• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    直升機(jī)旋轉(zhuǎn)逆動(dòng)力學(xué)建模及姿態(tài)控制研究

    2010-01-26 08:46:36趙佳申功璋
    關(guān)鍵詞:尾槳北京航空航天大學(xué)大包

    趙佳, 申功璋

    (北京航空航天大學(xué)控制一體化技術(shù)國(guó)家級(jí)科技重點(diǎn)實(shí)驗(yàn)室,北京 100191)

    直升機(jī)旋轉(zhuǎn)逆動(dòng)力學(xué)建模及姿態(tài)控制研究

    趙佳, 申功璋

    (北京航空航天大學(xué)控制一體化技術(shù)國(guó)家級(jí)科技重點(diǎn)實(shí)驗(yàn)室,北京 100191)

    為克服直升機(jī)單點(diǎn)逆模型的不足,提出了旋轉(zhuǎn)逆動(dòng)力學(xué)建模新方法,實(shí)現(xiàn)了大包線下的姿態(tài)控制。該方法采用模塊化建模思想,首先通過(guò)轉(zhuǎn)動(dòng)方程逆解算,將姿態(tài)角速度指令轉(zhuǎn)化為期望的縱、橫向揮舞角和尾槳偏航力矩指令等三個(gè)關(guān)鍵狀態(tài)量,然后利用主旋翼?yè)]舞動(dòng)態(tài)逆解算和尾槳槳距指令逆解算,由關(guān)鍵狀態(tài)量解算出期望的縱、橫向周期變距角和尾槳槳距角,進(jìn)而建立了直升機(jī)旋轉(zhuǎn)逆動(dòng)力學(xué)模型。在此基礎(chǔ)上,完成了姿態(tài)控制系統(tǒng)設(shè)計(jì)。仿真結(jié)果表明,該模型能夠在大包線范圍內(nèi)較準(zhǔn)確地反映直升機(jī)的旋轉(zhuǎn)動(dòng)態(tài)逆特性,系統(tǒng)能夠很好地實(shí)現(xiàn)姿態(tài)控制目標(biāo),在各類干擾因素存在時(shí)體現(xiàn)出了較強(qiáng)的性能魯棒性。

    直升機(jī);逆動(dòng)力學(xué);建模;大包線;姿態(tài)控制

    0 Introduction

    A helicopter is a special kind of versatile aerocraft,which can perform different kinds ofmaneuvers.There is increasing interest in the deployment of the helicopter for both military and civilian applications.Because it belongs to an intrinsically instability,strong coupling and nonlinear system,the research on helicopter flight control system(HFCS)design has always been important and also difficult[1].

    Attitude control,as the important foundation for velocity/trajectory control,is a key part of HFCS.In recent years,control schemes based on“inversemodel”have been applied successfully in helicopter attitude control field.In these schemes,the inversemodel is used to counteract the complex rotational inverse dynamics of the helicopter,and then good control effects could be gained.

    At present,a single point inversionmodel(SPIM)is the inversion model,which is widely used in helicopter attitude control[2-5].SPIM is a linear model via inverse calculating of helicopter linear model on a single flight state point.From the establishing principle,SPIM can reflect the helicopter rotation inverse dynamics(HRID)correctly nearby the chosen flight state point,but can not reflect HRID throughout the full flight envelope(FFE).Therefore,there exists largemodel error when using SPIM for helicopter attitude control throughout FFE.For solving this problem,an adaptive element(AE)is adopted to compensate themodel error of SPIM.As the complexity of helicopter dynamics,themodel error of SPIM is difficult to be described accurately.Whether AE could be able to compensate themodel error completely is still a question.In this case,for achieving flight control throughout FFE,a usual solution is to increase the learning rate of AE[4],which nevertheless will increase AE’s work burden and even cause the system unstable[2].

    In order to overcome the deficiency in SPIM,a novel modeling method for HRIM is proposed.By using themethod,a nonlinear helicopter rotational inverse dynamics model(RIDM)is established,and the helicopter attitude control system is developed successfully.

    1 Helicopter RIDM modeling

    The allocation of three-axismoments is the key for RIDM modeling.

    According to helicopter dynamics,the change of longitudinal/lateral cyclic pitch angle willmake a corresponding change in longitudinal/lateral flapping angle,which lead the change of pitch/rollmoment.The change of collective pitch angle in tail rotor will also make a corresponding change in its thrust,which lead the change of yaw moment.

    On the basis of above principle,a novelmodeling method for helicopter RIDM is proposed,and themain structure of themethod is shown in Fig.1.

    Fig.1 Main structure of helicopter RIDM

    The helicopter RDIM consists of following four modules:rotation equation inverse calculation module,flapping dynamic inverse calculation module,main rotor inflow estimation module and tail rotor collective pitch angle inverse calculation module.

    Based on current body attitude velocity command,the rotation equation inverse calculation module is used to calculate the expected“key states”,viz the expected longitudinal/lateral flapping angle and tail rotor yawing moment.The flapping dynamic inverse calculationmodule and themain rotor inflow estimationmodulework together to calculate the expected longitudinal/lateral cyclic pitch angle based on current longitudinal/lateral flapping angle command.The tail rotor collective pitch angle inverse calculationmodule is used to calculate the expected tail rotor collective pitch angle based on current tail rotor yawingmoment command.

    In Section1.1-1.4,more details about fourmoduleswill be discussed.

    1.1 Rotation equation inverse calculation module

    The function of the rotation equation inverse calculation module is to calculate the key states according to the current body attitude velocities.

    The helicopter rotation dynamic function is

    where Ixx,Iyyand Izzdenote the moments of inertia of the helicopter about the x-,y-and z-axes;Ixzdenotes the product of the inertia about x-and z-axes;I=[Ixx0 -Ixz;0 Iyy0;- Ixz0 Izz]denotes the inertial tensor;ωx,ωyandωzdenote the body attitude velocities;L,M and N denote the three-axismoment vectors.

    Based on helicopter dynamics,it can be seen that pitchingmoment ismainly provided by themain rotor,rollingmoment ismainly provided by themain and tail rotor,and yawing moment is mainly provided by the tail rotor.Therefore,the three-axismoment vector can be described as

    where Lr+Ltr,Mrand Ntrdenote the controllable moment vectors(subscript‘r’denotes themain rotor and‘tr’denotes the tail rotor);∑ L0,∑ M0and∑N0denote other moment vectors which can be gained via thewind tunnel experiment data and correlative calculations.

    The controllable part in(2)can be expressed as[1]

    where nbsdenotes the blade number of themain rotor;Kβis themain rotor stiffness;β1cand β1sare the longitudinal and lateral flapping angles respectively;λis the proportional coefficient.

    Using(1)-(3),we can obtain

    where U denotes the“key states”vector.

    The helicopter rotation control problem can be described as

    where“key states”vector U is also the pseudo input of(5).

    The expected dynamic response of attitude velocity vector can be described as

    U can be obtained by means of typical dynamic inversion method

    Equation(7)is the mathematical model of rotation equation inverse calculation.

    1.2 Flapping dynam ic inverse calculation module

    The function of the flapping dynamic inverse calculation module is to provide the expected longitudinal/lateral cyclic pitch angle based on current longitudinal/lateral flapping angle command.

    Helicoptermain rotor flapping dynamic equation is[1]

    where βM=[β0β1cβ1s]T,and β0,β1cand β1sdenote themain rotor coning,longitudinal and lateral flapping angles;θ =[θ0θ1swθ1cw]T,and θ0,θ1swand θ1cwdenote collective pitch angle,longitudinal cyclic pitch angle and lateral cyclic pitch angle;θtwis themain rotor blade linear twist;λis themain rotor inflow infor-mation vector;ω0is the attitude velocity information vector;Aβθ,Aβθtw,Aβλand Aβωare time-variable parameter matrices which are decided by current advanced radio.

    The second,third and fourth items on the right side of(8)are far smaller than the first item,therefore,Equation(8)can be expressed as

    For obtaining the expected cyclic pitch angles,Equation(9)ismodified as the following form

    As the collective pitch angle can be considered as the slow-varying state,Equation(10)can be described as

    Equation(11)is themathematicalmodel for flapping dynamic inverse calculation.The main rotor inflow utilized in(11)is provided by main rotor inflow estimation module discussed in the following section.

    1.3 Main rotor inflow estimation module

    The function of the main rotor inflow estimation module is to provide the flapping dynamic inverse calculation module with the current estimating value of main rotor inflow.

    For simplifying the calculating process,Newton’s iterative scheme based on momentum theory is used to achieve the inflow estimation[1].This scheme can be described as following equations:

    whereλ0is the currentmain rotor inflow value;CTis themain rotor thrust coefficient;a0is the main rotor lift curve slope;μis the advanced radio;μzis the uniform vertical velocity;s is the main rotor solidity;fjdenotes the convergence rate coefficientwith the value 0.6;subscript j denotes the current value and j+1 denotes the estimating value in next time.

    1.4 Tail rotor collective pitch angle inverse calculation module

    The function of the tail rotor collective pitch angle inverse calculation module is to calculate the collective pitch angle of the tail rotor based on current expected yaw moment.

    The expected thrust of the tail rotor can be obtained based on current expected yaw moment

    where ltrdenotes the distance of tail rotor hub aft of fuselage reference point;xcgdenotes the centre of gravity location forward of fuselage reference point.

    Moreover,the expected thrust coefficient is gained

    whereρis air density;Ωtris tail rotor speed;Rtris the tail rotor radius;Kblkdenotes the block coefficient cased by fin and tail plane.On the other hand,the thrust coefficient can be described as the following form usingmomentum theory

    whereωtris the tail rotor induced velocity;μtris the uniform advanced velocity at tail rotor hub centre;μZtris the uniform vertical velocity at tail rotor hub centre.By iterative calculating(18),the expected induced velocity can be obtained.

    The inverse calculation for tail rotor collective pitch angle is achieved based on the modified Bailey model[6].

    The tail rotor induced velocity can be described as

    where t31,t32and t33denote the Bailey coefficients;stris the tail rotor solidity;θ0Tis the tail rotor collective pitch angle;θtwpis the tail rotor blade linear twist;G=a0trstr/2,and a0trdenotes the tail rotor lift curve slope.The Bailey coefficients can be calculated as[6]

    where Btrdenotes the tail rotor blade tip losing coefficient.

    Using(19),the tail rotor collective pitch angle can be obtained

    2 Attitude control scheme based on RIDM

    The helicopter attitude control system has been developed using the proposed RIDM.Fig.2 shows the overall structure of the system.

    As shown in Fig.2,by using“Euler angle- >angle velocity inverse calculation module”,the expected angle velocity will be calculated based on current attitude command.And then,by using RIDM,the expected longitudinal/lateral cyclic pitch angle and tail rotor collective pitch angle can be obtained based on current angle velocity commands.The attitude inverse control for the helicopter is achieved.

    Fig.2 Structure of helicopter attitude control system

    Themathematicalmodel of“Euler angle->angle velocity inverse calculationmodule”can be described as

    3 Simulation results and analysis

    For checking the effectiveness of the proposed RIDM model,the attitude control system has been developed based on the structure shown in Fig.2 by using a 6-DOF nonlinear mathematic model of the helicopter[7],and series of experiments have also been finished.The adjustable parameter matrices are Kc1=diag(5,3.5,4)and Kc2=diag(0.6,0.4,0.35)

    In 3.1,the accuracy of RIDM on different flight states is shown.In 3.2 -3.4,the control performances of the system when existing kinds of disturbances are indicated.

    3.1 Test for the accuracy of RIDM on different flight states

    In the test for the accuracy of RIDM on different flight states,whether the proposed model can reflect HRID correctly on different flight states is checked.Fig.3 and Fig.4 display the three-axisattitude responseswhen tracking square signal on four different typical flight states,viz hovering,5m/s,30m/s and 50m/s forward flight.The results indicate that the system can track three-axis attitude command well on different flight states,whichmatch the ACAH demand defined in ADS-33 quite well.The coupling among three attitude responses isweak.The results indicate that the RDIM proposed in this paper can reflect HRID well throughout FFE.

    Fig.3 Three-axis attitude responses(dash line:command;solid line:response)

    Among above experiments,the simulation time is 30 s and the sample time is 0.01 s.Results show the actual running time of the system is less than 20 s,which indicates good real time performance of the proposed method.

    3.2 Test for side w ind disturbance

    Sidewind is considered as themain disturbance to the helicopter flight system and will therefore be simulated in thewindmodule.A side wind results in a side force due to fuselage drag,a roll moment due to the main rotor dynamics and a yaw moment due to the tail rotor dynamics.

    Themathematicalmodel of the wind model[8]is

    The force/moment cased by side wind can be modeled as described in reference[8].

    Fig.5 presents the three-axis attitude responses on hover and 50m/s forward flight statewhen existing side wind disturbance.The results indicate that the threeaxis attitude responses are all affected by the side wind,the effects on pitch angle response aremuch smaller than those on the other two responses,and after all,the system is able to achieve attitude command tracking.Thismeans that RIDM proposed in this paper has strong performance robustness when existing side wind disturbance.

    Fig.4 Three-axis attitude responses(dash line:comm and;solid line:response)

    Fig.5 Three-axis attitude responses w ith side w ind disturbance(dash line:command;solid line:response)

    3.3 Test for white noise disturbance

    In the test for white noise disturbance,white noise disturbance with 5%intensity is added in pitch angle output channel to check the anti-interference capability of RIDM.The responses on different states are shown in Fig.6.The responses on hover and 30 m/s forward flight state are all affected by the output noise,and the effect on the former is stronger than that on the latter.The system is still able to achieve attitude trackingwell.

    Fig.6 Pitch responsesw ith white noise(dash line:command;solid line:response)

    3.4 Test for main rotor inflow estimating error

    Fig.7 Pitch responsesw ith/w ithout inflow estimating uncertainty

    In the proposed RIDM,a simple iterative scheme is used for main rotor inflow estimation.In fact,it is difficult to estimate inflow accurately.Fortunately,the effect of inflow in(8)is far weaker than that of pitch angles;therefore,the error in inflow estimation has small effect on the whole control system.For checking the conclusion,a 30% uncertainty is added in the main rotor inflow estimationmodule in the test formain rotor inflow estimating error.The pitch angle responses on hover statewith/without30%estimating uncertainty are shown in Fig.7.The results show that the effecton pitch angle response is weak,which means RIDM has strong robustness against inflow estimating error.

    4 Conclusions

    The helicopter RIDM was established by using a novel modeling method,and the helicopter attitude control system was also developed successfully based on it.Simulation results show the helicopter RIDM can reflect HRID correctly throughout FFE without AE’s compensation,which overcomes the deficiency in traditional SPIM.The system can achieve good attitude control and also has strong robustness performance when existing kinds of disturbances.

    [1] PADFIELDGD.Helicopter Flight Dynamics:TheTheoryandApplicationofFlyingQualitiesandSimulationModeling[M].UK:AIAA and Black Well Science Ltd,1996:93-141.

    [2] WANG Hui,XU Jinfa,Gao Zheng.Design of attitude control system based on neural network to unmanned helicopter[J].ACTA AeronauticaETAstronauticaSINICA,2005,26(6):670-674.

    [3] NAKWAN K,ANTHONY JC.Adaptive output feedback for altitude control of an unmanned helicopter using rotor RPM[C]//AIAAGuidance,Navigation,andControlConferenceandExhibit.Rhode Island:AIAA Press,2004:1 -17.

    [4] HUANG Weimin.HelicopterNeuralNetworkControlandImplementationofHandlingQualityRequirements[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2002.

    [5] ZHAO Jia,CHEN Shenggong,SHEN Gongzhang.Novel control scheme for helicopter flight:Fuzzy immune adaptive model inversion control[C]//ProceedingsofIFACWorldCongress2008.Korea:IFAC Press,2008:15046 -15051.

    [6] YU Zhi.ResearchonHelicopterFlightDynamicModelingandRobust FlightControlLawDesign[D].Beijing:Beihang University,2008.

    [7] YANG Chao.HelicopterFlightDynamicAffineNonlinearSystem ModelingandEstimating[D].Beijing:Beihang University,1995.

    [8] NIELSEN A.HelicopterDynamicsandRobustControl[D].New York:State University of New York,2005.

    Helicopter rotation inverse dynam icsmodeling and attitude control

    ZHAO Jia,SHEN Gong-zhang

    (National Key Laboratory of Control Integration Technology,Beihang University,Beijing 100191,China)

    A novelmodelingmethod of helicopter rotation inverse dynamicswas proposed for overcoming deficiency in the tradition single point inversionmodel,and the attitude control throughout full flightenvelopewas implemented.In themethod,the attitude velocity command was transformed into three expected key states(viz longitudinal/lateral flapping angle and tail rotor yaw moment)bymeans of rotational equation inverse calculation,and from the key states,the expected longitudinal/lateral cyclic pitch angle and tail rotor collective pitch anglewere obtained by usingmain rotor flapping dynamic inverse calculation and tail rotor collective pitch angle inverse calculation.Furthermore,the helicopter attitude control system was developed based on themodel.Simulation results show the proposed modellingmethod can reflect the helicopter inverse dynamics correctly throughout full flightenvelope;the system can achieve attitude controlwellwithout compensation element and has strong robustness performance when existing kinds of disturbances.

    helicopter;inverse dynamics;modeling;full flight envelope;attitude control

    TP 273.2

    A

    1007-449X(2010)08-0031-07

    2009-12-21

    國(guó)家自然科學(xué)基金資助項(xiàng)目(60774061);高等學(xué)校博士點(diǎn)基金資助項(xiàng)目(20060006010)

    趙 佳(1981—),男,博士研究生,研究方向?yàn)橹鄙龣C(jī)飛行控制、綜合飛行火力控制;

    申功璋(1945—),男,教授,博士生導(dǎo)師,研究方向?yàn)榫C合飛行控制、大系統(tǒng)控制。

    (編輯:張 靜)

    猜你喜歡
    尾槳北京航空航天大學(xué)大包
    直升機(jī)的“尾巴”
    《北京航空航天大學(xué)學(xué)報(bào)》征稿簡(jiǎn)則
    《北京航空航天大學(xué)學(xué)報(bào)》征稿簡(jiǎn)則
    被動(dòng)變弦長(zhǎng)提升變轉(zhuǎn)速尾槳性能
    《北京航空航天大學(xué)學(xué)報(bào)》征稿簡(jiǎn)則
    《北京航空航天大學(xué)學(xué)報(bào)》征稿簡(jiǎn)則
    直升機(jī)旋翼干擾對(duì)尾槳?dú)鈩?dòng)噪聲影響的數(shù)值研究
    大包鋼水凈重采集模擬方法的應(yīng)用
    山東冶金(2019年2期)2019-05-11 09:12:16
    連鑄機(jī)提高大包鋼水稱重準(zhǔn)確性方法實(shí)踐
    山東冶金(2019年1期)2019-03-30 01:35:18
    創(chuàng)新作文(小學(xué)版)(2017年24期)2017-04-04 02:06:58
    日日爽夜夜爽网站| 日韩免费av在线播放| 99热这里只有精品一区 | 夜夜爽天天搞| 性色av乱码一区二区三区2| 久久中文字幕一级| 久久久久久久精品吃奶| 淫秽高清视频在线观看| 国产私拍福利视频在线观看| a级毛片a级免费在线| 一边摸一边抽搐一进一小说| 老鸭窝网址在线观看| 欧美黄色片欧美黄色片| 波多野结衣高清无吗| 夜夜看夜夜爽夜夜摸| 久久 成人 亚洲| 日日爽夜夜爽网站| 青草久久国产| 视频在线观看一区二区三区| 18禁裸乳无遮挡免费网站照片 | 大型av网站在线播放| 宅男免费午夜| 欧美日本亚洲视频在线播放| 自线自在国产av| 亚洲精品一区av在线观看| 亚洲国产精品999在线| 亚洲成人精品中文字幕电影| 国产一区在线观看成人免费| 一级a爱片免费观看的视频| 丁香欧美五月| 久久精品aⅴ一区二区三区四区| 中文字幕人成人乱码亚洲影| 大型av网站在线播放| 国产单亲对白刺激| 9191精品国产免费久久| 男人舔奶头视频| 在线天堂中文资源库| 后天国语完整版免费观看| 成人18禁高潮啪啪吃奶动态图| 国产精品免费视频内射| 亚洲国产精品999在线| 黄色视频,在线免费观看| 免费在线观看成人毛片| 黄色毛片三级朝国网站| 曰老女人黄片| 欧美国产精品va在线观看不卡| 国产黄片美女视频| 亚洲av成人不卡在线观看播放网| 一本综合久久免费| 国产单亲对白刺激| 女人被狂操c到高潮| 免费在线观看黄色视频的| 色精品久久人妻99蜜桃| 国产精品爽爽va在线观看网站 | 他把我摸到了高潮在线观看| АⅤ资源中文在线天堂| 麻豆成人午夜福利视频| 俺也久久电影网| 真人一进一出gif抽搐免费| 午夜福利在线观看吧| 成人免费观看视频高清| 中文字幕人妻丝袜一区二区| 一二三四社区在线视频社区8| 一区二区日韩欧美中文字幕| 在线永久观看黄色视频| 日韩精品免费视频一区二区三区| 免费av毛片视频| 一进一出好大好爽视频| a级毛片a级免费在线| 国产精品久久视频播放| 国产熟女午夜一区二区三区| 女人被狂操c到高潮| 特大巨黑吊av在线直播 | 999精品在线视频| 女同久久另类99精品国产91| 久热爱精品视频在线9| 丁香欧美五月| 视频在线观看一区二区三区| 日日爽夜夜爽网站| 亚洲国产精品999在线| 国产一区二区在线av高清观看| 国产三级黄色录像| 亚洲一码二码三码区别大吗| 1024手机看黄色片| 亚洲成人久久爱视频| 香蕉国产在线看| 欧美色欧美亚洲另类二区| 国产成人啪精品午夜网站| 中文在线观看免费www的网站 | 欧美一级a爱片免费观看看 | 黑人欧美特级aaaaaa片| 18禁观看日本| 丝袜美腿诱惑在线| 欧美日韩一级在线毛片| 久久这里只有精品19| 狂野欧美激情性xxxx| 国产成+人综合+亚洲专区| 亚洲成人精品中文字幕电影| 国产成人影院久久av| 亚洲欧洲精品一区二区精品久久久| 日本成人三级电影网站| 国产三级黄色录像| 真人一进一出gif抽搐免费| 亚洲天堂国产精品一区在线| 一级毛片精品| 国产精品亚洲美女久久久| 侵犯人妻中文字幕一二三四区| 国产主播在线观看一区二区| 免费看十八禁软件| 精品一区二区三区av网在线观看| 欧美一区二区精品小视频在线| 亚洲av日韩精品久久久久久密| 在线看三级毛片| 亚洲av成人一区二区三| 此物有八面人人有两片| 波多野结衣av一区二区av| 97碰自拍视频| 午夜福利一区二区在线看| www.www免费av| 黄色a级毛片大全视频| 精品电影一区二区在线| 99国产精品一区二区蜜桃av| 特大巨黑吊av在线直播 | 他把我摸到了高潮在线观看| 久久中文字幕一级| 别揉我奶头~嗯~啊~动态视频| 国产亚洲欧美精品永久| 可以在线观看毛片的网站| 一二三四在线观看免费中文在| 精品福利观看| 欧美在线黄色| 国产欧美日韩一区二区精品| 不卡av一区二区三区| 久热这里只有精品99| 亚洲aⅴ乱码一区二区在线播放 | 一进一出抽搐动态| 真人做人爱边吃奶动态| avwww免费| av视频在线观看入口| 国产av又大| 久久精品国产99精品国产亚洲性色| 亚洲一区二区三区不卡视频| 一进一出好大好爽视频| 99热6这里只有精品| 两性午夜刺激爽爽歪歪视频在线观看 | 免费电影在线观看免费观看| 亚洲成a人片在线一区二区| 757午夜福利合集在线观看| 久热这里只有精品99| 久久午夜亚洲精品久久| 欧美日韩瑟瑟在线播放| 黄色女人牲交| 精品无人区乱码1区二区| 日韩国内少妇激情av| 一级a爱片免费观看的视频| 亚洲九九香蕉| 免费搜索国产男女视频| 国产成人一区二区三区免费视频网站| 欧美一级a爱片免费观看看 | 成人国产综合亚洲| 日本免费一区二区三区高清不卡| 人成视频在线观看免费观看| 两个人看的免费小视频| 变态另类成人亚洲欧美熟女| 国内少妇人妻偷人精品xxx网站 | 精品一区二区三区视频在线观看免费| 琪琪午夜伦伦电影理论片6080| 国产精品亚洲av一区麻豆| 国产亚洲欧美在线一区二区| 午夜福利成人在线免费观看| 亚洲精品国产区一区二| 亚洲av第一区精品v没综合| 久久精品国产99精品国产亚洲性色| 亚洲av成人一区二区三| 国产亚洲精品久久久久久毛片| www日本黄色视频网| 久久中文字幕一级| 男人操女人黄网站| 欧美大码av| 国产99白浆流出| 精品乱码久久久久久99久播| 亚洲aⅴ乱码一区二区在线播放 | 九色国产91popny在线| 男人舔女人的私密视频| 18禁裸乳无遮挡免费网站照片 | 黄色女人牲交| 丝袜人妻中文字幕| 操出白浆在线播放| 亚洲欧美精品综合久久99| 久久 成人 亚洲| 亚洲国产欧美日韩在线播放| 国产免费av片在线观看野外av| 亚洲精品国产精品久久久不卡| 嫁个100分男人电影在线观看| 国产国语露脸激情在线看| 国产在线精品亚洲第一网站| 亚洲午夜精品一区,二区,三区| www日本在线高清视频| 日韩免费av在线播放| 大型黄色视频在线免费观看| 宅男免费午夜| 首页视频小说图片口味搜索| 夜夜看夜夜爽夜夜摸| 欧美性猛交╳xxx乱大交人| 国产精品永久免费网站| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲人成电影免费在线| 亚洲熟女毛片儿| 亚洲性夜色夜夜综合| 国产人伦9x9x在线观看| 成人三级黄色视频| 中文字幕精品亚洲无线码一区 | avwww免费| 免费搜索国产男女视频| 婷婷丁香在线五月| 欧美乱码精品一区二区三区| 久久久久亚洲av毛片大全| 亚洲精品色激情综合| 欧美成人一区二区免费高清观看 | 波多野结衣高清作品| 久久久久久久午夜电影| 一级作爱视频免费观看| 女性被躁到高潮视频| 变态另类丝袜制服| 国产又黄又爽又无遮挡在线| 国产又色又爽无遮挡免费看| 日韩有码中文字幕| 黄网站色视频无遮挡免费观看| 嫩草影院精品99| 级片在线观看| 欧美在线黄色| 国产亚洲欧美98| 一二三四在线观看免费中文在| 午夜免费观看网址| 视频在线观看一区二区三区| 成年女人毛片免费观看观看9| 国产亚洲精品一区二区www| 精品一区二区三区视频在线观看免费| 女生性感内裤真人,穿戴方法视频| 制服诱惑二区| 久久人妻av系列| 色哟哟哟哟哟哟| 在线免费观看的www视频| 午夜精品在线福利| 国内精品久久久久精免费| 好男人电影高清在线观看| 国产精品日韩av在线免费观看| 99在线视频只有这里精品首页| 久久国产亚洲av麻豆专区| 国产又色又爽无遮挡免费看| 在线av久久热| 午夜福利在线在线| 欧美成狂野欧美在线观看| 少妇熟女aⅴ在线视频| 99在线人妻在线中文字幕| 熟女少妇亚洲综合色aaa.| 麻豆久久精品国产亚洲av| 亚洲精品粉嫩美女一区| 欧美色视频一区免费| 日韩大尺度精品在线看网址| 久久久久久人人人人人| 日韩视频一区二区在线观看| 亚洲免费av在线视频| 精品一区二区三区视频在线观看免费| 中亚洲国语对白在线视频| 精品国内亚洲2022精品成人| 老熟妇仑乱视频hdxx| 19禁男女啪啪无遮挡网站| 亚洲成人久久爱视频| 国产亚洲精品综合一区在线观看 | 亚洲 国产 在线| 日本免费a在线| 国产精品永久免费网站| 久久国产精品影院| 91麻豆精品激情在线观看国产| cao死你这个sao货| 国产片内射在线| 国产一区二区三区视频了| 久久香蕉国产精品| 国内精品久久久久精免费| 国产高清激情床上av| 国产区一区二久久| 国内少妇人妻偷人精品xxx网站 | 啦啦啦 在线观看视频| 精品欧美一区二区三区在线| 亚洲专区国产一区二区| 免费高清视频大片| 无人区码免费观看不卡| 搞女人的毛片| 男人舔女人下体高潮全视频| 亚洲精品久久国产高清桃花| 中文资源天堂在线| 90打野战视频偷拍视频| 成人欧美大片| 十八禁网站免费在线| √禁漫天堂资源中文www| 久久久国产欧美日韩av| 欧美色欧美亚洲另类二区| 老司机靠b影院| 久久久久国内视频| 日本成人三级电影网站| 中国美女看黄片| 亚洲va日本ⅴa欧美va伊人久久| 淫秽高清视频在线观看| 久99久视频精品免费| 国产v大片淫在线免费观看| 两性午夜刺激爽爽歪歪视频在线观看 | 国产高清videossex| 婷婷精品国产亚洲av| 久久亚洲精品不卡| 久久久久九九精品影院| 老熟妇乱子伦视频在线观看| 国产一区二区三区在线臀色熟女| svipshipincom国产片| 精品不卡国产一区二区三区| 亚洲国产欧洲综合997久久, | ponron亚洲| 国产精品精品国产色婷婷| 中文字幕久久专区| 波多野结衣高清作品| 日韩欧美国产在线观看| 国产蜜桃级精品一区二区三区| 欧美成人免费av一区二区三区| 国产三级在线视频| aaaaa片日本免费| 午夜福利高清视频| 色精品久久人妻99蜜桃| 热re99久久国产66热| 一级a爱片免费观看的视频| 中国美女看黄片| 可以在线观看毛片的网站| 国产男靠女视频免费网站| 色播亚洲综合网| 日韩大尺度精品在线看网址| 天天躁狠狠躁夜夜躁狠狠躁| 18美女黄网站色大片免费观看| 欧美久久黑人一区二区| 草草在线视频免费看| 国产成人欧美在线观看| 色在线成人网| 一区二区三区精品91| 一本大道久久a久久精品| 久久精品国产清高在天天线| 久久久精品国产亚洲av高清涩受| 婷婷精品国产亚洲av| videosex国产| 午夜福利成人在线免费观看| 欧美日韩黄片免| 欧美性猛交黑人性爽| 午夜久久久在线观看| 999久久久国产精品视频| 人成视频在线观看免费观看| 我的亚洲天堂| 美女大奶头视频| tocl精华| 欧美激情久久久久久爽电影| videosex国产| 欧美大码av| 久久人人精品亚洲av| 国产成人影院久久av| 91在线观看av| 国产91精品成人一区二区三区| 久久久久久亚洲精品国产蜜桃av| 中文亚洲av片在线观看爽| 成在线人永久免费视频| 久久人妻av系列| 亚洲国产看品久久| 麻豆国产av国片精品| 中文资源天堂在线| 国产精品自产拍在线观看55亚洲| 国产熟女xx| 成人免费观看视频高清| 中文字幕高清在线视频| 美女高潮到喷水免费观看| 免费一级毛片在线播放高清视频| 亚洲精品色激情综合| 黑人欧美特级aaaaaa片| 国产精品二区激情视频| 观看免费一级毛片| 久久婷婷人人爽人人干人人爱| 亚洲avbb在线观看| 久久天堂一区二区三区四区| 男女那种视频在线观看| 99热只有精品国产| 老司机福利观看| 18禁观看日本| 亚洲黑人精品在线| 免费一级毛片在线播放高清视频| 久久国产精品男人的天堂亚洲| 亚洲精品久久国产高清桃花| 中文资源天堂在线| 国产精品久久久久久精品电影 | 亚洲国产毛片av蜜桃av| 99久久综合精品五月天人人| 巨乳人妻的诱惑在线观看| 国产单亲对白刺激| 国产不卡一卡二| 校园春色视频在线观看| 久久精品aⅴ一区二区三区四区| 亚洲国产中文字幕在线视频| 国产精品久久久人人做人人爽| 亚洲avbb在线观看| 国产野战对白在线观看| 麻豆国产av国片精品| av免费在线观看网站| 久久久水蜜桃国产精品网| 精品日产1卡2卡| 男人舔奶头视频| 亚洲成人久久爱视频| 国产精品综合久久久久久久免费| 美女 人体艺术 gogo| 久久欧美精品欧美久久欧美| 首页视频小说图片口味搜索| 99re在线观看精品视频| 丰满人妻熟妇乱又伦精品不卡| 亚洲激情在线av| 久久人妻av系列| 日本精品一区二区三区蜜桃| 欧美最黄视频在线播放免费| a级毛片a级免费在线| 脱女人内裤的视频| 91麻豆精品激情在线观看国产| www国产在线视频色| 日本免费一区二区三区高清不卡| 亚洲国产欧美一区二区综合| 中文资源天堂在线| 天堂√8在线中文| 亚洲欧洲精品一区二区精品久久久| 精华霜和精华液先用哪个| 女警被强在线播放| 久久国产精品影院| 高清毛片免费观看视频网站| 午夜福利高清视频| 久久久久久亚洲精品国产蜜桃av| av欧美777| 亚洲avbb在线观看| 国产成年人精品一区二区| 我的亚洲天堂| 亚洲中文av在线| 久久久久免费精品人妻一区二区 | 50天的宝宝边吃奶边哭怎么回事| 成人免费观看视频高清| 中文资源天堂在线| 日韩av在线大香蕉| 一边摸一边做爽爽视频免费| 天天一区二区日本电影三级| 亚洲熟妇熟女久久| 美国免费a级毛片| 国内毛片毛片毛片毛片毛片| 色婷婷久久久亚洲欧美| 男人的好看免费观看在线视频 | 婷婷六月久久综合丁香| 色精品久久人妻99蜜桃| 亚洲精品在线美女| 久久这里只有精品19| 国产精品久久久av美女十八| 国内久久婷婷六月综合欲色啪| 欧美黑人欧美精品刺激| 久久 成人 亚洲| 中文字幕另类日韩欧美亚洲嫩草| 欧美日韩精品网址| 亚洲成av人片免费观看| 久久久久亚洲av毛片大全| 欧美丝袜亚洲另类 | 色老头精品视频在线观看| 一个人观看的视频www高清免费观看 | 丝袜人妻中文字幕| 亚洲 欧美 日韩 在线 免费| 真人一进一出gif抽搐免费| 波多野结衣高清无吗| 在线av久久热| 午夜福利欧美成人| 亚洲人成网站高清观看| 久久久久久久午夜电影| 亚洲一区中文字幕在线| 99riav亚洲国产免费| 12—13女人毛片做爰片一| 热99re8久久精品国产| 在线视频色国产色| 国产高清videossex| 色综合亚洲欧美另类图片| 国产99久久九九免费精品| 成人亚洲精品一区在线观看| 免费在线观看视频国产中文字幕亚洲| 欧美在线一区亚洲| 亚洲 欧美 日韩 在线 免费| aaaaa片日本免费| 国产又色又爽无遮挡免费看| 日本一本二区三区精品| 啦啦啦 在线观看视频| 国产亚洲精品一区二区www| av超薄肉色丝袜交足视频| 夜夜看夜夜爽夜夜摸| 好男人在线观看高清免费视频 | 久久草成人影院| 精华霜和精华液先用哪个| 久久久国产成人精品二区| 午夜免费观看网址| 黄片播放在线免费| 亚洲中文av在线| 一级毛片高清免费大全| 国产精品av久久久久免费| 久热爱精品视频在线9| 欧美成人性av电影在线观看| 老司机深夜福利视频在线观看| 国产三级黄色录像| 成年女人毛片免费观看观看9| 欧美+亚洲+日韩+国产| 一本一本综合久久| 亚洲一区二区三区色噜噜| 国产成人精品久久二区二区91| 一本综合久久免费| 国产精品 国内视频| 午夜福利高清视频| 精品欧美国产一区二区三| 亚洲国产日韩欧美精品在线观看 | 日韩精品免费视频一区二区三区| 久久这里只有精品19| 老熟妇仑乱视频hdxx| xxxwww97欧美| 国产精品久久久人人做人人爽| 国产区一区二久久| 亚洲国产高清在线一区二区三 | 免费在线观看成人毛片| 一区二区三区激情视频| 亚洲黑人精品在线| 国产亚洲精品综合一区在线观看 | 国产一区二区在线av高清观看| 高清在线国产一区| 男女下面进入的视频免费午夜 | 欧美亚洲日本最大视频资源| 在线av久久热| 国产精品,欧美在线| 99久久99久久久精品蜜桃| 国产成人精品久久二区二区91| 老司机靠b影院| 很黄的视频免费| 美女免费视频网站| 校园春色视频在线观看| 婷婷六月久久综合丁香| 黄色丝袜av网址大全| 日韩 欧美 亚洲 中文字幕| aaaaa片日本免费| 午夜福利高清视频| 国产国语露脸激情在线看| 老司机靠b影院| 欧美人与性动交α欧美精品济南到| 国产99白浆流出| 美女 人体艺术 gogo| 午夜福利欧美成人| 亚洲在线自拍视频| а√天堂www在线а√下载| 欧美乱码精品一区二区三区| 51午夜福利影视在线观看| 久久精品亚洲精品国产色婷小说| videosex国产| 亚洲中文日韩欧美视频| 国产精品爽爽va在线观看网站 | 免费在线观看影片大全网站| 国产欧美日韩一区二区精品| 老司机靠b影院| 女警被强在线播放| 久久人人精品亚洲av| 狂野欧美激情性xxxx| 久久人人精品亚洲av| 亚洲一区高清亚洲精品| 男女床上黄色一级片免费看| 国产伦在线观看视频一区| 免费人成视频x8x8入口观看| 手机成人av网站| 久久久国产成人免费| av在线播放免费不卡| 制服人妻中文乱码| 俄罗斯特黄特色一大片| 精品不卡国产一区二区三区| 国产视频内射| 国产精品免费一区二区三区在线| 91在线观看av| 男人的好看免费观看在线视频 | 19禁男女啪啪无遮挡网站| 亚洲一区二区三区不卡视频| tocl精华| 久久狼人影院| 亚洲午夜理论影院| 嫁个100分男人电影在线观看| 欧美av亚洲av综合av国产av| 91老司机精品| 欧美zozozo另类| 色哟哟哟哟哟哟| 色综合欧美亚洲国产小说| 岛国视频午夜一区免费看| 欧美绝顶高潮抽搐喷水| 久久天躁狠狠躁夜夜2o2o| 亚洲精品一区av在线观看| 男女那种视频在线观看| 99国产精品一区二区蜜桃av| 老汉色∧v一级毛片| 91麻豆av在线| 90打野战视频偷拍视频| 欧美成人午夜精品| 日韩一卡2卡3卡4卡2021年| 色综合亚洲欧美另类图片| 一本大道久久a久久精品| 十八禁人妻一区二区| 精品人妻1区二区| 最新美女视频免费是黄的| 国产高清有码在线观看视频 | 一区二区三区高清视频在线| 国产精品久久电影中文字幕| 黄色视频,在线免费观看| 亚洲熟女毛片儿| 色av中文字幕| av有码第一页| 亚洲电影在线观看av| 久久精品国产99精品国产亚洲性色|