国产精品,欧美在线| 国产高清视频在线观看网站| 国产男人的电影天堂91| 国产av不卡久久| 亚洲精品国产成人久久av| 最近视频中文字幕2019在线8| 深爱激情五月婷婷| 天美传媒精品一区二区| 丝袜美腿在线中文| 久久久久九九精品影院| 精品一区二区三区视频在线| 少妇人妻精品综合一区二区 | 日本黄色片子视频| 人妻久久中文字幕网| 中文在线观看免费www的网站| 男女那种视频在线观看| 国产av麻豆久久久久久久| 国产亚洲精品综合一区在线观看| 熟妇人妻久久中文字幕3abv| 日本熟妇午夜| 在线观看66精品国产| 三级国产精品欧美在线观看| 又粗又爽又猛毛片免费看| 国产真实伦视频高清在线观看 | 一进一出抽搐动态| 国产69精品久久久久777片| 成人亚洲精品av一区二区| 日韩欧美国产在线观看| 国产av麻豆久久久久久久| 欧美人与善性xxx| 波野结衣二区三区在线| 永久网站在线| 亚洲精品一区av在线观看| 国内揄拍国产精品人妻在线| 99热只有精品国产| 有码 亚洲区| 国产高清有码在线观看视频| 高清毛片免费观看视频网站| 可以在线观看的亚洲视频| 成年女人毛片免费观看观看9| 天堂影院成人在线观看| 天堂av国产一区二区熟女人妻| 欧美人与善性xxx| 国产精品亚洲一级av第二区| 精品人妻偷拍中文字幕| 美女免费视频网站| 美女高潮喷水抽搐中文字幕| 中文字幕熟女人妻在线| 最近最新免费中文字幕在线| 精品一区二区三区视频在线| 国产单亲对白刺激| 又黄又爽又刺激的免费视频.| 成人欧美大片| 看免费成人av毛片| 午夜福利在线观看免费完整高清在 | 人妻夜夜爽99麻豆av| 亚洲自拍偷在线| 日韩欧美三级三区| 欧美性感艳星| 国产精华一区二区三区| 国产亚洲欧美98| 真实男女啪啪啪动态图| 欧美+日韩+精品| 色哟哟哟哟哟哟| av国产免费在线观看| 亚洲av成人av| 亚洲aⅴ乱码一区二区在线播放| 真人一进一出gif抽搐免费| 中出人妻视频一区二区| 啦啦啦观看免费观看视频高清| 天天一区二区日本电影三级| 国产精品一区二区性色av| 18禁黄网站禁片免费观看直播| 国产欧美日韩精品亚洲av| 亚洲欧美日韩卡通动漫| 一进一出抽搐动态| 黄色丝袜av网址大全| 国产人妻一区二区三区在| 欧美丝袜亚洲另类 | 欧美绝顶高潮抽搐喷水| 精品福利观看| 三级男女做爰猛烈吃奶摸视频| 在线观看66精品国产| 国产av在哪里看| 精品午夜福利在线看| av视频在线观看入口| 日韩 亚洲 欧美在线| 国产在视频线在精品| av在线亚洲专区| 99久久久亚洲精品蜜臀av| 国产精品av视频在线免费观看| 国产精品三级大全| 午夜老司机福利剧场| 一级av片app| av专区在线播放| 欧美日韩综合久久久久久 | 91麻豆精品激情在线观看国产| 一级毛片久久久久久久久女| 麻豆成人午夜福利视频| 久久精品国产鲁丝片午夜精品 | 我的女老师完整版在线观看| 日本免费a在线| 国产成人aa在线观看| 国产色爽女视频免费观看| 成人国产综合亚洲| 国产av在哪里看| 九色成人免费人妻av| 午夜老司机福利剧场| 精品日产1卡2卡| 久久久久久久久中文| 久久精品91蜜桃| 男女做爰动态图高潮gif福利片| 久久午夜福利片| 亚洲电影在线观看av| 欧美激情在线99| 精品国产三级普通话版| 精品久久久久久久久av| 一区二区三区免费毛片| aaaaa片日本免费| 亚洲三级黄色毛片| 亚洲av二区三区四区| 亚洲成人精品中文字幕电影| 精品久久久久久久久av| 久久久色成人| 久久久久久久亚洲中文字幕| 国产精品1区2区在线观看.| 日本色播在线视频| 美女xxoo啪啪120秒动态图| 国产淫片久久久久久久久| 99热这里只有是精品50| 麻豆成人av在线观看| 午夜免费成人在线视频| 成人特级av手机在线观看| 一本一本综合久久| 真实男女啪啪啪动态图| 九九在线视频观看精品| 精品久久久久久,| 最近视频中文字幕2019在线8| 国产成人av教育| 国产在线男女| 成人毛片a级毛片在线播放| 亚洲av免费在线观看| 俺也久久电影网| 观看免费一级毛片| 国产亚洲精品久久久久久毛片| 婷婷色综合大香蕉| 校园人妻丝袜中文字幕| 国产单亲对白刺激| 天天一区二区日本电影三级| 日本色播在线视频| 成人午夜高清在线视频| 欧美成人免费av一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲自拍偷在线| 狠狠狠狠99中文字幕| 99久国产av精品| 亚洲av五月六月丁香网| 国产伦精品一区二区三区视频9| 欧美在线一区亚洲| 日本三级黄在线观看| 国产精品亚洲一级av第二区| 免费电影在线观看免费观看| 男插女下体视频免费在线播放| 国产高清三级在线| 亚洲成人久久性| 亚洲无线在线观看| 色视频www国产| 看免费成人av毛片| 久久99热这里只有精品18| 桃红色精品国产亚洲av| 人妻丰满熟妇av一区二区三区| 欧美三级亚洲精品| 美女高潮喷水抽搐中文字幕| 99九九线精品视频在线观看视频| 日本撒尿小便嘘嘘汇集6| 精品一区二区三区av网在线观看| 国产精品乱码一区二三区的特点| 日韩欧美精品v在线| 日韩av在线大香蕉| 黄色丝袜av网址大全| 欧美日韩黄片免| 亚洲无线在线观看| 男人狂女人下面高潮的视频| 国语自产精品视频在线第100页| 久久久久久伊人网av| 最后的刺客免费高清国语| 午夜精品一区二区三区免费看| 成人国产一区最新在线观看| 少妇裸体淫交视频免费看高清| 欧美日韩亚洲国产一区二区在线观看| 色综合色国产| 深夜精品福利| 国产亚洲欧美98| 亚洲精品成人久久久久久| 亚洲精品456在线播放app | 久久久久久久精品吃奶| 亚洲中文日韩欧美视频| 国产成年人精品一区二区| 人妻久久中文字幕网| 久久欧美精品欧美久久欧美| 亚洲va在线va天堂va国产| 又黄又爽又免费观看的视频| 欧美性猛交╳xxx乱大交人| 亚洲av成人精品一区久久| 午夜福利在线在线| 日本 欧美在线| 亚洲av中文字字幕乱码综合| 黄片wwwwww| 欧美色视频一区免费| 国产探花极品一区二区| 亚洲一级一片aⅴ在线观看| xxxwww97欧美| 在线a可以看的网站| 久久久久久大精品| 欧美国产日韩亚洲一区| 国产高清视频在线播放一区| 国产高清有码在线观看视频| 精品一区二区三区av网在线观看| 欧美日本亚洲视频在线播放| 俺也久久电影网| 久久精品国产亚洲av涩爱 | 国产真实乱freesex| 麻豆久久精品国产亚洲av| 国产精品一区www在线观看 | 午夜爱爱视频在线播放| 永久网站在线| 美女cb高潮喷水在线观看| 在线观看免费视频日本深夜| 久久久久久久精品吃奶| 搞女人的毛片| 免费看美女性在线毛片视频| 看片在线看免费视频| 亚洲18禁久久av| 国产色婷婷99| 日本精品一区二区三区蜜桃| 18+在线观看网站| 国产成人福利小说| 国产av一区在线观看免费| 午夜福利18| 毛片女人毛片| 日韩人妻高清精品专区| 亚洲人与动物交配视频| 小说图片视频综合网站| 18禁在线播放成人免费| 真实男女啪啪啪动态图| 欧美bdsm另类| xxxwww97欧美| 99久久久亚洲精品蜜臀av| 亚洲五月天丁香| 亚洲,欧美,日韩| 麻豆国产97在线/欧美| 又爽又黄a免费视频| 五月伊人婷婷丁香| 99热6这里只有精品| 国产免费一级a男人的天堂| 日韩欧美精品免费久久| 亚洲欧美日韩东京热| 91久久精品国产一区二区三区| 国产在线精品亚洲第一网站| 草草在线视频免费看| 精品日产1卡2卡| 精品久久久久久,| 欧美色欧美亚洲另类二区| ponron亚洲| 99精品久久久久人妻精品|