• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of turbulence models on the numerical simulation of nozzle jets

    2010-04-07 08:58:52TANGZhigongLIUGangMOUBinUANGYong
    關(guān)鍵詞:等值線馬赫數(shù)粘性

    TANG Zhi-gong,LIU Gang,MOU Bin,H UANG Yong

    (1.Northwestern Ploytechnical University,Xi'an 710072,China;2.China Aerodynamic Research and Development Center,Mianyang 621000,China)

    0 Introduction

    Modern combat aircraft has a large flight envelope,which comprises all kinds of flight status such as low-speed take-off and landing,transonic or supersonic cruise and various maneuvers.Each flight status corresponds to different operation of tail nozzle,where the discrepancy in internal flows may introduce important variation on thrust.At the same time,nozzle jet interacts with the flow around the aircraft's after-body,which has a significant effect on the aerodynamic performance,especially on the drag.Accordingly,simulation for nozzle jet with high fidelity and accurate prediction it's effect on aerodynamic forces are crucial issues in the design of modern aircraft.

    It is difficult for current wind tunnel experiment to investigate the interference phenomena of nozzle jet with external flows because all similarity parameters are hard to be satisfied simultaneously.Experiments for forces measure and jet simulation are usually conducted separately,and special afterbody models are needed for jet testing.On the other aspect,to study jet flows using CFD simulation,there is no need for model fabrication,and jet parameters can be set freely.Compared with wind tunnel testing,the numerical method is more efficient and economical.But numerical simulations are always more doubtable than wind tunnel experiments,the numerical accuracy is dependent on the mesh and turbulence models.Thus careful verification and validation are necessary for CFD before it is applied to simulate nozzle jet flows.

    Verification and validation of numerical methods is one of the most important subjects in CFD fields.The AIAA drag prediction workshop,for example,as an influential effort has undergone three cycles so far,in which considerable practice guides has been summarized.Similar special workshop has also been constituted in NASA for simulation of flow control.Although there are many investigations on jet flow and it's interaction with aircraft's after-body,but on the point of validation,lots of works are needed to be done to achieve high reliability of numerical methods[1].

    Numerical simulation of three kinds of simplified nozzle jet flows are presented in the paper,which are characterized by internal flows internal and external mixing and after-body interference.Take account of practical application,the fully three-dimensional simulation were performed for these flows with the Reynolds averaged Navier-Stokes equations,though they are all axisymmetrical.Then two representative turbulence models(the S-A and the k-ωSST model)and their compressibility corrections were evaluated by comparison with experimental data.Based on these work,which turbulence model should be adopted for numerical simulation of nozzle jet flows are suggested in the conclusions.

    1 Numerical Methods

    The non-dimensional three-dimensional Reynolds Averaged Navier-Stokes(RANS)in conservation form with the Cartesian coordinates can be written as

    in which the state vector W is[ρ ρ u1ρ u2ρ u3e]T,the inviscid and viscous fluxes vector are

    where Reais the Reynolds number calculated with the sonic speed a.

    To close the equations,the equation of state for calorically perfect gas,the turbulence model and the Fourier's law of heat conduction are required.The definition of viscous stresses for Newtonian fluid and the Sutherland formula can refer to Ref.[2]in detail.

    The in-house RANS solver MBNS3D was adopted to perform current investigation,which is characterized by:

    (1)Cell centered finite volume method;

    (2)Roe Scheme with the Van Albada limiter and the three-order MUSCL interpolation,HCL entropy fixing;

    (3)One-and Two-equation turbulence(the SA,and the k-ω SST)model;

    (4)Dual time stepping;

    (5)Detached eddy simulation(DES)based on the S-A model;

    (6)Parallel computation based on the MPI environment.

    Application of turbulence models is the focus of this work.There are five models be employed to evaluate their effects on nozzle flows,which are the S-A turbulence model and its two derivatives,i.e.compressibility correction scheme and DES scheme,the k-ωSST turbulence model and its compressibility correction scheme.These models are designated as SA,SACC,SADES,SST and SSTCC separately in this paper.

    The S-A model equation is constructed using empiricism and dimensional analysis[3],with which good results has been achieved in aeronautical applications,but its behavior in jet flows is little known,the purpose of the present study is to review its performance in the free-shear flow s.The non-dimensional S-A model is

    Compressibility correction in supersonic regime is required because the S-A model is developed on incompressible flows;this can be done with addition of a destruction term to the right side of Eq.(1)as follows:

    Detached eddy simulation can be implemented with the S-A turbulence model;what need to do is changing the distance function d as~d(Eq.(2)),and then unsteady computation is carried out using the same model equations.

    In the Eq.(2),symbol Δstands for the largest distance between current cell center and neighbor cell centers,and constant Cdesequals 0.65.In the wall regions,the wall nearest distances is not changed,i.ebecause mesh aspect ratios can be as much as 1000 times.In the region depart from walls,there isCdesΔ,the S-A turbulence model can switch to a SGS type eddy viscosity model due to

    Great progresses in DES have been achieved so far,some convincing simulations are reported about flows around airfoil,delta-wing,fore-body and the F-16 aircraft etc.It can be seen from the Eq.(2)that the wall distance are correlated with meshing,i.e.the longitudinal and lateral grid density both decide the turbulence parameter,so DES is affected much by meshing.In addition,DES is time consuming because of unsteady computation;parallel techniques are needed for complicated geometries.

    As another common turbulence model utilized in engineering applications,the Menter's k-ωSST two-equation turbulence model was developed by combination of the k-εand the k-ω models with a blending function.It can be utilized to simulate small separated flows.Its non-dimensional form which includes compressibility correction term can be formulated as follows

    where the pressure shift term is

    In order to simulate jet flows,some special boundary conditions are required,which include:

    (1)Engine inflow boundary condition.Total temperature and total pressure are specified,and then the Mach number and flow direction on the boundary can be extrapolated with following relations.

    (2)Pressure outlet boundary conditions.The value of static pressure is specified when the flow is subsonic.All other flow quantities are extrapolated from the interior information.

    (3)Wall boundary conditions.In viscous flows,the no-slip boundary condition is enforced at walls by default.

    2 Results and Discussion

    Three test examples of nozzle jet flows are studied as follows.

    2.1 Supersonic axisymmetrical nozzle

    This nozzle model is an axisymmetric,converging-diverging nozzle designed and studied by J.M.Eggers in 1962,in which the air is utilized as working fluid and is operated at the pressure ratio corresponding to perfect expansion.Jet exit Mach number of this nozzle is 2.2.Velocity profiles and eddy viscosity distributions within the jet are delivered by NPARC alliance for validation.

    Viscous wall boundaries are specified on the internal nozzle surfaces while inviscid ones are specified on the external nozzle surfaces,since the influence of the exterior boundary layer is not considered significant for this analysis.Fig.1 shows the schematic of grids,which are refined in the interior regions of the nozzle,especially in region adjacent to the walls.Far-field boundaries are as far as 50 times the diameter of the nozzle exit.The circumferential angle of the grid is 180°,and the circumferential boundary are specified as symmetrical boundary conditions.T he angle might be smaller,it was suggested that the grid dimensions should be greater than or equal to three to ensure interpolation at cell surfaces with accuracy of two-order.

    Fig.1 Grid of axisymmetric nozzle圖1 軸對(duì)稱噴管計(jì)算網(wǎng)格

    Computation was performed using the LU-SGS implicit time-marching approach of the MBNS3D to achieve a steady-state solution.Local time step-size at each iteration was adopted to accelerate the timemarching process until the convergence criterion is achieved as Fig.2 shown.

    Fig.2 History of residual value(Ma=0.05)圖2 殘值收斂歷程(Ma=0.05)

    The incoming flow conditions include Mach number Ma=0.05,the static pressure P∞=1.014×105Pa,and the static temperature T∞=292K.The stagnation conditions of the combustion chamber include that the total pressure P0=1.118×106Pa and total temperature T0=292K.The nozzle pressure ratio is NPR=11.034,it corresponds to a perfect expansion and an exit Mach number of 2.22.The Reynolds number calculated with one foot and sonic speed equals 7.88×107.If the free-stream Mach number is specified to 0 at the lateral far-field boundaries that is not far enough,numerical simulating will produce unphysical phenomena such as asymmetrical jet due to the lack of algorithmic symmetry.Then a tiny value of free-stream Mach number(Ma=0.05 in this case)is set at these boundaries to exclude this anomaly.

    The histories of residual value in simulation with the SA model and the SST model are shown in Fig.2;the SST model corresponds to a better convergence which can reach the machine 0 after 10000 iterations.Detached eddy simulation based on the SA model was performed by dual-time stepping method,whose time interval equals 0.005 and the inner iteration of 5 steps make the residual decrease by 1/10.

    Contours of Mach number and eddy viscosity computed by the SST model and its compressibility correction scheme are compared in Fig.3 and Fig.4,it can be seen that the maximum eddy viscosity drop by 5000 with the compressibility correction scheme,in which the jet's diffusion rate is reduced greatly.

    The axial velocity is scaled by the reference axial velocity(538.32m/s).T he axial distance is the distance from the nozzle exit scaled by the nozzle exit radius(0.0128m).Then the velocities along the centerline are shown in Fig.5.It appears that the accuracy of these computations is sensitive to the modeling for turbulent flow;axial velocities predicted with the SA model and the SST model are spread out at a greater rate than predicted in the experiment.Results of SACC,SSTCC and SADES are close to the experimental data,among which the data of SSTCC have good agreement along all the centerline,the data of SACC only at the first half part,and the data of SADES are greater than the experimental value due to less diffusion.

    Fig.3 Mach and eddy viscosity contours(SST model)圖3 馬赫數(shù)和渦團(tuán)粘性系數(shù)等值線(SST模型)

    Fig.4 Mach and eddy viscosity contours(SS TCCmodel)圖4 馬赫數(shù)和渦團(tuán)粘性系數(shù)等值線(SSTCC模型)

    Fig.5 Comparison of velocities along the centerline圖5 中心線上噴流速度比較

    The jet velocity profiles in the radial direction at several axial stations downstream of the nozzle exit were examined and compared to the experimental values in Fig.6.These comparisons were made at five axial stations,i.e.x=0.0,26.93,51.96,73.80,and 121.30,which are distances from the nozzle exit nondimensionalized by the nozzle exit radius.It appears that data of SSTCC are in good accordance with the measured results at all stations,the data of SACC are good only at first two stations,but not at last three stations.The accordance of the results from SADES with experimental values is achieved at first three stations,and then the accuracy is reduced at last two stations.This deviation might be caused by coarsen grids at downstream fowfield,which can't fulfill requirements from the Detached Eddy Simulation.

    Fig.6 Comparison of velocity profiles圖6 速度型比較

    2.2 NASA D-1.22-L boat tail/nozzle configuration

    In this case,the NASA D-1.22-L boat-tail/nozzle configuration documented in NASA TP 1766 is simulated.Computational conditions include the nozzle pressure ratio(NPR)of 1.5,the free stream total pressure of 1.014×105Pa,the free stream total temperature of 329K,the free stream Mach Number of 0.8,and the nozzle total pressure of 0.998×105Pa.The unit Reynolds number is 1.2×107/m.

    Fig.7 shows the multi-block abutting grids of the test configuration,in which wall boundaries are set to viscous adiabatic boundaries.The interactions between internal and external flows must be predicted in this case;therefore mesh lines are gathered together at the nozzle exit.Fig.8 shows the pressure contours in the flow field,where smooth pressure distribution can be discerned around the tail.The predicted pressure coefficients are compared with test data and other referenced data in Fig.9;it shows that present results are in good agreement with the experimental data.The external wall surface pressures obtained with different turbulence models have no difference with each other as shown in Fig.10.

    Fig.7 Grids of NASA D-1.22-L boat tail/nozzle configuration圖7 NASA D-1.22-L船尾/噴管構(gòu)型網(wǎng)格

    Fig.8 Pressure contours圖8 壓力等值線

    Fig.9 Comparison of pressure coefficients圖9 壓力系數(shù)比較

    Fig.10 Pressure coefficients of different turbulence models圖10 不同湍流模型的壓力系數(shù)

    2.3 Axisymmetric circular-arc boat tail nozzle

    The nozzle configuration and experimental data are selected from reference[11-12].This case correspond to transonic flight status with shock-induced separations and strong adverse pressure gradients,which challenge the CFD code to the simula-tion ofexternalafter-body and internal nozzle flows.Fig.11 show s the schematic of nozzle geometry.The flow conditions of free stream and nozzle inflow are listed in Table.1 at the nozzle pressure ratio of 21.23.

    Fig.11 Schematic of nozzle geometry圖11 噴管外形及網(wǎng)格

    Table 1 Flow conditions(NPR=21.23)表1 流動(dòng)條件(NPR=21.23)

    At the design point(NPR=21.23),the simulated flow field is shown in Fig.12.Flow is accelerated to supersonic speed through the nozzle,and then a sophisticated array of shocks and expansion waves is formed.The wave structures are described richly and clearly,which testify to the accuracy of current methods to some extent.

    Fig.12 Mach number contours(NPR=21.23)圖12 馬赫數(shù)等值線(NPR=21.23)

    Off-design nozzle performance is simulated at Ma=0.9 and NPR=4,the pressure distribution on the external and internal surfaces are shown in Fig.13 and Fig.14.It appears in Fig.13 that the external wall pressure coefficients calculated with four turbulence models all agree well with the experimental data,however there are small differences when x/D>0.45,where internal separated flows take effect.It can be seen in Fig.14 that flow separate at x/D=0.75,the SST turbulence model predicts the position nicely,and has the best agreement with the experimental data on internal and external pressure distributions.The predicted separation of SA turbulence model lags,but the pressures in separated region are close to the experimental data.All compressibility correction schemes cause the separation to move upstream and the wall pressures in the separated region are overestimated comparing with the experimental data,which disturb the external pressure distribution at the same time.

    Fig.13 Cpvalues on the external surface圖13 尾噴管外表面壓力系數(shù)

    Fig.14 Pressure distribution on the internal surface圖14 噴管內(nèi)表面壓力分布

    Fig.15 shows Mach number contours of different turbulence models,it appears that the compressibility correction schemes bend the shock lines in the center,and the low-speed region close to the exit is expanded.Wave structures of each turbulence model are similar to the other,main differences lie on the shape of the centered normal shock and its induced vortex.Fig.16 shows the streamlines and Mach number contours calculated with the SST compressibility correction scheme,typical vortex structure can be seen behind the normal shock.This phenomenon can be explained with less numerical diffusion;in other words,the eddy viscosity may be reduced substantially by the compressibility correction schemes.

    Fig.15 Effects of turbulence models圖15 湍流模型的影響

    Fig.16 Streamlines and Mach number contours simulated with compressibility correction scheme圖16 湍流模型考慮可壓縮修正得到的流線和馬赫數(shù)云圖

    3 Conclusions

    CFD analyses for three test cases have been performed to better understand the validity of the MBNS3D code on simulation about the nozzle jet flows.Flow phenomena such as boundary layer separation and shock wave/boundary layer interaction complicate the implementation of numerical simulation.Diversities in results obtained with four different turbulence models have been presented in this paper.The Compressibility correction schemes improve greatly the trends of jet expansion,the separation locations predicted with this correction,however don't agree so well as their original models.In nozzle flow simulations,better agreement with experimental data can be obtained with the k-ωSST model and its compressibility correction,and the advantage of the S-A detached eddy simulation is not remarkable on the same grid compared simulation with the S-A model.

    [1]NORTH ATLANTIC TREATY ORGANIZATION.Aerodynamics of 3-D aircraft afterbody[R].Agard Advisory Report No.318,Sept.1995.

    [2]MOU Bin.Numerical simulation and investigation of flow control[D].China Aerodynamics Research and Development Center Graduate School,2006.(in Chinese)

    [3]SPALART P,ALLMARAS S.A one-equation turbulence model for aerodynamic flows[R].AIAA 92-0439,1992.

    [4]SPALART P R.Trends in turbulence treatments[R].AIAA 00-2306,2000.

    [5]FORSYT HE J R,HOFFMANN K.A detached-eddy simulation with compressibility corrections applied to a supersonic axisymmetric base flow[R].AIAA 02-0586,2002.

    [6]MENTER F.Zonal two equation turbulence models for aerodynamic flows[R].AIAA 93-2906,1993.

    [7]FORSYTHE J R,HOFFMANN K A,SUZEN Y B.Investigation of modified Menter's two-equation turbulence models for supersonic applications[R].AIAA 99-0873,January 1999.

    [8]FORSYTHE J R.Numerical computation of turbulent separated supersonic flow fields[D].[PhD.Dissertation].Aerosp.Eng.,Wichita State U.,Spring 2000.

    [9]EGGERS J M.Velocity profiles and eddy viscosity distributions downstream of a Mach 2.22 nozzle exhausting to quiescent air[R].NASA TN D-3601,September 1966.

    [10]BOBBY L BERRIER,RICHARD J RE.Investigation of convergent-divergent nozzles applicable to reducedpower supersonic cruise aircraft[R].NASA TP-1766,December 1980.

    [11]CARSON G T JR,LEE E E JR.Experimental and analytical investigation of axisymmetric supersonic cruise nozzle geometry at Mach numbers from 0.60 to 1.30[R].NASA TP-1953.

    [12]TERYN DALBELLO,NICHOLAS GEORGIADIS,DENNIS YODER.Computational study of axisymmetric offdesign nozzle flows[R].AIAA 2004-0530/NASA TM 2003-212876.

    猜你喜歡
    等值線馬赫數(shù)粘性
    高馬赫數(shù)激波作用下單模界面的Richtmyer-Meshkov不穩(wěn)定性數(shù)值模擬
    爆炸與沖擊(2024年7期)2024-11-01 00:00:00
    一類具有粘性項(xiàng)的擬線性拋物型方程組
    一維非等熵可壓縮微極流體的低馬赫數(shù)極限
    基于規(guī)則預(yù)計(jì)格網(wǎng)的開采沉陷等值線生成算法*
    礦山測量(2020年6期)2021-01-07 04:52:06
    載荷分布對(duì)可控?cái)U(kuò)散葉型性能的影響
    帶粘性的波動(dòng)方程組解的逐點(diǎn)估計(jì)
    粘性非等熵流體方程平衡解的穩(wěn)定性
    等值線“慣性”變化規(guī)律的提出及應(yīng)用
    基于Kriging插值的等值線生成算法研究
    等值線分析系統(tǒng)實(shí)際應(yīng)用之等值線填充
    少妇裸体淫交视频免费看高清| kizo精华| 国产精品一区二区性色av| 亚洲成人中文字幕在线播放| 亚洲av一区综合| 国产真实乱freesex| 国内久久婷婷六月综合欲色啪| 中国美白少妇内射xxxbb| 欧美三级亚洲精品| 亚洲国产欧洲综合997久久,| 禁无遮挡网站| 久久久久久久久久久丰满| 日韩国内少妇激情av| 日韩一本色道免费dvd| 日韩三级伦理在线观看| 男人和女人高潮做爰伦理| 欧洲精品卡2卡3卡4卡5卡区| .国产精品久久| 国产 一区精品| 亚洲欧美精品专区久久| 婷婷六月久久综合丁香| 精品久久久久久久末码| 久久精品国产亚洲av天美| 97超碰精品成人国产| 99久久久亚洲精品蜜臀av| 国产精品国产三级国产av玫瑰| 欧美zozozo另类| 又爽又黄无遮挡网站| 国产精品人妻久久久久久| 亚洲成人久久性| 亚洲精品色激情综合| 一级毛片我不卡| 亚洲av不卡在线观看| 久久久久免费精品人妻一区二区| 国产真实伦视频高清在线观看| 国产视频首页在线观看| a级毛色黄片| 精品久久久久久久人妻蜜臀av| 高清午夜精品一区二区三区 | 国产av一区在线观看免费| www.av在线官网国产| 97人妻精品一区二区三区麻豆| 亚洲精品国产成人久久av| 国产人妻一区二区三区在| 亚洲av成人精品一区久久| 九九在线视频观看精品| 国产蜜桃级精品一区二区三区| 91久久精品国产一区二区成人| 中出人妻视频一区二区| 亚洲经典国产精华液单| 久久久久久伊人网av| 亚洲五月天丁香| 亚洲人成网站在线播| 欧美+日韩+精品| 国产av在哪里看| or卡值多少钱| 精品久久久久久久末码| 欧美另类亚洲清纯唯美| 中文字幕av在线有码专区| 伦理电影大哥的女人| 两性午夜刺激爽爽歪歪视频在线观看| 欧美最黄视频在线播放免费| 国产精品电影一区二区三区| 国产精品电影一区二区三区| 中文资源天堂在线| 成人性生交大片免费视频hd| 美女国产视频在线观看| 久久精品国产清高在天天线| 国产私拍福利视频在线观看| 久久人人爽人人爽人人片va| 女人十人毛片免费观看3o分钟| 91久久精品国产一区二区成人| 男人狂女人下面高潮的视频| 波野结衣二区三区在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲第一电影网av| 欧美日韩综合久久久久久| 色综合亚洲欧美另类图片| 91在线精品国自产拍蜜月| 晚上一个人看的免费电影| 国产成人一区二区在线| 国产伦精品一区二区三区视频9| 91在线精品国自产拍蜜月| 99久国产av精品| 国产成人freesex在线| 国产真实伦视频高清在线观看| 一夜夜www| 一级av片app| 日韩国内少妇激情av| 成人三级黄色视频| 欧美xxxx黑人xx丫x性爽| 校园春色视频在线观看| 女同久久另类99精品国产91| 成年女人永久免费观看视频| 99热这里只有是精品在线观看| 国产伦在线观看视频一区| 自拍偷自拍亚洲精品老妇| 美女xxoo啪啪120秒动态图| 久久99热6这里只有精品| 欧美激情国产日韩精品一区| 国产私拍福利视频在线观看| 一级黄片播放器| 尾随美女入室| 丰满的人妻完整版| 亚洲国产精品成人久久小说 | 国产精品女同一区二区软件| 国产69精品久久久久777片| 国产精品99久久久久久久久| 九九久久精品国产亚洲av麻豆| 精品久久久久久久末码| 国产激情偷乱视频一区二区| 2022亚洲国产成人精品| 观看美女的网站| 如何舔出高潮| 成人亚洲欧美一区二区av| 久久久久久伊人网av| 亚洲av免费高清在线观看| 中文字幕久久专区| 最好的美女福利视频网| 男女视频在线观看网站免费| 亚洲第一电影网av| 国产乱人视频| 国产精品精品国产色婷婷| 成人鲁丝片一二三区免费| 日本熟妇午夜| 国产私拍福利视频在线观看| 日韩 亚洲 欧美在线| 国产精品人妻久久久久久| 国产一区二区三区av在线 | 精品熟女少妇av免费看| 国产视频首页在线观看| 国产精品伦人一区二区| 网址你懂的国产日韩在线| 免费av毛片视频| 久久国内精品自在自线图片| 可以在线观看毛片的网站| 男的添女的下面高潮视频| 青春草亚洲视频在线观看| 久久精品国产99精品国产亚洲性色| 久久鲁丝午夜福利片| 欧美bdsm另类| 国产老妇伦熟女老妇高清| 看片在线看免费视频| 亚洲欧美日韩无卡精品| 插阴视频在线观看视频| 久久综合国产亚洲精品| 成熟少妇高潮喷水视频| 国产午夜福利久久久久久| 国国产精品蜜臀av免费| 狂野欧美白嫩少妇大欣赏| 中文资源天堂在线| 丰满人妻一区二区三区视频av| 1024手机看黄色片| 精品少妇黑人巨大在线播放 | 午夜福利在线观看吧| 99热这里只有是精品50| 黄片无遮挡物在线观看| 中国美女看黄片| 久久久精品大字幕| 亚洲欧美日韩无卡精品| 成人无遮挡网站| 国产色婷婷99| 免费观看a级毛片全部| 色播亚洲综合网| 国产 一区 欧美 日韩| 一进一出抽搐gif免费好疼| 中国国产av一级| 欧美成人免费av一区二区三区| 三级男女做爰猛烈吃奶摸视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 高清午夜精品一区二区三区 | 国内精品一区二区在线观看| 亚洲欧洲日产国产| 国内久久婷婷六月综合欲色啪| 99久久久亚洲精品蜜臀av| 亚洲av一区综合| 色尼玛亚洲综合影院| 精品一区二区三区人妻视频| 日日干狠狠操夜夜爽| 久久久a久久爽久久v久久| 日本五十路高清| 天天躁日日操中文字幕| 亚洲精华国产精华液的使用体验 | 国产色婷婷99| 男人舔女人下体高潮全视频| 久久精品国产亚洲网站| 永久网站在线| 日本爱情动作片www.在线观看| 国产高清三级在线| 国产不卡一卡二| 亚洲最大成人手机在线| 亚洲最大成人中文| 床上黄色一级片| 夜夜夜夜夜久久久久| 波野结衣二区三区在线| 综合色丁香网| 99精品在免费线老司机午夜| 婷婷六月久久综合丁香| 婷婷色av中文字幕| 成人毛片a级毛片在线播放| 欧美日韩乱码在线| 青春草视频在线免费观看| 91aial.com中文字幕在线观看| 最近手机中文字幕大全| 日本熟妇午夜| 变态另类丝袜制服| 亚洲国产精品国产精品| 村上凉子中文字幕在线| 99riav亚洲国产免费| 看黄色毛片网站| 亚洲美女视频黄频| 久久久久性生活片| 日本黄大片高清| 欧美一区二区亚洲| 99精品在免费线老司机午夜| 男女下面进入的视频免费午夜| 能在线免费观看的黄片| av.在线天堂| 国产精品女同一区二区软件| 午夜久久久久精精品| 国产三级中文精品| 亚洲最大成人手机在线| 夫妻性生交免费视频一级片| 成人漫画全彩无遮挡| 在线播放国产精品三级| 美女大奶头视频| 国产精品嫩草影院av在线观看| 日日摸夜夜添夜夜添av毛片| 丰满人妻一区二区三区视频av| 麻豆精品久久久久久蜜桃| 小说图片视频综合网站| 日日干狠狠操夜夜爽| 国产 一区 欧美 日韩| 国产一区二区三区av在线 | av天堂在线播放| 国产成人影院久久av| 中国美白少妇内射xxxbb| 久久久久久久久久黄片| 99久国产av精品| 午夜福利高清视频| 在线观看午夜福利视频| 亚洲国产精品合色在线| 91久久精品国产一区二区三区| 直男gayav资源| 国产精品久久久久久亚洲av鲁大| 一本一本综合久久| 一级黄色大片毛片| 两个人视频免费观看高清| 天堂av国产一区二区熟女人妻| 成人国产麻豆网| 热99re8久久精品国产| 一个人看视频在线观看www免费| 五月玫瑰六月丁香| 高清毛片免费看| 男人舔奶头视频| 一区二区三区免费毛片| 亚洲国产精品合色在线| 99九九线精品视频在线观看视频| 中文字幕av在线有码专区| 国产精品,欧美在线| 久久久国产成人精品二区| 麻豆久久精品国产亚洲av| 两个人视频免费观看高清| 少妇的逼水好多| 99热网站在线观看| 亚洲人成网站在线播| av在线观看视频网站免费| 久久国内精品自在自线图片| 三级男女做爰猛烈吃奶摸视频| 青青草视频在线视频观看| 日韩视频在线欧美| 国产精品,欧美在线| 亚洲精品456在线播放app| 久久精品人妻少妇| 亚洲欧美日韩高清专用| 国产熟女欧美一区二区| 欧美成人a在线观看| 久久久久久久久久成人| 欧美一区二区国产精品久久精品| 成人欧美大片| 波多野结衣高清作品| 亚洲人成网站在线播| 亚洲乱码一区二区免费版| 国产片特级美女逼逼视频| 老熟妇乱子伦视频在线观看| 国产精品爽爽va在线观看网站| 久久久a久久爽久久v久久| 国产高清激情床上av| 亚洲成a人片在线一区二区| 亚洲一区二区三区色噜噜| 一个人观看的视频www高清免费观看| kizo精华| 精品久久国产蜜桃| 又黄又爽又刺激的免费视频.| 久久精品夜夜夜夜夜久久蜜豆| 成人鲁丝片一二三区免费| 日韩一本色道免费dvd| 男人和女人高潮做爰伦理| 在线a可以看的网站| 综合色丁香网| 91狼人影院| 久久久久久国产a免费观看| 国产综合懂色| 国产精品av视频在线免费观看| 啦啦啦啦在线视频资源| 日本五十路高清| 久久99热这里只有精品18| 国产69精品久久久久777片| 国内少妇人妻偷人精品xxx网站| 一级毛片我不卡| 欧美激情久久久久久爽电影| 一夜夜www| 久久亚洲国产成人精品v| 国产一区二区激情短视频| 久久久a久久爽久久v久久| 草草在线视频免费看| 一级av片app| 亚洲真实伦在线观看| av女优亚洲男人天堂| 成人亚洲欧美一区二区av| 免费人成视频x8x8入口观看| 亚洲色图av天堂| 少妇裸体淫交视频免费看高清| 看片在线看免费视频| 亚洲精品色激情综合| 午夜久久久久精精品| 婷婷六月久久综合丁香| 国产av一区在线观看免费| 神马国产精品三级电影在线观看| 久久久久网色| 国内少妇人妻偷人精品xxx网站| 精品欧美国产一区二区三| 成人亚洲欧美一区二区av| 国产成人a∨麻豆精品| 国产精品99久久久久久久久| 精品免费久久久久久久清纯| 久久久久国产网址| 免费人成视频x8x8入口观看| 亚洲av二区三区四区| 一夜夜www| 熟妇人妻久久中文字幕3abv| 少妇裸体淫交视频免费看高清| 中国美白少妇内射xxxbb| 日韩强制内射视频| 免费av观看视频| 久久人人爽人人爽人人片va| 久久这里有精品视频免费| 国产精品国产三级国产av玫瑰| 精品久久久久久久久久久久久| 亚洲精品成人久久久久久| 韩国av在线不卡| 精品人妻偷拍中文字幕| 欧美xxxx性猛交bbbb| 日本黄大片高清| 国产精华一区二区三区| 在线天堂最新版资源| 欧美xxxx黑人xx丫x性爽| 久久久久国产网址| 免费搜索国产男女视频| 国产老妇女一区| 六月丁香七月| 国产高清不卡午夜福利| 日韩高清综合在线| 国产极品精品免费视频能看的| 18禁裸乳无遮挡免费网站照片| 99久久九九国产精品国产免费| 青青草视频在线视频观看| 91精品一卡2卡3卡4卡| 国产一区二区亚洲精品在线观看| 赤兔流量卡办理| 国产男人的电影天堂91| 99精品在免费线老司机午夜| 天堂√8在线中文| 日韩视频在线欧美| 丰满乱子伦码专区| 日日摸夜夜添夜夜添av毛片| 亚洲七黄色美女视频| 欧美激情国产日韩精品一区| 一区二区三区四区激情视频 | 毛片一级片免费看久久久久| 夫妻性生交免费视频一级片| 亚洲最大成人手机在线| 成人毛片a级毛片在线播放| 可以在线观看的亚洲视频| 欧美精品一区二区大全| 久久精品夜色国产| 此物有八面人人有两片| 久久人人爽人人片av| 欧美又色又爽又黄视频| 国产一级毛片在线| 男女下面进入的视频免费午夜| 亚洲不卡免费看| 亚洲美女视频黄频| 男女那种视频在线观看| 一边亲一边摸免费视频| 国产精品不卡视频一区二区| 一个人免费在线观看电影| 搞女人的毛片| 免费人成视频x8x8入口观看| 中文亚洲av片在线观看爽| 午夜免费激情av| av.在线天堂| 麻豆国产av国片精品| 在线观看av片永久免费下载| 久久久久性生活片| 日韩中字成人| 99久久人妻综合| 日韩欧美三级三区| 看片在线看免费视频| 我要看日韩黄色一级片| 欧美激情久久久久久爽电影| 亚洲va在线va天堂va国产| 全区人妻精品视频| 国产老妇伦熟女老妇高清| 久久精品人妻少妇| 亚洲精品456在线播放app| 少妇丰满av| 国产久久久一区二区三区| 我的女老师完整版在线观看| 亚洲三级黄色毛片| 综合色av麻豆| 精品少妇黑人巨大在线播放 | 色尼玛亚洲综合影院| 国产精品免费一区二区三区在线| 日韩视频在线欧美| 中国国产av一级| 亚洲欧美日韩东京热| 亚洲国产精品成人综合色| 国产黄片美女视频| 春色校园在线视频观看| 又粗又爽又猛毛片免费看| 日韩一区二区三区影片| avwww免费| 最近最新中文字幕大全电影3| 国产国拍精品亚洲av在线观看| 久久久精品大字幕| 最近视频中文字幕2019在线8| 日本熟妇午夜| 久久久久九九精品影院| 日韩av不卡免费在线播放| 麻豆av噜噜一区二区三区| av国产免费在线观看| 九九爱精品视频在线观看| 日日撸夜夜添| 一级毛片aaaaaa免费看小| 亚洲无线在线观看| 黄色配什么色好看| 99riav亚洲国产免费| 欧美精品一区二区大全| 国产单亲对白刺激| 日日撸夜夜添| 午夜视频国产福利| 岛国在线免费视频观看| 欧美三级亚洲精品| 久久久久性生活片| 婷婷六月久久综合丁香| 啦啦啦韩国在线观看视频| 狂野欧美激情性xxxx在线观看| 国产成人freesex在线| 一边摸一边抽搐一进一小说| 国产女主播在线喷水免费视频网站 | 久久久精品免费免费高清| 搡老乐熟女国产| 伊人久久精品亚洲午夜| 丰满少妇做爰视频| 男女啪啪激烈高潮av片| 久热久热在线精品观看| 中国三级夫妇交换| 91精品一卡2卡3卡4卡| 日日摸夜夜添夜夜爱| 免费观看av网站的网址| 午夜激情福利司机影院| 日韩精品有码人妻一区| 天天影视国产精品| 免费大片18禁| 熟女电影av网| 秋霞在线观看毛片| 亚洲怡红院男人天堂| 亚洲av成人精品一区久久| 搡老乐熟女国产| 性高湖久久久久久久久免费观看| 国产老妇伦熟女老妇高清| 久久99蜜桃精品久久| 亚洲人成网站在线播| 在线观看三级黄色| 亚洲国产精品999| 久久午夜福利片| 亚洲av欧美aⅴ国产| 亚洲精品456在线播放app| 女人精品久久久久毛片| 考比视频在线观看| 亚洲精品av麻豆狂野| 一级毛片黄色毛片免费观看视频| 久久精品国产亚洲网站| 精品一区二区免费观看| 久久毛片免费看一区二区三区| 黄色毛片三级朝国网站| 制服丝袜香蕉在线| 国产乱来视频区| 菩萨蛮人人尽说江南好唐韦庄| 日韩一区二区视频免费看| 青春草亚洲视频在线观看| 国产成人精品在线电影| 97在线人人人人妻| 丰满乱子伦码专区| 人人妻人人澡人人爽人人夜夜| 欧美日韩av久久| 3wmmmm亚洲av在线观看| 国产高清三级在线| 青青草视频在线视频观看| 国产av码专区亚洲av| 人妻系列 视频| www.色视频.com| 少妇被粗大的猛进出69影院 | 中文字幕精品免费在线观看视频 | 9色porny在线观看| 国产有黄有色有爽视频| 性色av一级| 色吧在线观看| 亚洲精品一二三| 丰满少妇做爰视频| 蜜臀久久99精品久久宅男| 国产爽快片一区二区三区| 免费久久久久久久精品成人欧美视频 | 在线观看免费视频网站a站| 久久精品久久精品一区二区三区| 精品熟女少妇av免费看| 丰满饥渴人妻一区二区三| 69精品国产乱码久久久| 欧美精品高潮呻吟av久久| 欧美日韩视频高清一区二区三区二| 久久久久久久久久人人人人人人| 久久人人爽人人片av| 少妇人妻 视频| 日韩精品免费视频一区二区三区 | 亚洲av免费高清在线观看| 制服诱惑二区| 中文字幕久久专区| 国精品久久久久久国模美| 天天操日日干夜夜撸| 久久久久久久国产电影| 97在线视频观看| 成人免费观看视频高清| 少妇 在线观看| 亚洲综合色惰| 人人妻人人爽人人添夜夜欢视频| av不卡在线播放| 哪个播放器可以免费观看大片| 亚洲av成人精品一区久久| 久久综合国产亚洲精品| 夜夜看夜夜爽夜夜摸| 丰满饥渴人妻一区二区三| av免费在线看不卡| 亚洲久久久国产精品| 最后的刺客免费高清国语| 国产黄频视频在线观看| 欧美一级a爱片免费观看看| 91在线精品国自产拍蜜月| 边亲边吃奶的免费视频| 午夜精品国产一区二区电影| 欧美另类一区| 最近中文字幕2019免费版| 国产成人精品无人区| 如何舔出高潮| 大码成人一级视频| 日本黄色日本黄色录像| 成人无遮挡网站| 中文欧美无线码| 国产一区有黄有色的免费视频| 久久99热这里只频精品6学生| 国产成人精品久久久久久| 婷婷成人精品国产| 精品久久久久久久久av| 夫妻性生交免费视频一级片| 久久精品久久久久久久性| 欧美精品国产亚洲| 国产白丝娇喘喷水9色精品| 国产黄色视频一区二区在线观看| 美女国产视频在线观看| 99re6热这里在线精品视频| 久久久久精品性色| 精品一区二区免费观看| 欧美人与善性xxx| 久久久久精品性色| 亚洲国产精品专区欧美| 亚洲久久久国产精品| 五月天丁香电影| 草草在线视频免费看| 久久av网站| 国产精品熟女久久久久浪| 免费观看a级毛片全部| 国产淫语在线视频| 天堂8中文在线网| av网站免费在线观看视频| 纯流量卡能插随身wifi吗| 免费av中文字幕在线| 国产高清不卡午夜福利| 天堂俺去俺来也www色官网| 大片电影免费在线观看免费| 亚洲中文av在线| 97精品久久久久久久久久精品| 亚洲av.av天堂| 国产精品99久久久久久久久| 久久久久网色| 欧美人与性动交α欧美精品济南到 | 久久ye,这里只有精品| 美女脱内裤让男人舔精品视频| 欧美 日韩 精品 国产| 国产亚洲最大av| 男女免费视频国产| 久久精品国产a三级三级三级| 国产成人av激情在线播放 | 日本欧美国产在线视频| 亚洲av成人精品一二三区| 在线精品无人区一区二区三|