• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adaptive fault-tolerant control based on boundary estimation for space robot under joint actuator faults and uncertain parameters

    2020-01-07 09:11:10RongHuaLeiLiChen
    Defence Technology 2019年6期

    Rong-Hua Lei,Li Chen

    School of Mechanical Engineering and Automation,Fuzhou University,Fuzhou 350116,China

    ABSTRACT Since the joint actuator of the space robot executes the control instructions frequently in the harsh space environment,it is prone to the partial loss of control effectiveness(PLCE)fault.An adaptive fault-tolerant control algorithm is designed for a space robot system with the uncertain parameters and the PLCE actuator faults.The mathematical model of the system is established based on the Lagrange method,and the PLCE actuator fault is described as an effectiveness factor.The lower bound of the effectiveness factors and the upper bound of the uncertain parameters are estimated by an adaptive strategy,and the estimated value is fed back to the control algorithm.Compared with the traditional fault-tolerant algorithms,the proposed algorithm does not need to predetermine the lower bound of the effectiveness factor,hence it is more in line with the actual engineering application.It is proved that the algorithm can guarantee the stability of the closed-loop system based on the Lyapunov function method.The numerical simulation results show that the proposed algorithm can not only compensate for the uncertain parameters,but also can tolerate the PLCE actuator faults effectively,which verifies the effectiveness and superiority of the control scheme.

    Keywords:Space robot Actuator faults Uncertain parameters Effectiveness factor Fault-tolerant control

    1. Introduction

    A space robot is a kind of non-linear multi-body dynamic system composed of a carrier(spacecraft)and a manipulator.It is widely used in the rendezvous and docking of a space capsule,hovering and capturing of a small satellite and fuel filling of other spacecraft[1-4].With the rapid development of space technology,space robots will play a greater role in the exploration and development of space resources.At present,the dynamics and control of space robots have become the focus of aerospace technicians,and some research results have emerged[5-8].For a space robot with uncertain parameters,Yu[6]designed an augmented robust control algorithm.For a space robot with communication delays,Liang[7]proposed an improved computed torque control method based on Taylor series prediction.For a floating-based space robot with input constraints,Xie[8]introduces an anti-saturation fuzzy sliding mode controller.However,none of the above algorithms take into account the PLCE actuator fault of space robot.Considering the joint actuator is the core component of the entire control system,its failure is bound to cause unpredictable consequences.Therefore,it is extremely important to improve its own fault tolerance to maintain the normal operation of the control system.

    Currently,there are abundant research results on fault-tolerant control of various dynamic systems[9-15].For a linear timevarying system with actuator failures,Rosalba[10]proposes a fault-tolerant strategy based on integral sliding mode and control allocation.For a linear multibody system with actuator faults,Zhu[11]designs a distributed fault-tolerant control scheme based on adaptive fault observer.For a class of linear time-delay system with PLCE actuator faults,Ye[12]developed a cost-guaranteed faulttolerant control algorithm based on linear matrix inequality(LMI)technology.Although the above control algorithms all achieve good fault-tolerant control effects,these control strategies are designed for linear systems.Since a space robot is a kind of MIMO(multiple inputs and multiple outputs)nonlinear system,it is quite hard to apply the above fault-tolerant algorithms to the motion control of space robot.It is worth mentioning that the researches on faulttolerant control of nonlinear systems need to be improved.For spacecraft with parameter uncertainties and actuator failures,Cai[13]proposed an indirect robust adaptive fault-tolerant controller.For spacecraft with input constraints and actuator failures,Xiao[14]designed an anti-saturation fault-tolerant velocity-free algorithm.It should be pointed out that both algorithms in Refs.[13,14]assume that the lower bound of the actuator effectiveness factor is known.However,for the actual spacecraft,the specific fault information of the actuator is difficult to be predicted,which limits the practical application of the algorithms.Geng[15]introduced a variable gain PID(proportion integral differential)fault-tolerant control scheme based on LMI technology for a spacecraft with actuator failure,which effectively improved the tracking performance of the system with time-varying inertial parameters,but the variable gain strategy increased the complexity of the algorithm.

    Based on the current research situation,an adaptive faulttolerant control algorithm based on boundary estimation is designed for a space robot system with the uncertain parameters and the PLCE actuator faults.The mathematical model of the system is established based on the Lagrange method.The lower bound of the effectiveness factors and the upper bound of the uncertain parameters are estimated by adaptive strategy,and the estimated values are fed back to the control algorithm in real time.Compared with the fault-tolerant algorithms in Refs.[13,14],the algorithm does not need to pre-determine the minimum value of the actuator effectiveness factors,which is more in line with practical engineering applications.Moreover,the algorithm is simple in structure and has less computational complexity than the algorithms proposed in Ref.[15].

    2. Dynamics modeling and problem description

    The planar structure of a free-floating space robot system withn+1 degrees of freedom is shown in Fig.1.The system consists of a base carrierB0and some rigid linksBi(i=1, 2, …,n).Oiis the rotation center ofBi;Ciis the mass center ofBi;l0is the distance from rotation centerO0toO1;li(i=1, 2, …,n)is the length of linkBialong theyiaxis;miis the mass ofBi(i=0,1,…,n);Jiis the inertia moment ofBi(i=0, 1, …,n)with respect to its mass centerCi;θ0is attitude angle displacement of the base relative to the Yaxis;θi(i=1, 2, …,n)is the angular displacement of the ith link,i.e.the relative rotation angle betweenyiaxis andyi-1axis.

    Combining the momentum conservation theorem with the Lagrange equation,the dynamic equation of the system can be derived as

    Fig.1.Free-floating space robot system.

    whereq=[θ0, θ1,…, θn]Tis the generalized coordinates of the system;D(q)∈R(n+1)×(n+1)is the symmetric positive-definite inertia matrix of the system;is the Coriolis/centrifugal force vector of the system;τ=[u1,u2, …,un]Tis the control torques of the joint actuators;is the uncertain parameters due to the high-frequency modes,measurement noise and the consumption of the liquid fuel.

    Property 1.is a skew symmetric matrix,i.e.,

    The dynamic Eq.(1)of the system can be expressed in the form of block matrices as follows

    whereD11,D12∈R1×n,D21∈Rn×1andD22∈Rn×nare the submatrices ofD,H11,H12∈R1×n,H21∈Rn×1andqr=[θ1, θ2, …, θn]T.

    Eq.(2)can be decomposed into

    SinceD(q)is symmetric and positive-definite,thenexists.From Eq.(3),we have

    Substituting Eq.(5)into Eq.(4),the dynamic equation of the joints can be obtained

    Eq.(6)can be quasi-linearized as[16].

    When the joints actuator encounters the PLCE fault,the dynamics model(1)can be rewritten as

    where ρ=diag{p1,p2, …,pn} represents the actuator effectiveness factor matrix with 0 ≤ρi≤1(i=1, 2, …,n)means the health status of the ith actuator.The case ρi=1 indicates that the ith actuator is working normally.0<ρi<1 corresponds to the case in which the ith actuator loses part of its effectiveness.While ρi=0 indicates that the ith actuator has lost its all control effectiveness.

    The control objective of this work is to design an adaptive faulttolerant control algorithm for the space robot system(8)subjected to the joint actuator faults and uncertain parameters,so as to ensure the stability of the closed-loop system,i.e.,joint output trajectories can track the desired trajectories.

    3. Adaptive controller design

    In order to facilitate the design of the subsequent control algorithm,Eq.(8)can be rewritten as

    Where Δρ=I-ρ,I∈Rn×nis the identity matrix;

    Assumption 1.The uncertain parametersis bounded and satisfies

    whereKis an unknown positive constant and||·||representsL∞norm in this paper.

    Assumption 2.Desired trajectoriesqrd,andare normbounded.

    Define the trajectory tracking error ase=qr-qrd.Then,the extended error is selected

    where λ is a positive constant.

    Next,the dynamic extended error can be further designed as

    where χ can be seemed as the error between J and S and its derivative with respected to time iswhere sgn(S)= [sgn(S1), sgn(S2), …, sgn(Sn)]Tsgn(J)=[sgn(J1), sgn(J2), …, sgn(Jn)]T,k1andk2are two positive constants satisfyingk1≠k2.

    For the real space robot,the lower bound of the actuator effectiveness factors min{ρi}and the upper bound of the uncertain parametersKare usually unknown.Therefore,it is necessary to design an adaptive laws to estimate the boundary values.The structure of the control system in this paper is depicted in Fig.2.

    In order to estimate the minimum value of the actuator effectiveness factor,define

    Fig.2.Block diagram of control system.

    whereb=1-min{ρi}.

    An adaptive fault-tolerant controller(AFTC)is designed as

    where μ and β are positive constants.

    Theorem 1. For the dynamic system(8)with joint actuator faults and uncertain parameters,supposing that Assumptions 1-2 hold and adopting the adaptive laws(14)and(15),the adaptive fault-tolerant controller(13)can ensure that the trajectory tracking error e=qr-qrd converges to zero asymptotically.

    ProofChoose a Lyapunov function as

    whereV1,V2andV3are different Lyapunov functions.

    The process of proof can be divided into three steps.

    Step 1Adaptive law Analysis

    Select a Lyapunov functionV1as

    Taking the time derivative ofV1,and utilizing Property 1,one obtains

    Substituting Eq.(9)into Eq.(18)yields

    Applying controller(13)into Eq.(19),one has

    Substituting adaptive law(14)into Eq.(20)yields

    Combining adaptive law(15)with Eq.(21),one obtains

    Step 2Reach time analysis

    In order to obtain the convergence time,a lemma is proposed as follows

    Lemma 1. The dynamic extended error J exists and can converge to zero in finite timetJ[17].

    After time tJ,dynamic extended error J=0;utilizingEq.(11),one has

    Select a Lyapunov functionV2as

    Taking the time derivative ofV2,we have

    From Eq.(24),one obtains||S||=|2V2|1/2.Substituting||S||into Eq.(25)yields

    Further,

    Since whentreachestS,extended errorSwill converge to zero;which implies whent=tS,S=0;furtherV2(t)=V2(tS),hence

    Next,one obtains

    Consequently,extended errorScan converge to zero in finite timetS.

    Note that extended errorSand dynamic extended errorJcan both converge to zero in finite time,and dynamic extended error converges faster than extended error;i.e.,Since whent=tS,S=0;applying Eq.(10),we have

    Step 3Tracking error analysis

    Select a Lyapunov functionV3as

    Taking the time derivative ofV3yields

    Hence,the tracking error e is convergent.Based on the analysis results of the above three steps,one can see that ˙V≤0,which implies that the whole closed-loop system is stable.The proof is completed.

    4. Simulation examples

    In order to verify the effectiveness of the designed AFTC algorithm(13),numerical simulations of a planar two-link(n=2)space robot system are conducted using the fourth-order Runge-Kutta iterative method. The simulation results of the controller are compared with those of the nonsingular terminal sliding mode controller(NTSMC)proposed by Ref.[18]and the computed torque controller(CTC)proposed by Ref.[19]respectively.The NTSMC algorithm can only deal with model uncertainties,while the CTC algorithm can neither solve parameter uncertainties nor the PLCE actuator faults.

    Fig.3.Angle displacement of the base attitude under AFTC algorithm.

    Fig.4.Tracking performance of the AFTC algorithm and the NTSMC algorithm.

    The mathematical expression of the NTSMC algorithm is

    where α,φ,σ1and σ2are positive constant,1b,c1>1,0

    Fig.5.Tracking error of the AFTC algorithm and the NTSMC algorithm.

    Fig.6.Tracking performance of the CTC algorithm.

    Fig.7.Angle displacement of the base attitude under the AFTC algorithm.

    Fig.8.Tracking performance of the AFTC algorithm and the NTSMC algorithm.

    wherekvandkpare positive constant.

    The dynamic parameters of the space robot system arel0=1m,l1=l2=3m,m0=40kg,m1=m2=3kg,J0=34kg·m2,J1=J2=1kg·m2.

    The control gains of AFTC algorithm are chosen ask1= 0.15,k2=0.2,μ=0.5,β=0.001,ε=1,λ=3,χ=[0.1 0.1]T;NTSMC algorithm are set as σ1=2,σ2=3,α=1.8,φ=3,a=2,b=5/3,c1=1.1,c2=0.1;and CTC algorithm arekv=0.28,kp=0.4.

    The desired trajectories of the link joints are:θ1d=sin(0.2πt),θ2d=cos(0.2πt).The uncertain parameters are:0.05

    Fig.9.Tracking error of the AFTC algorithm and the NTSMC algorithm.

    4.1. Control performance in healthy status

    In this case, all the joint actuators are fault-free, i.e.,ρ=diag{1, 1}.The simulation results are shown in Fig.3 to Fig.6.Angle displacement of the base attitude under AFTC algorithm is illustrated in Fig.3.Fig.4 is the tracking performance comparison between the AFTC algorithm and the NTSMC algorithm,while Fig.5 is the tracking errors comparison under the two algorithms.Fig.6 is the tracking performance of CTC algorithm.

    It can be seen that both the AFTC algorithm and NTSMC algorithm can achieve trajectory tracking control of the joints,as shown in Fig.4;From Fig.5,one can further observe that the two algorithms can also limit the joint tracking errors to a small range of 0.01 rad.Since the CTC algorithm does not have the mechanism of compensating for uncertain parameters,the tracking errors of the closed-loop system can not converge.

    4.2. Control performance in failure status

    4.2.1. Scenario 1

    In this case,the PLCE actuator fault scenarios are considered and simulated.The actuator mounted in joint 1 loses 30%of its normal power at 5 s,while the actuator mounted in joint 2 lose 20%normal power at 8 s;i.e.,

    The simulation results are shown in Fig.7 to Fig.9.Angle displacement of the base attitude under AFTC algorithm is depicted in Fig.7.The tracking performance comparison between the AFTC algorithm and the NTSMC algorithm is shown in Fig.8,while Fig.9 is the tracking errors comparison under the two algorithms.

    Fig.10.Angle displacement of the base attitude under the AFTC algorithm.

    Fig.11.Tracking performance of the AFTC algorithm and the NTSMC algorithm.

    One can observe that although all the joint actuators are subjected to the PLCE faults,the link joints can still reach their desired positions with a tracking accuracy of 0.01 rad when the proposed AFTC algorithm is implemented to the space robot,as illustrated in Fig.8 and Fig.9(a).However,the closed-loop system is turn to unstable when NTSMC algorithm is applied to it,since the NTSMC algorithm can not resist the PLCE actuator faults.

    4.2.2. Scenario 2

    In this case,a more serious PLCE failure occurred to the joint actuator under these situations:1)The actuator mounted in joint 1 decreases 52%of its normal value after 5 s;2)The actuator mounted in joint 2 undergoes 68%loss of effectiveness in 8 s;i.e.,

    Fig.12.Tracking error of the AFTC algorithm and the NTSMC algorithm.

    The simulation results are shown in Fig.10 to Fig.12.Angle displacement of the base attitude under the AFTC algorithm is depicted in Fig.10.The tracking performance comparison between the AFTC algorithm and the NTSMC algorithm is shown in Fig.11,while Fig.12 is the tracking errors comparison under the two algorithms.

    One can clearly see that although all the joint actuators encounter serious PLCE faults,the proposed AFTC algorithm can still manage to compensate for the PLCE faults and acquire the same tracking accuracy as Scenario 1,as presented in Fig.11 and Fig.12(a).However,with the deterioration of the joint actuator fault,the tracking performance of the NTSMC algorithm becomes worse than that in Scenario 1,as depicted in Fig.9(b)and Fig.12(b).Hence,it can be known that the proposed AFTC algorithm is robust to the PLCE actuator faults.

    5. Conclusion

    An adaptive fault-tolerant control algorithm is designed for freefloating space robot system subjected to uncertain parameters and the PLCE actuator faults.Since the lower bound of the effectiveness factors and the upper bound of the uncertain parameters are estimated adaptively,the ADFTC algorithm does not need to obtain the specific information of the worst actuator failure as the traditional fault-tolerant algorithms did,which means it possesses a huge potential for engineering applications.In addition,the algorithm has a simple structure and few adaptive parameters,so it can greatly reduce the computational load of the on-board computer.In the future,the author decides to extend the algorithm from planar system to three-dimensional counterpart and further validate the feasibility of the algorithm by semi-physical simulation experiments.

    Acknowledgment

    This work was supported by the National Natural Science Foundation of China(11372073,11072061).

    亚洲av美国av| 国产精品美女特级片免费视频播放器| 午夜精品一区二区三区免费看| 少妇高潮的动态图| 成人国产麻豆网| 听说在线观看完整版免费高清| 麻豆国产av国片精品| 色尼玛亚洲综合影院| 亚洲va日本ⅴa欧美va伊人久久| 日韩欧美 国产精品| 99热只有精品国产| 日本欧美国产在线视频| 啦啦啦韩国在线观看视频| 精品不卡国产一区二区三区| 搡女人真爽免费视频火全软件 | 波多野结衣高清作品| 欧美成人a在线观看| 成年女人毛片免费观看观看9| 国产欧美日韩精品一区二区| 日本免费一区二区三区高清不卡| 波多野结衣高清作品| 99久久精品国产国产毛片| 精品久久久久久久久久久久久| 日韩精品中文字幕看吧| 亚洲美女视频黄频| 18禁裸乳无遮挡免费网站照片| 亚洲男人的天堂狠狠| 亚洲无线观看免费| av国产免费在线观看| 我要搜黄色片| 亚洲欧美精品综合久久99| 伦精品一区二区三区| 日本五十路高清| 欧美日韩中文字幕国产精品一区二区三区| 午夜精品久久久久久毛片777| 淫妇啪啪啪对白视频| 国产视频一区二区在线看| 国产主播在线观看一区二区| 午夜老司机福利剧场| 别揉我奶头 嗯啊视频| 国产精品国产高清国产av| 国产真实伦视频高清在线观看 | 婷婷亚洲欧美| 久久精品国产清高在天天线| 久久亚洲真实| 九九爱精品视频在线观看| 人妻制服诱惑在线中文字幕| 国产精品av视频在线免费观看| 啪啪无遮挡十八禁网站| 中文在线观看免费www的网站| 国产精品98久久久久久宅男小说| 久久中文看片网| 日韩高清综合在线| 国产av一区在线观看免费| h日本视频在线播放| 一级a爱片免费观看的视频| 国产精品女同一区二区软件 | 国产精品久久久久久精品电影| 久久天躁狠狠躁夜夜2o2o| 内地一区二区视频在线| 亚洲成人免费电影在线观看| 久久精品影院6| 别揉我奶头~嗯~啊~动态视频| 99热精品在线国产| 国产av在哪里看| 亚洲无线在线观看| 亚洲一区高清亚洲精品| 看十八女毛片水多多多| 波多野结衣高清作品| 1024手机看黄色片| 午夜日韩欧美国产| 婷婷色综合大香蕉| 99国产精品一区二区蜜桃av| 最近最新中文字幕大全电影3| 国产精品久久久久久久电影| 九色成人免费人妻av| 成人av在线播放网站| 国产精品电影一区二区三区| 欧美一区二区精品小视频在线| 亚洲精品粉嫩美女一区| 51国产日韩欧美| 免费一级毛片在线播放高清视频| 国产精品无大码| 日日干狠狠操夜夜爽| 国产精品久久电影中文字幕| .国产精品久久| 免费av毛片视频| 性色avwww在线观看| 国产精品一区二区免费欧美| 97碰自拍视频| 欧美在线一区亚洲| 国内久久婷婷六月综合欲色啪| 国产高清不卡午夜福利| 精品久久久久久久久av| 啦啦啦啦在线视频资源| 国产高清不卡午夜福利| 国国产精品蜜臀av免费| 极品教师在线视频| 精品国内亚洲2022精品成人| av在线蜜桃| 女生性感内裤真人,穿戴方法视频| 欧美色视频一区免费| 天堂av国产一区二区熟女人妻| 精品人妻偷拍中文字幕| 成人午夜高清在线视频| 国产精品一区二区免费欧美| av天堂在线播放| 日韩欧美免费精品| 亚洲久久久久久中文字幕| 又紧又爽又黄一区二区| 有码 亚洲区| 在线免费观看不下载黄p国产 | 欧美黑人巨大hd| 乱码一卡2卡4卡精品| 三级国产精品欧美在线观看| 最近视频中文字幕2019在线8| 性欧美人与动物交配| 国内精品一区二区在线观看| 国产成年人精品一区二区| 国产真实乱freesex| 18+在线观看网站| 日日啪夜夜撸| 欧美在线一区亚洲| 国产色婷婷99| 欧美一区二区精品小视频在线| 国产男人的电影天堂91| 精品一区二区三区人妻视频| 又紧又爽又黄一区二区| 亚洲乱码一区二区免费版| eeuss影院久久| or卡值多少钱| 久久久久性生活片| 可以在线观看毛片的网站| 麻豆一二三区av精品| 尾随美女入室| 夜夜看夜夜爽夜夜摸| ponron亚洲| 日本五十路高清| 国产高清激情床上av| 麻豆国产97在线/欧美| 亚洲欧美日韩卡通动漫| 国产欧美日韩一区二区精品| 成年免费大片在线观看| 欧美潮喷喷水| 欧美一区二区精品小视频在线| 黄色视频,在线免费观看| 亚洲人成网站在线播| 全区人妻精品视频| 俄罗斯特黄特色一大片| 国产 一区 欧美 日韩| 日本免费一区二区三区高清不卡| 天天躁日日操中文字幕| 国内精品久久久久精免费| 婷婷精品国产亚洲av在线| av视频在线观看入口| 国产高清三级在线| 美女大奶头视频| videossex国产| 99热精品在线国产| 搡女人真爽免费视频火全软件 | 亚洲精品久久国产高清桃花| 亚洲无线观看免费| 日本精品一区二区三区蜜桃| 如何舔出高潮| 国产高清视频在线播放一区| 男女视频在线观看网站免费| 人人妻人人看人人澡| 在线观看一区二区三区| 国产成人aa在线观看| 国产探花极品一区二区| 床上黄色一级片| 免费看av在线观看网站| 国产一区二区三区视频了| 露出奶头的视频| 精品99又大又爽又粗少妇毛片 | 夜夜夜夜夜久久久久| 白带黄色成豆腐渣| 露出奶头的视频| 亚洲图色成人| 免费看a级黄色片| 最近最新免费中文字幕在线| 亚洲成av人片在线播放无| 一a级毛片在线观看| 国产亚洲精品久久久com| 在线播放无遮挡| 男女做爰动态图高潮gif福利片| 久久久国产成人免费| 亚洲,欧美,日韩| 高清日韩中文字幕在线| 男人狂女人下面高潮的视频| 成年女人看的毛片在线观看| av视频在线观看入口| 亚洲在线观看片| 欧美日本亚洲视频在线播放| 欧美色视频一区免费| 日韩,欧美,国产一区二区三区 | 欧美+日韩+精品| 国产精品一及| 中出人妻视频一区二区| 精品人妻偷拍中文字幕| 嫁个100分男人电影在线观看| 欧美高清成人免费视频www| 搡女人真爽免费视频火全软件 | 91在线精品国自产拍蜜月| 国产亚洲欧美98| 黄色一级大片看看| 热99在线观看视频| 两个人视频免费观看高清| 在线免费观看不下载黄p国产 | 少妇的逼好多水| 69av精品久久久久久| 能在线免费观看的黄片| 九色国产91popny在线| 可以在线观看毛片的网站| 精品不卡国产一区二区三区| 国产精品无大码| 国产精品一区二区三区四区久久| 国产黄色小视频在线观看| 干丝袜人妻中文字幕| 国产亚洲精品av在线| 午夜福利高清视频| 国产不卡一卡二| 亚洲七黄色美女视频| 亚洲欧美日韩高清在线视频| 亚洲 国产 在线| 舔av片在线| 老师上课跳d突然被开到最大视频| 婷婷精品国产亚洲av在线| 俺也久久电影网| 久久久久免费精品人妻一区二区| 国产私拍福利视频在线观看| 欧美日韩亚洲国产一区二区在线观看| 白带黄色成豆腐渣| 亚洲av日韩精品久久久久久密| 亚洲第一电影网av| 午夜影院日韩av| 男人和女人高潮做爰伦理| 中文资源天堂在线| 天堂√8在线中文| 久久精品国产99精品国产亚洲性色| 日本黄色视频三级网站网址| 亚洲国产精品成人综合色| 国产在线男女| 精品久久久久久,| 成年人黄色毛片网站| 两性午夜刺激爽爽歪歪视频在线观看| 国产国拍精品亚洲av在线观看| 校园春色视频在线观看| 欧美日本亚洲视频在线播放| 亚洲成人久久爱视频| 国产精品国产高清国产av| 欧美性猛交黑人性爽| 级片在线观看| 村上凉子中文字幕在线| 亚洲人与动物交配视频| 国产午夜福利久久久久久| 校园人妻丝袜中文字幕| 国产亚洲精品综合一区在线观看| 国产精品人妻久久久影院| 老司机午夜福利在线观看视频| 成人av一区二区三区在线看| 亚洲最大成人手机在线| .国产精品久久| 欧美性感艳星| 中文字幕高清在线视频| 亚洲av美国av| 国产久久久一区二区三区| 久久久午夜欧美精品| 男人的好看免费观看在线视频| 色5月婷婷丁香| 免费不卡的大黄色大毛片视频在线观看 | 俺也久久电影网| 内射极品少妇av片p| 亚洲熟妇中文字幕五十中出| 尤物成人国产欧美一区二区三区| 精品人妻1区二区| 给我免费播放毛片高清在线观看| 老熟妇乱子伦视频在线观看| 美女xxoo啪啪120秒动态图| 亚洲人成网站高清观看| 色噜噜av男人的天堂激情| 国产真实乱freesex| 国产乱人伦免费视频| 久久精品综合一区二区三区| 又爽又黄a免费视频| 亚洲乱码一区二区免费版| 亚洲最大成人手机在线| 免费av不卡在线播放| 免费看美女性在线毛片视频| 午夜视频国产福利| 色吧在线观看| 亚洲精品乱码久久久v下载方式| 91午夜精品亚洲一区二区三区 | 日本五十路高清| 99久久精品国产国产毛片| 亚洲最大成人中文| 观看美女的网站| 联通29元200g的流量卡| 亚洲av.av天堂| 色视频www国产| 99久久久亚洲精品蜜臀av| 日韩高清综合在线| 白带黄色成豆腐渣| 日本a在线网址| 国产精品野战在线观看| 精品久久国产蜜桃| 啦啦啦韩国在线观看视频| 九九久久精品国产亚洲av麻豆| 两人在一起打扑克的视频| 一区二区三区高清视频在线| 亚洲四区av| 看免费成人av毛片| av在线天堂中文字幕| 成人精品一区二区免费| 亚洲熟妇熟女久久| 男女那种视频在线观看| 国产精品一及| 九色国产91popny在线| 国产不卡一卡二| 久久久久性生活片| 国产精品福利在线免费观看| 麻豆精品久久久久久蜜桃| 成人特级黄色片久久久久久久| 色播亚洲综合网| 伊人久久精品亚洲午夜| 超碰av人人做人人爽久久| 啦啦啦观看免费观看视频高清| 色综合亚洲欧美另类图片| 成人亚洲精品av一区二区| 日本五十路高清| 午夜精品久久久久久毛片777| 中文亚洲av片在线观看爽| 99久久无色码亚洲精品果冻| 尾随美女入室| 亚洲狠狠婷婷综合久久图片| 中文字幕高清在线视频| 最近视频中文字幕2019在线8| 中文字幕久久专区| 99热只有精品国产| 国产在线精品亚洲第一网站| 国产亚洲91精品色在线| 亚洲在线自拍视频| 亚洲av免费在线观看| 国产在视频线在精品| 国产一区二区在线观看日韩| 欧美中文日本在线观看视频| 精品久久久久久久久亚洲 | 久久精品国产清高在天天线| av黄色大香蕉| 国产精品一及| 观看免费一级毛片| 亚州av有码| 乱码一卡2卡4卡精品| 91麻豆精品激情在线观看国产| 日本三级黄在线观看| avwww免费| 免费看日本二区| 2021天堂中文幕一二区在线观| bbb黄色大片| 亚洲精品亚洲一区二区| 国产中年淑女户外野战色| 99久久久亚洲精品蜜臀av| 国产淫片久久久久久久久| 中文亚洲av片在线观看爽| 久久久久九九精品影院| 精品一区二区三区视频在线观看免费| 99在线视频只有这里精品首页| 亚洲电影在线观看av| 春色校园在线视频观看| 亚洲中文字幕一区二区三区有码在线看| 日韩欧美精品免费久久| 久久香蕉精品热| 国产成人影院久久av| 麻豆成人av在线观看| 性插视频无遮挡在线免费观看| h日本视频在线播放| 亚洲黑人精品在线| 欧美日韩综合久久久久久 | 色5月婷婷丁香| 舔av片在线| 日韩在线高清观看一区二区三区 | 精品国内亚洲2022精品成人| 亚洲国产欧美人成| 搡老熟女国产l中国老女人| 综合色av麻豆| 国产成人一区二区在线| 69人妻影院| 内射极品少妇av片p| 国产高清有码在线观看视频| 国内精品一区二区在线观看| 一个人观看的视频www高清免费观看| 国产精品一区二区三区四区免费观看 | 国产女主播在线喷水免费视频网站 | 91在线观看av| 国产精品久久久久久精品电影| 亚洲精品影视一区二区三区av| 天堂网av新在线| 一级a爱片免费观看的视频| 男女视频在线观看网站免费| 日本撒尿小便嘘嘘汇集6| 欧美日韩瑟瑟在线播放| 99热只有精品国产| 国产日本99.免费观看| h日本视频在线播放| 99在线人妻在线中文字幕| 成年免费大片在线观看| 精品一区二区三区视频在线观看免费| av在线天堂中文字幕| 亚洲av电影不卡..在线观看| 一区二区三区高清视频在线| 亚洲av第一区精品v没综合| 国产成人a区在线观看| 男人舔女人下体高潮全视频| 18禁黄网站禁片午夜丰满| 久久欧美精品欧美久久欧美| 久久久国产成人精品二区| 亚洲欧美日韩无卡精品| 校园春色视频在线观看| 久久久久久久久大av| 观看免费一级毛片| 床上黄色一级片| 午夜免费男女啪啪视频观看 | 国产亚洲欧美98| 少妇人妻一区二区三区视频| 亚洲精品乱码久久久v下载方式| 高清日韩中文字幕在线| 亚洲三级黄色毛片| 最近视频中文字幕2019在线8| 伦精品一区二区三区| 日本爱情动作片www.在线观看 | 日韩欧美一区二区三区在线观看| 九色国产91popny在线| 少妇的逼好多水| 看黄色毛片网站| 欧美日韩乱码在线| 婷婷精品国产亚洲av| 国产精华一区二区三区| 午夜福利高清视频| 国产精品伦人一区二区| 日本 av在线| 国产精品一区二区免费欧美| 国产av不卡久久| 少妇的逼水好多| 极品教师在线免费播放| 亚洲欧美日韩东京热| 欧美成人一区二区免费高清观看| 精品一区二区三区视频在线观看免费| 少妇人妻精品综合一区二区 | 国产毛片a区久久久久| 露出奶头的视频| 精品久久久久久久人妻蜜臀av| 欧美日韩国产亚洲二区| 国产成人福利小说| a级毛片a级免费在线| 日本黄色片子视频| 亚洲色图av天堂| 国产黄a三级三级三级人| 老女人水多毛片| 3wmmmm亚洲av在线观看| 成年免费大片在线观看| 波多野结衣高清无吗| 麻豆成人午夜福利视频| 亚洲中文字幕日韩| 成人无遮挡网站| 黄色一级大片看看| 亚洲av一区综合| 精品久久久久久久人妻蜜臀av| 哪里可以看免费的av片| 国产综合懂色| 久久99热这里只有精品18| 成年女人毛片免费观看观看9| 欧美日本亚洲视频在线播放| 51国产日韩欧美| 亚洲成人久久性| 给我免费播放毛片高清在线观看| 欧美最新免费一区二区三区| 观看美女的网站| 日韩在线高清观看一区二区三区 | 亚洲va在线va天堂va国产| 看十八女毛片水多多多| а√天堂www在线а√下载| 日韩在线高清观看一区二区三区 | 精品日产1卡2卡| 美女大奶头视频| 国产单亲对白刺激| 人人妻人人澡欧美一区二区| 午夜爱爱视频在线播放| 不卡一级毛片| 亚洲四区av| 日韩中文字幕欧美一区二区| 97热精品久久久久久| av福利片在线观看| 69av精品久久久久久| 欧美人与善性xxx| 国产一区二区三区在线臀色熟女| 欧美最黄视频在线播放免费| 国产私拍福利视频在线观看| 亚洲国产精品久久男人天堂| 亚洲精品成人久久久久久| xxxwww97欧美| av在线观看视频网站免费| 狂野欧美白嫩少妇大欣赏| 大型黄色视频在线免费观看| 给我免费播放毛片高清在线观看| 国语自产精品视频在线第100页| 一级毛片久久久久久久久女| av在线亚洲专区| 俄罗斯特黄特色一大片| 精品久久久久久久久久免费视频| 男女下面进入的视频免费午夜| 婷婷丁香在线五月| 国产 一区精品| 老司机午夜福利在线观看视频| 美女免费视频网站| 99久国产av精品| 亚洲美女黄片视频| 性欧美人与动物交配| av天堂在线播放| 麻豆精品久久久久久蜜桃| 人人妻人人澡欧美一区二区| 在线看三级毛片| 亚洲真实伦在线观看| 亚洲一区高清亚洲精品| 亚洲自拍偷在线| 成人二区视频| 成人三级黄色视频| 蜜桃亚洲精品一区二区三区| 精品久久久久久,| 女人被狂操c到高潮| 91av网一区二区| 成熟少妇高潮喷水视频| 精华霜和精华液先用哪个| 亚洲avbb在线观看| 日韩精品有码人妻一区| 精品国内亚洲2022精品成人| 69人妻影院| 两个人的视频大全免费| 中出人妻视频一区二区| 九色成人免费人妻av| 国内精品一区二区在线观看| 成人性生交大片免费视频hd| 精品久久久久久久久亚洲 | 国内毛片毛片毛片毛片毛片| 99视频精品全部免费 在线| 国内精品久久久久久久电影| 99久久中文字幕三级久久日本| 在线播放无遮挡| 一本久久中文字幕| 亚洲精品在线观看二区| 真实男女啪啪啪动态图| 日韩欧美免费精品| 我的老师免费观看完整版| 91麻豆av在线| 麻豆国产97在线/欧美| 国产精品一区二区三区四区免费观看 | 可以在线观看的亚洲视频| 最新中文字幕久久久久| a级一级毛片免费在线观看| 欧美黑人巨大hd| 91午夜精品亚洲一区二区三区 | 亚洲精品粉嫩美女一区| 成年版毛片免费区| 精品无人区乱码1区二区| 亚洲综合色惰| 久久久久久久久久成人| videossex国产| 午夜福利在线观看免费完整高清在 | 啦啦啦观看免费观看视频高清| 国产黄a三级三级三级人| 亚洲精华国产精华液的使用体验 | 欧美一区二区精品小视频在线| 狂野欧美白嫩少妇大欣赏| 我的老师免费观看完整版| 夜夜爽天天搞| 内射极品少妇av片p| x7x7x7水蜜桃| 最好的美女福利视频网| 亚洲欧美精品综合久久99| 国产精品av视频在线免费观看| 久久人妻av系列| 亚洲熟妇熟女久久| 尾随美女入室| 男女视频在线观看网站免费| 亚洲第一区二区三区不卡| 51国产日韩欧美| 美女免费视频网站| 日韩欧美国产在线观看| 久久人人爽人人爽人人片va| 亚洲精华国产精华液的使用体验 | 亚州av有码| 国产精品乱码一区二三区的特点| 麻豆成人午夜福利视频| 成人国产麻豆网| 尾随美女入室| 真人一进一出gif抽搐免费| 成人国产麻豆网| 免费av观看视频| 国产精品嫩草影院av在线观看 | 两个人视频免费观看高清| 国产美女午夜福利| 999久久久精品免费观看国产| 深爱激情五月婷婷| 国产伦一二天堂av在线观看| 偷拍熟女少妇极品色| 国产精品亚洲美女久久久| 丝袜美腿在线中文| 国产一区二区三区视频了| 国产麻豆成人av免费视频| 精品人妻视频免费看| 一本精品99久久精品77| 精品久久久久久久久av| 成人永久免费在线观看视频| 18禁裸乳无遮挡免费网站照片| 欧美+亚洲+日韩+国产| 免费看日本二区|