• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    直升機(jī)旋轉(zhuǎn)逆動(dòng)力學(xué)建模及姿態(tài)控制研究

    2010-01-26 08:46:36趙佳申功璋
    關(guān)鍵詞:尾槳北京航空航天大學(xué)大包

    趙佳, 申功璋

    (北京航空航天大學(xué)控制一體化技術(shù)國(guó)家級(jí)科技重點(diǎn)實(shí)驗(yàn)室,北京 100191)

    直升機(jī)旋轉(zhuǎn)逆動(dòng)力學(xué)建模及姿態(tài)控制研究

    趙佳, 申功璋

    (北京航空航天大學(xué)控制一體化技術(shù)國(guó)家級(jí)科技重點(diǎn)實(shí)驗(yàn)室,北京 100191)

    為克服直升機(jī)單點(diǎn)逆模型的不足,提出了旋轉(zhuǎn)逆動(dòng)力學(xué)建模新方法,實(shí)現(xiàn)了大包線下的姿態(tài)控制。該方法采用模塊化建模思想,首先通過(guò)轉(zhuǎn)動(dòng)方程逆解算,將姿態(tài)角速度指令轉(zhuǎn)化為期望的縱、橫向揮舞角和尾槳偏航力矩指令等三個(gè)關(guān)鍵狀態(tài)量,然后利用主旋翼?yè)]舞動(dòng)態(tài)逆解算和尾槳槳距指令逆解算,由關(guān)鍵狀態(tài)量解算出期望的縱、橫向周期變距角和尾槳槳距角,進(jìn)而建立了直升機(jī)旋轉(zhuǎn)逆動(dòng)力學(xué)模型。在此基礎(chǔ)上,完成了姿態(tài)控制系統(tǒng)設(shè)計(jì)。仿真結(jié)果表明,該模型能夠在大包線范圍內(nèi)較準(zhǔn)確地反映直升機(jī)的旋轉(zhuǎn)動(dòng)態(tài)逆特性,系統(tǒng)能夠很好地實(shí)現(xiàn)姿態(tài)控制目標(biāo),在各類干擾因素存在時(shí)體現(xiàn)出了較強(qiáng)的性能魯棒性。

    直升機(jī);逆動(dòng)力學(xué);建模;大包線;姿態(tài)控制

    0 Introduction

    A helicopter is a special kind of versatile aerocraft,which can perform different kinds ofmaneuvers.There is increasing interest in the deployment of the helicopter for both military and civilian applications.Because it belongs to an intrinsically instability,strong coupling and nonlinear system,the research on helicopter flight control system(HFCS)design has always been important and also difficult[1].

    Attitude control,as the important foundation for velocity/trajectory control,is a key part of HFCS.In recent years,control schemes based on“inversemodel”have been applied successfully in helicopter attitude control field.In these schemes,the inversemodel is used to counteract the complex rotational inverse dynamics of the helicopter,and then good control effects could be gained.

    At present,a single point inversionmodel(SPIM)is the inversion model,which is widely used in helicopter attitude control[2-5].SPIM is a linear model via inverse calculating of helicopter linear model on a single flight state point.From the establishing principle,SPIM can reflect the helicopter rotation inverse dynamics(HRID)correctly nearby the chosen flight state point,but can not reflect HRID throughout the full flight envelope(FFE).Therefore,there exists largemodel error when using SPIM for helicopter attitude control throughout FFE.For solving this problem,an adaptive element(AE)is adopted to compensate themodel error of SPIM.As the complexity of helicopter dynamics,themodel error of SPIM is difficult to be described accurately.Whether AE could be able to compensate themodel error completely is still a question.In this case,for achieving flight control throughout FFE,a usual solution is to increase the learning rate of AE[4],which nevertheless will increase AE’s work burden and even cause the system unstable[2].

    In order to overcome the deficiency in SPIM,a novel modeling method for HRIM is proposed.By using themethod,a nonlinear helicopter rotational inverse dynamics model(RIDM)is established,and the helicopter attitude control system is developed successfully.

    1 Helicopter RIDM modeling

    The allocation of three-axismoments is the key for RIDM modeling.

    According to helicopter dynamics,the change of longitudinal/lateral cyclic pitch angle willmake a corresponding change in longitudinal/lateral flapping angle,which lead the change of pitch/rollmoment.The change of collective pitch angle in tail rotor will also make a corresponding change in its thrust,which lead the change of yaw moment.

    On the basis of above principle,a novelmodeling method for helicopter RIDM is proposed,and themain structure of themethod is shown in Fig.1.

    Fig.1 Main structure of helicopter RIDM

    The helicopter RDIM consists of following four modules:rotation equation inverse calculation module,flapping dynamic inverse calculation module,main rotor inflow estimation module and tail rotor collective pitch angle inverse calculation module.

    Based on current body attitude velocity command,the rotation equation inverse calculation module is used to calculate the expected“key states”,viz the expected longitudinal/lateral flapping angle and tail rotor yawing moment.The flapping dynamic inverse calculationmodule and themain rotor inflow estimationmodulework together to calculate the expected longitudinal/lateral cyclic pitch angle based on current longitudinal/lateral flapping angle command.The tail rotor collective pitch angle inverse calculationmodule is used to calculate the expected tail rotor collective pitch angle based on current tail rotor yawingmoment command.

    In Section1.1-1.4,more details about fourmoduleswill be discussed.

    1.1 Rotation equation inverse calculation module

    The function of the rotation equation inverse calculation module is to calculate the key states according to the current body attitude velocities.

    The helicopter rotation dynamic function is

    where Ixx,Iyyand Izzdenote the moments of inertia of the helicopter about the x-,y-and z-axes;Ixzdenotes the product of the inertia about x-and z-axes;I=[Ixx0 -Ixz;0 Iyy0;- Ixz0 Izz]denotes the inertial tensor;ωx,ωyandωzdenote the body attitude velocities;L,M and N denote the three-axismoment vectors.

    Based on helicopter dynamics,it can be seen that pitchingmoment ismainly provided by themain rotor,rollingmoment ismainly provided by themain and tail rotor,and yawing moment is mainly provided by the tail rotor.Therefore,the three-axismoment vector can be described as

    where Lr+Ltr,Mrand Ntrdenote the controllable moment vectors(subscript‘r’denotes themain rotor and‘tr’denotes the tail rotor);∑ L0,∑ M0and∑N0denote other moment vectors which can be gained via thewind tunnel experiment data and correlative calculations.

    The controllable part in(2)can be expressed as[1]

    where nbsdenotes the blade number of themain rotor;Kβis themain rotor stiffness;β1cand β1sare the longitudinal and lateral flapping angles respectively;λis the proportional coefficient.

    Using(1)-(3),we can obtain

    where U denotes the“key states”vector.

    The helicopter rotation control problem can be described as

    where“key states”vector U is also the pseudo input of(5).

    The expected dynamic response of attitude velocity vector can be described as

    U can be obtained by means of typical dynamic inversion method

    Equation(7)is the mathematical model of rotation equation inverse calculation.

    1.2 Flapping dynam ic inverse calculation module

    The function of the flapping dynamic inverse calculation module is to provide the expected longitudinal/lateral cyclic pitch angle based on current longitudinal/lateral flapping angle command.

    Helicoptermain rotor flapping dynamic equation is[1]

    where βM=[β0β1cβ1s]T,and β0,β1cand β1sdenote themain rotor coning,longitudinal and lateral flapping angles;θ =[θ0θ1swθ1cw]T,and θ0,θ1swand θ1cwdenote collective pitch angle,longitudinal cyclic pitch angle and lateral cyclic pitch angle;θtwis themain rotor blade linear twist;λis themain rotor inflow infor-mation vector;ω0is the attitude velocity information vector;Aβθ,Aβθtw,Aβλand Aβωare time-variable parameter matrices which are decided by current advanced radio.

    The second,third and fourth items on the right side of(8)are far smaller than the first item,therefore,Equation(8)can be expressed as

    For obtaining the expected cyclic pitch angles,Equation(9)ismodified as the following form

    As the collective pitch angle can be considered as the slow-varying state,Equation(10)can be described as

    Equation(11)is themathematicalmodel for flapping dynamic inverse calculation.The main rotor inflow utilized in(11)is provided by main rotor inflow estimation module discussed in the following section.

    1.3 Main rotor inflow estimation module

    The function of the main rotor inflow estimation module is to provide the flapping dynamic inverse calculation module with the current estimating value of main rotor inflow.

    For simplifying the calculating process,Newton’s iterative scheme based on momentum theory is used to achieve the inflow estimation[1].This scheme can be described as following equations:

    whereλ0is the currentmain rotor inflow value;CTis themain rotor thrust coefficient;a0is the main rotor lift curve slope;μis the advanced radio;μzis the uniform vertical velocity;s is the main rotor solidity;fjdenotes the convergence rate coefficientwith the value 0.6;subscript j denotes the current value and j+1 denotes the estimating value in next time.

    1.4 Tail rotor collective pitch angle inverse calculation module

    The function of the tail rotor collective pitch angle inverse calculation module is to calculate the collective pitch angle of the tail rotor based on current expected yaw moment.

    The expected thrust of the tail rotor can be obtained based on current expected yaw moment

    where ltrdenotes the distance of tail rotor hub aft of fuselage reference point;xcgdenotes the centre of gravity location forward of fuselage reference point.

    Moreover,the expected thrust coefficient is gained

    whereρis air density;Ωtris tail rotor speed;Rtris the tail rotor radius;Kblkdenotes the block coefficient cased by fin and tail plane.On the other hand,the thrust coefficient can be described as the following form usingmomentum theory

    whereωtris the tail rotor induced velocity;μtris the uniform advanced velocity at tail rotor hub centre;μZtris the uniform vertical velocity at tail rotor hub centre.By iterative calculating(18),the expected induced velocity can be obtained.

    The inverse calculation for tail rotor collective pitch angle is achieved based on the modified Bailey model[6].

    The tail rotor induced velocity can be described as

    where t31,t32and t33denote the Bailey coefficients;stris the tail rotor solidity;θ0Tis the tail rotor collective pitch angle;θtwpis the tail rotor blade linear twist;G=a0trstr/2,and a0trdenotes the tail rotor lift curve slope.The Bailey coefficients can be calculated as[6]

    where Btrdenotes the tail rotor blade tip losing coefficient.

    Using(19),the tail rotor collective pitch angle can be obtained

    2 Attitude control scheme based on RIDM

    The helicopter attitude control system has been developed using the proposed RIDM.Fig.2 shows the overall structure of the system.

    As shown in Fig.2,by using“Euler angle- >angle velocity inverse calculation module”,the expected angle velocity will be calculated based on current attitude command.And then,by using RIDM,the expected longitudinal/lateral cyclic pitch angle and tail rotor collective pitch angle can be obtained based on current angle velocity commands.The attitude inverse control for the helicopter is achieved.

    Fig.2 Structure of helicopter attitude control system

    Themathematicalmodel of“Euler angle->angle velocity inverse calculationmodule”can be described as

    3 Simulation results and analysis

    For checking the effectiveness of the proposed RIDM model,the attitude control system has been developed based on the structure shown in Fig.2 by using a 6-DOF nonlinear mathematic model of the helicopter[7],and series of experiments have also been finished.The adjustable parameter matrices are Kc1=diag(5,3.5,4)and Kc2=diag(0.6,0.4,0.35)

    In 3.1,the accuracy of RIDM on different flight states is shown.In 3.2 -3.4,the control performances of the system when existing kinds of disturbances are indicated.

    3.1 Test for the accuracy of RIDM on different flight states

    In the test for the accuracy of RIDM on different flight states,whether the proposed model can reflect HRID correctly on different flight states is checked.Fig.3 and Fig.4 display the three-axisattitude responseswhen tracking square signal on four different typical flight states,viz hovering,5m/s,30m/s and 50m/s forward flight.The results indicate that the system can track three-axis attitude command well on different flight states,whichmatch the ACAH demand defined in ADS-33 quite well.The coupling among three attitude responses isweak.The results indicate that the RDIM proposed in this paper can reflect HRID well throughout FFE.

    Fig.3 Three-axis attitude responses(dash line:command;solid line:response)

    Among above experiments,the simulation time is 30 s and the sample time is 0.01 s.Results show the actual running time of the system is less than 20 s,which indicates good real time performance of the proposed method.

    3.2 Test for side w ind disturbance

    Sidewind is considered as themain disturbance to the helicopter flight system and will therefore be simulated in thewindmodule.A side wind results in a side force due to fuselage drag,a roll moment due to the main rotor dynamics and a yaw moment due to the tail rotor dynamics.

    Themathematicalmodel of the wind model[8]is

    The force/moment cased by side wind can be modeled as described in reference[8].

    Fig.5 presents the three-axis attitude responses on hover and 50m/s forward flight statewhen existing side wind disturbance.The results indicate that the threeaxis attitude responses are all affected by the side wind,the effects on pitch angle response aremuch smaller than those on the other two responses,and after all,the system is able to achieve attitude command tracking.Thismeans that RIDM proposed in this paper has strong performance robustness when existing side wind disturbance.

    Fig.4 Three-axis attitude responses(dash line:comm and;solid line:response)

    Fig.5 Three-axis attitude responses w ith side w ind disturbance(dash line:command;solid line:response)

    3.3 Test for white noise disturbance

    In the test for white noise disturbance,white noise disturbance with 5%intensity is added in pitch angle output channel to check the anti-interference capability of RIDM.The responses on different states are shown in Fig.6.The responses on hover and 30 m/s forward flight state are all affected by the output noise,and the effect on the former is stronger than that on the latter.The system is still able to achieve attitude trackingwell.

    Fig.6 Pitch responsesw ith white noise(dash line:command;solid line:response)

    3.4 Test for main rotor inflow estimating error

    Fig.7 Pitch responsesw ith/w ithout inflow estimating uncertainty

    In the proposed RIDM,a simple iterative scheme is used for main rotor inflow estimation.In fact,it is difficult to estimate inflow accurately.Fortunately,the effect of inflow in(8)is far weaker than that of pitch angles;therefore,the error in inflow estimation has small effect on the whole control system.For checking the conclusion,a 30% uncertainty is added in the main rotor inflow estimationmodule in the test formain rotor inflow estimating error.The pitch angle responses on hover statewith/without30%estimating uncertainty are shown in Fig.7.The results show that the effecton pitch angle response is weak,which means RIDM has strong robustness against inflow estimating error.

    4 Conclusions

    The helicopter RIDM was established by using a novel modeling method,and the helicopter attitude control system was also developed successfully based on it.Simulation results show the helicopter RIDM can reflect HRID correctly throughout FFE without AE’s compensation,which overcomes the deficiency in traditional SPIM.The system can achieve good attitude control and also has strong robustness performance when existing kinds of disturbances.

    [1] PADFIELDGD.Helicopter Flight Dynamics:TheTheoryandApplicationofFlyingQualitiesandSimulationModeling[M].UK:AIAA and Black Well Science Ltd,1996:93-141.

    [2] WANG Hui,XU Jinfa,Gao Zheng.Design of attitude control system based on neural network to unmanned helicopter[J].ACTA AeronauticaETAstronauticaSINICA,2005,26(6):670-674.

    [3] NAKWAN K,ANTHONY JC.Adaptive output feedback for altitude control of an unmanned helicopter using rotor RPM[C]//AIAAGuidance,Navigation,andControlConferenceandExhibit.Rhode Island:AIAA Press,2004:1 -17.

    [4] HUANG Weimin.HelicopterNeuralNetworkControlandImplementationofHandlingQualityRequirements[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2002.

    [5] ZHAO Jia,CHEN Shenggong,SHEN Gongzhang.Novel control scheme for helicopter flight:Fuzzy immune adaptive model inversion control[C]//ProceedingsofIFACWorldCongress2008.Korea:IFAC Press,2008:15046 -15051.

    [6] YU Zhi.ResearchonHelicopterFlightDynamicModelingandRobust FlightControlLawDesign[D].Beijing:Beihang University,2008.

    [7] YANG Chao.HelicopterFlightDynamicAffineNonlinearSystem ModelingandEstimating[D].Beijing:Beihang University,1995.

    [8] NIELSEN A.HelicopterDynamicsandRobustControl[D].New York:State University of New York,2005.

    Helicopter rotation inverse dynam icsmodeling and attitude control

    ZHAO Jia,SHEN Gong-zhang

    (National Key Laboratory of Control Integration Technology,Beihang University,Beijing 100191,China)

    A novelmodelingmethod of helicopter rotation inverse dynamicswas proposed for overcoming deficiency in the tradition single point inversionmodel,and the attitude control throughout full flightenvelopewas implemented.In themethod,the attitude velocity command was transformed into three expected key states(viz longitudinal/lateral flapping angle and tail rotor yaw moment)bymeans of rotational equation inverse calculation,and from the key states,the expected longitudinal/lateral cyclic pitch angle and tail rotor collective pitch anglewere obtained by usingmain rotor flapping dynamic inverse calculation and tail rotor collective pitch angle inverse calculation.Furthermore,the helicopter attitude control system was developed based on themodel.Simulation results show the proposed modellingmethod can reflect the helicopter inverse dynamics correctly throughout full flightenvelope;the system can achieve attitude controlwellwithout compensation element and has strong robustness performance when existing kinds of disturbances.

    helicopter;inverse dynamics;modeling;full flight envelope;attitude control

    TP 273.2

    A

    1007-449X(2010)08-0031-07

    2009-12-21

    國(guó)家自然科學(xué)基金資助項(xiàng)目(60774061);高等學(xué)校博士點(diǎn)基金資助項(xiàng)目(20060006010)

    趙 佳(1981—),男,博士研究生,研究方向?yàn)橹鄙龣C(jī)飛行控制、綜合飛行火力控制;

    申功璋(1945—),男,教授,博士生導(dǎo)師,研究方向?yàn)榫C合飛行控制、大系統(tǒng)控制。

    (編輯:張 靜)

    猜你喜歡
    尾槳北京航空航天大學(xué)大包
    直升機(jī)的“尾巴”
    《北京航空航天大學(xué)學(xué)報(bào)》征稿簡(jiǎn)則
    《北京航空航天大學(xué)學(xué)報(bào)》征稿簡(jiǎn)則
    被動(dòng)變弦長(zhǎng)提升變轉(zhuǎn)速尾槳性能
    《北京航空航天大學(xué)學(xué)報(bào)》征稿簡(jiǎn)則
    《北京航空航天大學(xué)學(xué)報(bào)》征稿簡(jiǎn)則
    直升機(jī)旋翼干擾對(duì)尾槳?dú)鈩?dòng)噪聲影響的數(shù)值研究
    大包鋼水凈重采集模擬方法的應(yīng)用
    山東冶金(2019年2期)2019-05-11 09:12:16
    連鑄機(jī)提高大包鋼水稱重準(zhǔn)確性方法實(shí)踐
    山東冶金(2019年1期)2019-03-30 01:35:18
    創(chuàng)新作文(小學(xué)版)(2017年24期)2017-04-04 02:06:58
    日韩成人av中文字幕在线观看| 久久久精品大字幕| 欧美性感艳星| 在线观看美女被高潮喷水网站| 日本爱情动作片www.在线观看| 一二三四中文在线观看免费高清| 亚洲国产精品成人综合色| 亚洲国产精品成人综合色| 久久6这里有精品| 乱人视频在线观看| 成人漫画全彩无遮挡| 国产高清国产精品国产三级 | 嫩草影院精品99| 亚洲最大成人av| 一级二级三级毛片免费看| 久久久久久国产a免费观看| 91久久精品国产一区二区三区| 色哟哟·www| 99在线人妻在线中文字幕| 日韩三级伦理在线观看| 99在线人妻在线中文字幕| 97在线视频观看| 国产亚洲最大av| 亚洲av电影在线观看一区二区三区 | 亚洲精品乱久久久久久| 精品国产三级普通话版| 亚洲av.av天堂| 久久久成人免费电影| www.色视频.com| 免费av毛片视频| 亚洲国产精品专区欧美| 草草在线视频免费看| 久久精品久久久久久噜噜老黄 | 成年免费大片在线观看| 国产乱来视频区| 麻豆乱淫一区二区| 免费黄色在线免费观看| 麻豆成人午夜福利视频| 99热这里只有是精品在线观看| 三级毛片av免费| 久久精品国产99精品国产亚洲性色| 色尼玛亚洲综合影院| 久久久欧美国产精品| 久久这里有精品视频免费| 国产淫语在线视频| 成人亚洲精品av一区二区| av国产久精品久网站免费入址| 亚洲国产最新在线播放| 中文字幕精品亚洲无线码一区| 日韩一区二区三区影片| 亚洲欧美精品综合久久99| 天堂影院成人在线观看| 国产成人精品一,二区| 秋霞伦理黄片| kizo精华| 一个人看的www免费观看视频| 久久精品91蜜桃| 日韩欧美 国产精品| 久久久午夜欧美精品| 久久久午夜欧美精品| 亚洲成人中文字幕在线播放| 搡女人真爽免费视频火全软件| 99久久中文字幕三级久久日本| 又粗又硬又长又爽又黄的视频| 国产精品爽爽va在线观看网站| 亚洲婷婷狠狠爱综合网| 中文乱码字字幕精品一区二区三区 | 久久久久久久久久黄片| 丰满乱子伦码专区| 日日干狠狠操夜夜爽| videossex国产| 亚洲欧美中文字幕日韩二区| a级毛色黄片| 晚上一个人看的免费电影| 国产一区有黄有色的免费视频 | 成人性生交大片免费视频hd| 麻豆av噜噜一区二区三区| 亚洲人成网站在线播| 国产伦精品一区二区三区视频9| 免费看a级黄色片| 亚洲伊人久久精品综合 | 国产老妇伦熟女老妇高清| 成年免费大片在线观看| 精品99又大又爽又粗少妇毛片| 亚洲美女搞黄在线观看| 尤物成人国产欧美一区二区三区| 天堂网av新在线| 亚洲无线观看免费| 伊人久久精品亚洲午夜| 三级经典国产精品| 国产精品一区二区在线观看99 | 免费一级毛片在线播放高清视频| 麻豆成人av视频| 国产黄片美女视频| 国产熟女欧美一区二区| 亚洲精品亚洲一区二区| 深夜a级毛片| 亚洲国产欧洲综合997久久,| 亚洲av电影在线观看一区二区三区 | 极品教师在线视频| 亚洲国产精品久久男人天堂| 国产成人精品一,二区| 欧美日本视频| 国产黄片美女视频| 成人毛片a级毛片在线播放| 精品人妻视频免费看| 国产欧美另类精品又又久久亚洲欧美| 欧美性猛交╳xxx乱大交人| 亚洲国产精品成人综合色| 亚洲国产精品成人久久小说| 国产精品蜜桃在线观看| 国产高清三级在线| 国产精品野战在线观看| 亚洲色图av天堂| 高清午夜精品一区二区三区| 亚洲精品亚洲一区二区| 最新中文字幕久久久久| 国产成人91sexporn| 亚洲精品国产成人久久av| 卡戴珊不雅视频在线播放| 国产片特级美女逼逼视频| 久久99热6这里只有精品| 99久久成人亚洲精品观看| 成人欧美大片| 亚洲成色77777| 欧美一区二区精品小视频在线| 国产精品无大码| 国产精品,欧美在线| 精品免费久久久久久久清纯| av女优亚洲男人天堂| 国产91av在线免费观看| 午夜激情欧美在线| 免费播放大片免费观看视频在线观看 | 蜜臀久久99精品久久宅男| 久久精品综合一区二区三区| 少妇的逼水好多| 久久久久久久亚洲中文字幕| 老师上课跳d突然被开到最大视频| 日韩在线高清观看一区二区三区| 你懂的网址亚洲精品在线观看 | 能在线免费观看的黄片| 成人亚洲精品av一区二区| 久久久欧美国产精品| 亚洲国产高清在线一区二区三| 亚洲欧美日韩无卡精品| 久久久久久久久久黄片| 丰满乱子伦码专区| 一本久久精品| 久久精品久久久久久久性| 日韩视频在线欧美| 高清视频免费观看一区二区 | 欧美一区二区精品小视频在线| 免费电影在线观看免费观看| 亚洲aⅴ乱码一区二区在线播放| 麻豆精品久久久久久蜜桃| 久久久a久久爽久久v久久| 精品酒店卫生间| 亚洲真实伦在线观看| 高清av免费在线| 国产成人a∨麻豆精品| 少妇熟女欧美另类| 国产乱人偷精品视频| 久久鲁丝午夜福利片| 久久久久久九九精品二区国产| 亚洲国产精品专区欧美| 少妇裸体淫交视频免费看高清| 男人的好看免费观看在线视频| 久久久久久久国产电影| 国产又色又爽无遮挡免| 国产午夜福利久久久久久| 少妇丰满av| 亚洲国产欧美人成| 亚洲综合精品二区| 欧美成人免费av一区二区三区| 少妇的逼水好多| 全区人妻精品视频| 婷婷色综合大香蕉| 欧美性猛交╳xxx乱大交人| 国产精品嫩草影院av在线观看| 久久精品国产99精品国产亚洲性色| 老司机影院成人| 超碰av人人做人人爽久久| 午夜亚洲福利在线播放| 青青草视频在线视频观看| 亚洲国产精品成人综合色| 久久久久九九精品影院| 亚洲aⅴ乱码一区二区在线播放| 午夜亚洲福利在线播放| a级毛片免费高清观看在线播放| 亚洲av男天堂| 亚洲av男天堂| 在线免费观看的www视频| 免费av毛片视频| 国产私拍福利视频在线观看| 久久这里只有精品中国| 亚洲欧美精品专区久久| 麻豆久久精品国产亚洲av| 老司机影院毛片| 精品不卡国产一区二区三区| 亚洲色图av天堂| 你懂的网址亚洲精品在线观看 | 长腿黑丝高跟| 日韩三级伦理在线观看| 国产成人福利小说| 能在线免费看毛片的网站| 欧美成人免费av一区二区三区| 日韩成人伦理影院| 亚洲精品乱码久久久久久按摩| 国产成人精品婷婷| 国模一区二区三区四区视频| 超碰97精品在线观看| 国产色婷婷99| 九九在线视频观看精品| 国产极品天堂在线| 有码 亚洲区| 亚洲四区av| 国产精品永久免费网站| 伊人久久精品亚洲午夜| 2022亚洲国产成人精品| 五月玫瑰六月丁香| videossex国产| 九九爱精品视频在线观看| 少妇熟女aⅴ在线视频| 国产极品天堂在线| 久久久久久大精品| 午夜精品在线福利| 亚洲图色成人| 内射极品少妇av片p| 2021天堂中文幕一二区在线观| 亚洲18禁久久av| 午夜福利在线观看吧| 成人亚洲精品av一区二区| 99久久精品一区二区三区| 精品一区二区三区人妻视频| 亚洲av男天堂| 91精品伊人久久大香线蕉| 内地一区二区视频在线| 国产探花极品一区二区| 久久久久久九九精品二区国产| 国产一区亚洲一区在线观看| 国产精品久久视频播放| 如何舔出高潮| 熟妇人妻久久中文字幕3abv| 亚洲自拍偷在线| 亚洲av一区综合| 99热6这里只有精品| 久久人妻av系列| 国产老妇女一区| 亚洲av成人精品一二三区| 两个人视频免费观看高清| 国产一级毛片在线| 久久久久久久久久成人| 亚洲精品成人久久久久久| 日本爱情动作片www.在线观看| 嘟嘟电影网在线观看| 国产成人一区二区在线| 亚洲欧美日韩无卡精品| 亚洲av一区综合| 久热久热在线精品观看| www.av在线官网国产| 国产一区二区在线观看日韩| 日韩成人av中文字幕在线观看| 一级av片app| 免费看光身美女| 成人国产麻豆网| 国语对白做爰xxxⅹ性视频网站| 男女那种视频在线观看| 免费观看在线日韩| 麻豆国产97在线/欧美| 少妇人妻精品综合一区二区| 日韩一区二区视频免费看| 寂寞人妻少妇视频99o| 长腿黑丝高跟| 三级毛片av免费| 日韩一区二区视频免费看| 国产三级中文精品| av在线天堂中文字幕| 麻豆精品久久久久久蜜桃| 91精品一卡2卡3卡4卡| 免费看a级黄色片| 18禁在线播放成人免费| 三级国产精品片| 国产午夜精品论理片| eeuss影院久久| 欧美激情在线99| 精品99又大又爽又粗少妇毛片| 白带黄色成豆腐渣| 国产伦精品一区二区三区视频9| 一个人观看的视频www高清免费观看| 亚洲av不卡在线观看| 欧美激情国产日韩精品一区| 亚洲精品成人久久久久久| 欧美激情在线99| 日本三级黄在线观看| 亚洲电影在线观看av| 久久久久久久久久黄片| 久久久色成人| 免费观看精品视频网站| 日韩,欧美,国产一区二区三区 | 在现免费观看毛片| 国产精品野战在线观看| 亚洲国产精品sss在线观看| 日韩一区二区视频免费看| 国产精品国产高清国产av| 草草在线视频免费看| 51国产日韩欧美| 免费看光身美女| 国产精品一区二区三区四区久久| 国产精品嫩草影院av在线观看| 麻豆一二三区av精品| 国产av在哪里看| av视频在线观看入口| videos熟女内射| 欧美一区二区精品小视频在线| 综合色丁香网| 国产久久久一区二区三区| 中文字幕av成人在线电影| 国产精品女同一区二区软件| 干丝袜人妻中文字幕| 色综合色国产| 爱豆传媒免费全集在线观看| 国产成人aa在线观看| 99久久精品一区二区三区| 国产一区二区三区av在线| 日韩av在线大香蕉| 国产一区有黄有色的免费视频 | .国产精品久久| 床上黄色一级片| 国产精品一二三区在线看| 三级经典国产精品| 亚洲av福利一区| 国产69精品久久久久777片| 亚洲色图av天堂| 国产男人的电影天堂91| 啦啦啦啦在线视频资源| 国产精品国产高清国产av| 99久久精品热视频| 男人和女人高潮做爰伦理| 亚洲成av人片在线播放无| 亚洲一级一片aⅴ在线观看| 国产精品一二三区在线看| 国产高清不卡午夜福利| 久久久精品欧美日韩精品| 亚洲国产精品国产精品| 日韩人妻高清精品专区| 女人十人毛片免费观看3o分钟| 青春草视频在线免费观看| 久久国产乱子免费精品| 好男人在线观看高清免费视频| 国产精品99久久久久久久久| 草草在线视频免费看| 能在线免费观看的黄片| 岛国毛片在线播放| 亚洲自偷自拍三级| 成人鲁丝片一二三区免费| 欧美区成人在线视频| 我要看日韩黄色一级片| 久久精品国产鲁丝片午夜精品| 午夜福利在线观看免费完整高清在| 日韩强制内射视频| 免费黄网站久久成人精品| 国产乱人视频| 免费观看性生交大片5| 真实男女啪啪啪动态图| 国产精品国产三级专区第一集| 一区二区三区免费毛片| 成人午夜精彩视频在线观看| 久久精品国产自在天天线| 久久久色成人| 亚洲在久久综合| 亚洲自偷自拍三级| 蜜桃亚洲精品一区二区三区| 永久网站在线| 亚洲av一区综合| 一级爰片在线观看| 国产真实伦视频高清在线观看| 久久久久九九精品影院| 亚洲性久久影院| 久久久久久久久久黄片| 国产精品国产三级国产专区5o | 久久6这里有精品| 国产淫语在线视频| 久久久久精品久久久久真实原创| 国产人妻一区二区三区在| www.av在线官网国产| 国产一区二区在线av高清观看| 亚洲人成网站在线播| 成人毛片a级毛片在线播放| av卡一久久| 97超碰精品成人国产| 国产伦精品一区二区三区视频9| 免费黄色在线免费观看| 精品国产露脸久久av麻豆 | 日韩精品有码人妻一区| 国产黄色视频一区二区在线观看 | 亚洲高清免费不卡视频| 波多野结衣巨乳人妻| 99热网站在线观看| 青春草国产在线视频| 国产午夜福利久久久久久| 一夜夜www| 欧美高清成人免费视频www| 国产一区亚洲一区在线观看| 99热这里只有是精品在线观看| 国内精品美女久久久久久| 一个人观看的视频www高清免费观看| 欧美变态另类bdsm刘玥| av免费在线看不卡| 久热久热在线精品观看| 中文天堂在线官网| 亚洲五月天丁香| 国产精品99久久久久久久久| 亚洲av成人av| 国产91av在线免费观看| 亚洲av中文av极速乱| 禁无遮挡网站| 成年版毛片免费区| 中文字幕熟女人妻在线| 国产一区有黄有色的免费视频 | 91久久精品电影网| 日日摸夜夜添夜夜爱| 18+在线观看网站| 国产高清视频在线观看网站| 国产91av在线免费观看| 村上凉子中文字幕在线| 久99久视频精品免费| 国产午夜福利久久久久久| 91精品伊人久久大香线蕉| 久久久久国产网址| 最近视频中文字幕2019在线8| 黄色欧美视频在线观看| 日韩制服骚丝袜av| 国产亚洲一区二区精品| 日韩一本色道免费dvd| 国内精品宾馆在线| 亚洲成色77777| 观看美女的网站| 欧美高清成人免费视频www| 亚洲内射少妇av| 国产淫语在线视频| 日韩三级伦理在线观看| 久久精品国产鲁丝片午夜精品| 哪个播放器可以免费观看大片| 成年免费大片在线观看| 亚洲精品aⅴ在线观看| 色播亚洲综合网| 91狼人影院| 欧美一区二区亚洲| 精品国内亚洲2022精品成人| 美女国产视频在线观看| 欧美成人午夜免费资源| 精品人妻视频免费看| 99热全是精品| 在线观看av片永久免费下载| 天堂网av新在线| 少妇人妻精品综合一区二区| 精品国产一区二区三区久久久樱花 | 国产免费福利视频在线观看| 女人十人毛片免费观看3o分钟| 欧美高清成人免费视频www| 国产成年人精品一区二区| 尤物成人国产欧美一区二区三区| 精品久久久久久久久亚洲| 亚洲一区高清亚洲精品| 国产乱人视频| 能在线免费观看的黄片| 午夜福利在线观看免费完整高清在| 天天躁日日操中文字幕| 中国美白少妇内射xxxbb| 久久久久久久午夜电影| 亚洲人成网站高清观看| 亚洲美女视频黄频| 免费看日本二区| 神马国产精品三级电影在线观看| 1024手机看黄色片| 三级男女做爰猛烈吃奶摸视频| 岛国在线免费视频观看| 亚洲国产日韩欧美精品在线观看| 亚洲av福利一区| 别揉我奶头 嗯啊视频| 婷婷色综合大香蕉| 嘟嘟电影网在线观看| 欧美日本亚洲视频在线播放| 午夜激情福利司机影院| 国产精品一区二区性色av| 99久国产av精品国产电影| 免费无遮挡裸体视频| av视频在线观看入口| 熟妇人妻久久中文字幕3abv| 色哟哟·www| 夜夜爽夜夜爽视频| 亚洲伊人久久精品综合 | 人体艺术视频欧美日本| 国产成人a∨麻豆精品| 日韩,欧美,国产一区二区三区 | 一个人看视频在线观看www免费| 欧美一区二区国产精品久久精品| 联通29元200g的流量卡| 国产成年人精品一区二区| 又黄又爽又刺激的免费视频.| 丰满人妻一区二区三区视频av| 在线播放国产精品三级| 亚洲美女视频黄频| 欧美成人午夜免费资源| 婷婷色综合大香蕉| 青春草国产在线视频| 国产三级中文精品| 国产成人aa在线观看| 国产精品综合久久久久久久免费| 亚洲最大成人手机在线| 欧美三级亚洲精品| 午夜免费激情av| 亚洲欧美精品自产自拍| 日韩高清综合在线| 日本黄色视频三级网站网址| 性插视频无遮挡在线免费观看| h日本视频在线播放| 欧美成人a在线观看| 看十八女毛片水多多多| 天天躁日日操中文字幕| 亚洲色图av天堂| 亚洲婷婷狠狠爱综合网| 亚洲经典国产精华液单| av国产久精品久网站免费入址| 精品国产露脸久久av麻豆 | 亚洲国产欧美人成| av专区在线播放| 国产国拍精品亚洲av在线观看| 国产探花在线观看一区二区| 久久精品影院6| 亚洲丝袜综合中文字幕| 亚洲国产欧美人成| 小蜜桃在线观看免费完整版高清| 噜噜噜噜噜久久久久久91| 久久亚洲国产成人精品v| 日本av手机在线免费观看| 三级经典国产精品| 能在线免费看毛片的网站| 亚洲第一区二区三区不卡| 精品一区二区三区视频在线| 欧美一区二区精品小视频在线| 国产美女午夜福利| 亚洲激情五月婷婷啪啪| 久99久视频精品免费| 久久精品人妻少妇| 麻豆乱淫一区二区| 国产三级在线视频| 超碰97精品在线观看| 精华霜和精华液先用哪个| 亚洲人成网站在线播| www.色视频.com| 国产乱人偷精品视频| 美女黄网站色视频| 亚洲在线自拍视频| 长腿黑丝高跟| 天堂av国产一区二区熟女人妻| 丰满乱子伦码专区| 18+在线观看网站| 青春草亚洲视频在线观看| 不卡视频在线观看欧美| 亚洲欧美日韩卡通动漫| www.av在线官网国产| 一个人观看的视频www高清免费观看| 亚洲成人av在线免费| 国产精品熟女久久久久浪| 人妻夜夜爽99麻豆av| 精品人妻熟女av久视频| 婷婷色麻豆天堂久久 | 国产爱豆传媒在线观看| 麻豆乱淫一区二区| 精华霜和精华液先用哪个| 中文字幕免费在线视频6| 国产成人91sexporn| 久久久精品大字幕| 国国产精品蜜臀av免费| 亚洲精华国产精华液的使用体验| 亚洲av电影在线观看一区二区三区 | 免费av毛片视频| 国产成人精品一,二区| 亚洲欧洲日产国产| 国产午夜精品论理片| 卡戴珊不雅视频在线播放| 国产精品久久久久久久电影| 简卡轻食公司| 亚洲真实伦在线观看| 成人二区视频| 精品国产三级普通话版| 国产亚洲av片在线观看秒播厂 | 五月伊人婷婷丁香| 别揉我奶头 嗯啊视频| 日韩三级伦理在线观看| 国产精品电影一区二区三区| 亚洲国产欧美人成| 麻豆成人av视频| 一二三四中文在线观看免费高清| 国产熟女欧美一区二区| 国产美女午夜福利| 自拍偷自拍亚洲精品老妇| 久久精品国产99精品国产亚洲性色| 日韩精品有码人妻一区| 国产精品麻豆人妻色哟哟久久 | 视频中文字幕在线观看| av福利片在线观看| 简卡轻食公司| 成人三级黄色视频| 真实男女啪啪啪动态图| 国国产精品蜜臀av免费| 亚洲国产日韩欧美精品在线观看| 久久精品久久精品一区二区三区| 黄色日韩在线| 久久久国产成人免费| av播播在线观看一区| 蜜桃久久精品国产亚洲av| 欧美最新免费一区二区三区| 天天躁日日操中文字幕|