摘要本文提出了一種免疫遺傳算法優(yōu)化的模糊控制器,利用免疫遺傳算法的全局搜索功能和神經(jīng)元的自學(xué)習(xí)能力,提高了模糊控制器的控制精度和抗干擾能力。將該控制器用于全階精餾塔模型仿真,仿真結(jié)果表明該控制器可以有效地消除靜態(tài)誤差,并在控制過渡過程中也有很好的魯棒性,實際應(yīng)用效果也表明了該方法的優(yōu)越性。
關(guān)鍵詞免疫遺傳算法 模糊 精餾塔
中圖分類號TP273
A control simulate study of fuzzy-neron controller optimized by immune
genetic algorithm (IGA) used in full order rectification column model
GUO Xiaoqing(1), YAN Qiong(2)
(1)The Second Middle School, Ji’an of Jiangxi Province 343000
(2)The ChangTang Middle School, Ji’an of Jiangxi Province 343000
Abstract A fuzzy controller optimized by immune genetic algorithm (IGA). By utilizing the global search ability of immune genetic algorithm(IGA) and self-learning ability of neuron controller, the new approach increases the control accuracy of fuzzy controller and improves its ability of anti-interference. The simulation result, which was obtained by applying the method to full order rectification column model, shows static error was effectively reduced and the robustness of the new approach in controlling shock in the process was satisfactory. Also, the advantages of this new approach are shown in practical applications.
Keywords Immune genetic algorithm; Fuzzy; Rectification Column
1.引 言
精餾是煉油、化工生產(chǎn)中應(yīng)用最為廣泛的傳質(zhì)傳熱過程。精餾塔不僅模型難以建立而且控制方案復(fù)雜。許多學(xué)者在精餾塔的模型建立和控制仿真上做了大量的研究并取得了良好的效果。本文設(shè)計了一種免疫遺傳算法優(yōu)化的模糊控制器對基于奇異攝動法降階的精餾塔模型進(jìn)行控制仿真研究。結(jié)果表明,這種控制器的控制效果在控制精度和過渡過程的效果上都表現(xiàn)出良好的效果。
2.控制算法
精餾塔最直接的質(zhì)量指標(biāo)是產(chǎn)品純度。過去由于檢測上的困難,難以直接按產(chǎn)品的純度進(jìn)行控制。現(xiàn)在隨著分析儀表的發(fā)展,特別是工業(yè)色譜儀的在線應(yīng)用,已逐漸出現(xiàn)直接按產(chǎn)品純度來控制的控制方案。
直接按產(chǎn)品純度的控制方案的好處在于:直接可以控制產(chǎn)品的質(zhì)量。但是這種控制的難點在于被控變量的可調(diào)范圍小(只能在0~1區(qū)間變化)。根據(jù)這種現(xiàn)實情況,本文設(shè)計了一種免疫微粒群算法調(diào)節(jié)增益的模糊控制器。其具體算法如圖1:
使用公式法的模糊推理方法: