• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multidisciplinary Design Optimization with a New Effective Method

    2010-03-01 01:48:54CHENXiaokaiLIBangguoandLINYi

    CHEN Xiaokai, LI Bangguo, and LIN Yi

    National Engineering Laboratory of Electric Vehicle, Beijing Institute of Technology, Beijing 100081, China

    1 Introduction

    Collaborative optimization (CO) is a new design architecture to tackle the large-scale, distributed-analysis application often found in industry[1]. CO was originally proposed in 1994. It is one of several decomposition based methods that divide a design problem along disciplinary (or other convenient) boundaries. It consists of two-level optimization problems which are system optimization problem and subspace optimization problem. System optimizer optimizes the multidisciplinary variable (system level target)z to satisfy the interdisciplinary constraints while minimizing the system objective. Subspace optimizer minimizes the interdisciplinary compatibility constraints,while satisfying the subspace constraints. Relative to other decomposition-based methods, CO provides the disciplinary subspace with an unusually high level of autonomy[2].

    The basic CO formulation is composed of system level and subspace level, the system level is given by Eq. (1)[2]:

    where F (z) is global objective, z is variable (i.e., system level targets for shared variables),is subspace target response that provides each subspace’s best attempt to meet the system level targets (z), and it is a parameter in system level, n is the number of subspaces.

    The lower subspace level is illustrated in Eq. (2):

    where x is an independent shared variable, xlis a local variable, which is relative only to the local subspace. On the basis of analyzing y = y (x, xl),y is coupling variable,is shared variable, z is a parameter,is a local constraint.

    The subspace objective tries to match targets for the shared variables that have been sent by the system level[2].The dependent variables in subspace level include shared variables (xs) and local variables (xl). The shared variables include both independent variables (x) and coupling variables (y).

    CO has been successfully applied to a variety of mathematical problems and engineering design problems,and used for the conceptual design of launch vehicles[3],high speed civil transports[4], and unmanned aerial vehicles[5]. However, the method also suffers from some challenges, which has been documented by ALEXANDROV, DEMIGUEL, et al[6–8]. They highlighted the features of CO that has an adverse effect on robustness and computational efficiency.

    Three difficulties of the bi-level optimization problem stated in Eqs. (1) and (2) are considered.

    (1) The system level Jacobian is singular at the solution[6]. This can be seen by noting that the constraint gradients are given byEven with a robust optimizer, this has an adverse impact on the rate of convergence.

    (2) The Lagrange multipliers in the subspace problem are either zeroes or converge to zeroes as z converges toThis greatly affects subspace convergence.

    (3) The subspace response ( Ji) is, in general, nonsmooth functions of the targets z[8]. As a result, the system level constraints are nonsmooth, hindering local and global convergence proofs for the system level problem.

    In CO, the system compatibility constraints are equality constraints of quadratic forms, which often lead to some problems of convergence. Because of the quadratic equality constraints, CO also strongly depends on the initial condition for convergence. Inefficient convergence is often caused when gradient-based method is used.

    The basic concept to enhance CO is to modify the system constraints, which cause the convergence difficulties[10]. The current research is focused on using the nature of the subspace problem, therefore the optimum constraints sensitivity is presented to find the closet point from the target point, while satisfying all disciplinary constraints.

    2 Description of the Method

    AZARM and LI[11]gave the formulation of a two level design optimization with an separable objective and separable constraints. The formation is given by Eq. (3) :

    where f is an integrated objective function, fiis an objective function in subspace i.

    The Karush-Kuhn-Tucker (KKT) condition for this problem is given by Eq. (4):

    According to the two-level design optimization problem,CO can be written as another form. System level problem is given by Eq. (5), and subspace problems are given by Eq.(6):

    The KKT optimality condition for subspace level optimization problem can be written as follows:

    In CO, z is fixed and x is varied in subspace problem,we should have

    Likewise, the KKT conditions for the system level optimization problem can be written as follows:

    For CO, the variables in disciplinary optimization problem consist of shared variables and local variables, the KKT conditions for shared variables and local variables can be written as

    CO synergizes the disciplinary problem via shared variables, according to Eqs. (4)–(9), a formulation can be obtained as follows:

    Once the shared variables have been identified, Eq. (12)can be used to obtain. Likewise, Eq. (12) can be used by an optimization method which does not yield the value of ui.

    In CO, to modify the system level constraints, we define the derivative of local constraints while the variables areas the optimum sensitivity of disciplinary constraints according to the idea described above. That is

    The optimum sensitivity of disciplinary constraints can reflect the changing information of disciplinary constraints,which enable the system level optimizer to know the boundary where the subspace objectives are zeroes.Through the optimum constraints sensitivity, the linear dynamic constraints of system level can be constructed by Taylor expansion around the subspace optimum as follows:

    Where i is the number of disciplinary optimization problems, m is the dimension of local variables lx, n is the dimension of independent shared variables x.

    These new constraints are linear constraints of variable z in system level, which can avoid the computational difficulties caused by the original quadratic equation constraints.is the constraint value when x = x*and, which is optimal value of each disciplinary optimization. Through these linear dynamic constraints, the optimized information of subspace optimization can be sent to the system level, which reinforces the exchange between system level and subspace level. The reformed CO is referred to as system level linear dynamic constraints collaborative optimization (DCCO).

    3 Flow of DCCO

    The solution process begins with an initial set of system level design variable z0. This variable is sent to the subspace optimization problems and treated as a set of fixed parameters. The subspace optimization problems are then solved while satisfying the subspace constraint ci.The parameterandare optimized in this optimization.

    Then on the basis of

    The system level optimizer determines whether the design variable z0satisfies the new constraints. Until now one whole optimization is finished. The process is repeated until z reaches the optimum.

    4 Analytic Test Case and Application

    This section illustrates the application of DCCO. The results of a typical functional optimization problem and a gear reducer optimization problem are compared with those obtained via the original version of CO. All problems were solved by sequential quadratic programming (SQP) method based on optimizer: NPSOL.

    4.1 Typical function optimization problem

    BRAUN[1]solved this typical function optimization problem via original version of CO. This problem is a constraint nonlinear problem, and its mathematical model is

    where β is a parameter, and β= 0.1. This problem is decomposed in the following manner. The system level problem and subspace level problem are described respectively.

    The problem is solved by original version of CO, and system level problem is as follows:

    Disciplinary problem 1:

    Disciplinary problem 2:

    The problem is solved by DCCO, and the system level problem is as follows:

    Disciplinary problem 3:

    Disciplinary problem 4:

    The results of this example are summarized in Table 1.For all cases, CO and DCCO methods could be used to solve this problem. Compared with CO of original version,the reformed method greatly reduces the number of the system level iteration. The results of this problem areand x2= 1.9 80. Conclusion can be drawn that the DCCO is more accurate than the original version of CO.

    Table 1. Results of the typical function optimization problem solved by CO and DCCO

    4.2 Example 2: gear reducer design problem

    A well-known gear reducer example is presented in this section (see Fig. 1). The example is conducted to illustrate the effectiveness of this approach. The test problem is taken from AZARM, et al[11]. The objective of this optimization problem is to minimize the overall volume (or weight) of the speed reducer.

    Fig. 1. Model of gear reducer example

    There are 7 variables in this example, and the design variables are expressed as follows:

    x1—Gear face width, 2.6 cm ≤ x1≤3.6 cm;

    x2—Teeth module, 0.7 cm ≤ x2≤0.8 cm;

    x3—Number of teeth of opinion, 17 ≤ x3≤28;

    x4—Distance between bearing 1, 7.3 cm ≤ x4≤8.3 cm;

    x5—Distance between bearing 2, 7.3 cm ≤ x5≤8.3 cm;

    x6—Diameter of shaft 1, 2.9 cm ≤ x6≤3.9 cm;

    x7—Diameter of shaft 2, 5 cm ≤ x7≤5.5 cm.

    The nonlinear programming statement for this example is presented:

    The gear reducer is decomposed into three disciplinary D1, D2, D3as follows:

    This problem is solved by DCCO, and the system level problem is as follows:

    where i is the number of disciplinary problems,j is coupling constraints.

    Disciplinary problem 5:

    Disciplinary problem 6:

    Disciplinary problem 7:

    According to the range of design variables, choose X = (3.6, 0.8, 28, 7.3, 7.3, 2.9, 5.0) as the test design variable. The optimization process begins at X. Table 2 shows the summarized results of the given test design variables using DCCO method and CO method.

    The original objective value is 6 533.6, after 25 iteration of system level optimizer, the objective function f (x)converges at 2 993.2, which is the final objective function value.

    Table 2 also shows the summarized results of the given test design variables using CO method. The final objective function converges at 5 314.4, which is not the precise result of the optimization problem. AZARM, et al[12], gave the results of this problem. Design variables X is (3.5, 0.7,17, 7.3, 7.71, 3.35, 5.29), and objective function is 2 994.Now a conclusion can be drawn that the reformed collaborative optimization is effective to solve this multidisciplinary problem.

    Fig. 2 gives the objective function iteration history via DCCO, which reveals the detailed convergence process.

    Table 2. Results of the gear reducer optimization problem via DCCO and CO

    Fig. 2. Objective function iteration history via DCCO

    5 Conclusions

    (1) A new approach is investigated to modify collaborative optimization. The new approach is focused on making a breakthrough to find an approximate model of system constraints that allow system to converge faster and more robustly.

    (2) A system-level linear dynamic collaborative optimization is presented by modifying the compatibility constraints of the original version of collaborative.

    (3) Results of analytic analysis cases reveal that the reformed collaborative optimization can significantly improve system convergence and save computational time,compared to collaborative optimization. The price for this computational savings is a small increase in the complexity of constructing the system level constraints.

    (4) The modified system level constraints are linear dynamic constraints, which can avoid some computational difficulties caused by the quadratic constraints contrast to the quadratic equality constraints of the original version of collaborative optimization.

    [1] BRAUN R D. Collaborative optimization: an architecture for large-scale distributed design[D]. Palo Alto: Stanford University,1996.

    [2] ROTH B, KROO I. Enhanced collaborative optimization: Application to analytic test problem and aircraft design[C]//12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,Victorian, British Columbia Canada, 10–12 September, 2008.

    [3] BRAUN R, KROO I, MOORE A. Use of the collaborative optimization architecture for launch vehicle design[C]//6th AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Reston, VA, Sept. 4–6, 1996.

    [4] MANNING V. Larger-scale design of supersonic aircraft via collaborative optimization[D]. Palo Alto: Stanford University, 1999.

    [5] SOBIESKI I. Multidisciplinary design using collaborative optimization[D]. Palo Alto: Stanford University, 1998.

    [6] ALEXANDROV N M, LEWIS R. Analytical and computational aspects of collaborative optimization and multidisciplinary design[J]. AIAA Journal, 2002, 40(2): 301–309.

    [7] ALEXANDROV N M, LEWIS R. Comparative properties of collaborative optimization and other approaches to MDO[M].Bradford: MCB University Press, 1999.

    [8] DEMIGUEL A, MURRAY W. An analysis of collaborative optimization methods[C]//8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Long Beach,CA, 2000.

    [9] ALEXANDROV N M, LEWIS R. Engineering design optimization[M]. Bradford: MCB University Press, 1999.

    [10] KOBAYASHI K, KROO I. The new effective MDO method based on collaborative optimization[C]//35th AIAA Fluid Dynamics Conference and Exhibit, 6–9 June, 2005, Toronto, Ontario Canada,AIAA Paper No. 2005–4799.

    [11] AZARM S, LI W C. Optimality and constrained derivatives in Two-level Design Optimization[J]. ASME Journal of Mechanical Design, 1990, 112 (12): 563–568.

    [12] AZARM S, LI W C. Multi-level design optimization using global momonicity analysis[J]. ASME Journal of Mechanisms and Automation in Design, 1989, 11(2): 259–263.

    在线av久久热| 性欧美人与动物交配| 91大片在线观看| 老熟妇仑乱视频hdxx| 亚洲午夜精品一区,二区,三区| 伊人久久大香线蕉亚洲五| 黄色女人牲交| 亚洲五月天丁香| 男人的好看免费观看在线视频 | 99久久国产精品久久久| 国产在线精品亚洲第一网站| 91九色精品人成在线观看| 亚洲精品国产区一区二| 日韩欧美三级三区| 麻豆国产av国片精品| 制服人妻中文乱码| 不卡一级毛片| 国产一区二区在线av高清观看| 成人手机av| www.熟女人妻精品国产| 黄网站色视频无遮挡免费观看| 国内揄拍国产精品人妻在线 | 免费观看精品视频网站| 日韩免费av在线播放| 欧美黄色片欧美黄色片| 麻豆国产av国片精品| 午夜激情福利司机影院| 国产激情偷乱视频一区二区| 悠悠久久av| 国产私拍福利视频在线观看| 午夜福利视频1000在线观看| 黄色丝袜av网址大全| 久久精品国产综合久久久| 999久久久国产精品视频| 久久久久久久久久黄片| 香蕉国产在线看| 午夜久久久久精精品| 老熟妇乱子伦视频在线观看| 婷婷六月久久综合丁香| 国产精品久久久久久人妻精品电影| 性欧美人与动物交配| 搡老熟女国产l中国老女人| 日韩精品青青久久久久久| 天堂动漫精品| 麻豆成人午夜福利视频| 波多野结衣巨乳人妻| 国产高清视频在线播放一区| 亚洲狠狠婷婷综合久久图片| 少妇的丰满在线观看| 国产伦一二天堂av在线观看| 久久欧美精品欧美久久欧美| 免费电影在线观看免费观看| 女性生殖器流出的白浆| 欧美成人午夜精品| 精品久久久久久久末码| 日韩 欧美 亚洲 中文字幕| 神马国产精品三级电影在线观看 | 成年免费大片在线观看| 日本三级黄在线观看| 日日夜夜操网爽| 成人国产综合亚洲| 免费在线观看影片大全网站| 日本五十路高清| 国产精品久久久久久精品电影 | 夜夜躁狠狠躁天天躁| 天天一区二区日本电影三级| 日本黄色视频三级网站网址| 欧美日本亚洲视频在线播放| 国产又爽黄色视频| 日韩欧美一区视频在线观看| 久久香蕉国产精品| av超薄肉色丝袜交足视频| 女警被强在线播放| 免费看日本二区| 欧美日本视频| 无遮挡黄片免费观看| 91av网站免费观看| 久久伊人香网站| 老熟妇乱子伦视频在线观看| 国产精品一区二区三区四区久久 | 手机成人av网站| 在线观看66精品国产| 亚洲国产精品999在线| 亚洲av成人av| av片东京热男人的天堂| 成年版毛片免费区| 国产成年人精品一区二区| 亚洲成av人片免费观看| 中文字幕高清在线视频| 巨乳人妻的诱惑在线观看| 久久精品国产亚洲av高清一级| 一卡2卡三卡四卡精品乱码亚洲| 熟妇人妻久久中文字幕3abv| 国产精品久久久久久精品电影 | www.自偷自拍.com| 欧美日韩乱码在线| 伦理电影免费视频| 999久久久国产精品视频| 亚洲狠狠婷婷综合久久图片| 欧美另类亚洲清纯唯美| 国语自产精品视频在线第100页| 丰满的人妻完整版| 人成视频在线观看免费观看| 黄色a级毛片大全视频| 国产成人欧美| a级毛片a级免费在线| 欧美丝袜亚洲另类 | 中文在线观看免费www的网站 | 欧美激情 高清一区二区三区| 18美女黄网站色大片免费观看| 亚洲欧洲精品一区二区精品久久久| 亚洲成人免费电影在线观看| 亚洲无线在线观看| 少妇的丰满在线观看| 亚洲av五月六月丁香网| 精品乱码久久久久久99久播| 精品无人区乱码1区二区| 国产亚洲精品av在线| 亚洲自拍偷在线| 久久人妻福利社区极品人妻图片| 人人妻人人澡人人看| 日韩大尺度精品在线看网址| 熟女少妇亚洲综合色aaa.| 国产av一区在线观看免费| 丁香六月欧美| 9191精品国产免费久久| 在线播放国产精品三级| 欧美色视频一区免费| 1024视频免费在线观看| 成人国语在线视频| 免费一级毛片在线播放高清视频| 女同久久另类99精品国产91| 欧美又色又爽又黄视频| 国内揄拍国产精品人妻在线 | 99精品久久久久人妻精品| 熟女少妇亚洲综合色aaa.| 在线观看舔阴道视频| 色哟哟哟哟哟哟| 国产欧美日韩一区二区三| 制服丝袜大香蕉在线| 一进一出抽搐动态| 国内精品久久久久精免费| 好看av亚洲va欧美ⅴa在| 一边摸一边做爽爽视频免费| 少妇粗大呻吟视频| 亚洲七黄色美女视频| 高清在线国产一区| av天堂在线播放| а√天堂www在线а√下载| 在线播放国产精品三级| 大型黄色视频在线免费观看| 国产精品久久久久久人妻精品电影| 欧美久久黑人一区二区| 亚洲av成人不卡在线观看播放网| 黄频高清免费视频| 亚洲男人的天堂狠狠| 熟女电影av网| 少妇被粗大的猛进出69影院| 亚洲av成人av| 精品久久久久久久毛片微露脸| 999久久久精品免费观看国产| 在线观看一区二区三区| 色播亚洲综合网| 亚洲国产中文字幕在线视频| 中文资源天堂在线| 日日摸夜夜添夜夜添小说| 午夜两性在线视频| 亚洲国产精品sss在线观看| 99热只有精品国产| 国产一区二区激情短视频| 亚洲精品粉嫩美女一区| 欧美在线黄色| 男人舔女人的私密视频| 在线免费观看的www视频| 18美女黄网站色大片免费观看| av片东京热男人的天堂| 亚洲av片天天在线观看| 一进一出抽搐gif免费好疼| 免费电影在线观看免费观看| 精品免费久久久久久久清纯| 男女之事视频高清在线观看| 中文资源天堂在线| 少妇 在线观看| 村上凉子中文字幕在线| 丰满的人妻完整版| 亚洲aⅴ乱码一区二区在线播放 | 91麻豆精品激情在线观看国产| av视频在线观看入口| 黄片大片在线免费观看| 亚洲国产精品999在线| 色综合亚洲欧美另类图片| 嫩草影院精品99| 国产极品粉嫩免费观看在线| 97超级碰碰碰精品色视频在线观看| 熟女少妇亚洲综合色aaa.| 91九色精品人成在线观看| 此物有八面人人有两片| 啦啦啦 在线观看视频| 亚洲成av人片免费观看| 成人一区二区视频在线观看| 久热爱精品视频在线9| 日韩欧美一区视频在线观看| 亚洲精华国产精华精| 精品一区二区三区av网在线观看| 午夜视频精品福利| 亚洲av成人av| 99久久精品国产亚洲精品| 老司机在亚洲福利影院| 欧美日韩中文字幕国产精品一区二区三区| 亚洲天堂国产精品一区在线| 成人三级黄色视频| 好男人在线观看高清免费视频 | 日本a在线网址| 国产成人av激情在线播放| 无遮挡黄片免费观看| 国产亚洲av嫩草精品影院| 久久久久免费精品人妻一区二区 | 亚洲欧美精品综合久久99| 久久国产精品影院| 久久久国产精品麻豆| 日本在线视频免费播放| 国产亚洲精品第一综合不卡| 日韩有码中文字幕| 亚洲欧美精品综合一区二区三区| 一夜夜www| 91大片在线观看| 亚洲自拍偷在线| a在线观看视频网站| 久久草成人影院| 久久久久久久久中文| 精品日产1卡2卡| 天天添夜夜摸| 韩国精品一区二区三区| 亚洲av五月六月丁香网| 国语自产精品视频在线第100页| 欧美成人午夜精品| 在线观看66精品国产| 久久久国产成人免费| 丝袜人妻中文字幕| 老鸭窝网址在线观看| 女生性感内裤真人,穿戴方法视频| 亚洲熟妇中文字幕五十中出| 免费电影在线观看免费观看| 搡老岳熟女国产| 国产又色又爽无遮挡免费看| 国产一区二区激情短视频| 1024手机看黄色片| 脱女人内裤的视频| 国产精品久久久av美女十八| 欧美成人一区二区免费高清观看 | 天天添夜夜摸| 久久久久精品国产欧美久久久| 国内精品久久久久久久电影| 操出白浆在线播放| 国产99久久九九免费精品| 精品不卡国产一区二区三区| 国产欧美日韩一区二区三| 在线观看免费日韩欧美大片| 欧美一级a爱片免费观看看 | 精品电影一区二区在线| 欧美激情极品国产一区二区三区| 一进一出抽搐动态| 中文资源天堂在线| www日本黄色视频网| 老鸭窝网址在线观看| 黑人欧美特级aaaaaa片| 日韩欧美 国产精品| 琪琪午夜伦伦电影理论片6080| 97超级碰碰碰精品色视频在线观看| 欧美性长视频在线观看| av欧美777| 久久亚洲真实| 国产高清videossex| 久久香蕉精品热| 亚洲熟妇熟女久久| 国产单亲对白刺激| 亚洲人成网站在线播放欧美日韩| www.999成人在线观看| av福利片在线| 久久精品国产99精品国产亚洲性色| 亚洲av中文字字幕乱码综合 | 久久精品aⅴ一区二区三区四区| 日日干狠狠操夜夜爽| 99热这里只有精品一区 | 日本免费a在线| 国产久久久一区二区三区| 欧美成人午夜精品| 欧美日韩中文字幕国产精品一区二区三区| 女人被狂操c到高潮| 精品福利观看| 深夜精品福利| 美女 人体艺术 gogo| 国产精品乱码一区二三区的特点| 久久亚洲精品不卡| 午夜免费激情av| 黄色毛片三级朝国网站| 午夜影院日韩av| 亚洲精华国产精华精| 成人一区二区视频在线观看| 十八禁网站免费在线| 丰满人妻熟妇乱又伦精品不卡| 国产精品久久久av美女十八| 国产单亲对白刺激| 在线视频色国产色| 两人在一起打扑克的视频| 午夜视频精品福利| 99精品久久久久人妻精品| 中文亚洲av片在线观看爽| 欧美成人性av电影在线观看| 欧美精品啪啪一区二区三区| 狠狠狠狠99中文字幕| 人人妻人人看人人澡| 日本精品一区二区三区蜜桃| 黄色a级毛片大全视频| 精品国产美女av久久久久小说| 欧美成人免费av一区二区三区| 国产三级在线视频| 国产区一区二久久| 99国产极品粉嫩在线观看| 精品熟女少妇八av免费久了| 欧美三级亚洲精品| 欧美黑人巨大hd| www日本在线高清视频| 日韩视频一区二区在线观看| 亚洲 欧美一区二区三区| 亚洲第一青青草原| 伦理电影免费视频| 国产91精品成人一区二区三区| 色av中文字幕| 美女免费视频网站| 特大巨黑吊av在线直播 | 级片在线观看| 宅男免费午夜| 黄片播放在线免费| 美女高潮喷水抽搐中文字幕| 黄片播放在线免费| 老汉色av国产亚洲站长工具| 窝窝影院91人妻| 欧美激情 高清一区二区三区| 国内久久婷婷六月综合欲色啪| 午夜福利欧美成人| 国产成人啪精品午夜网站| 久久国产精品男人的天堂亚洲| xxxwww97欧美| 此物有八面人人有两片| 99久久精品国产亚洲精品| 日韩精品青青久久久久久| 日韩有码中文字幕| 日韩欧美国产一区二区入口| 国产成人一区二区三区免费视频网站| 神马国产精品三级电影在线观看 | 看片在线看免费视频| 一二三四社区在线视频社区8| 黄片播放在线免费| 哪里可以看免费的av片| 看片在线看免费视频| 19禁男女啪啪无遮挡网站| 国产成人av激情在线播放| 亚洲精品色激情综合| 男女那种视频在线观看| 长腿黑丝高跟| 成人欧美大片| 色综合站精品国产| 男男h啪啪无遮挡| 变态另类丝袜制服| 看黄色毛片网站| a级毛片a级免费在线| 色综合婷婷激情| 国产精品爽爽va在线观看网站 | 18禁国产床啪视频网站| 国产又黄又爽又无遮挡在线| 亚洲国产欧洲综合997久久, | 欧美激情高清一区二区三区| 99精品在免费线老司机午夜| 国内揄拍国产精品人妻在线 | 国产精品久久久av美女十八| av欧美777| 欧美性猛交黑人性爽| 国产成人啪精品午夜网站| 神马国产精品三级电影在线观看 | 午夜免费激情av| 欧美不卡视频在线免费观看 | 中亚洲国语对白在线视频| 91在线观看av| 亚洲av日韩精品久久久久久密| 人人澡人人妻人| 久热这里只有精品99| av福利片在线| 变态另类成人亚洲欧美熟女| 少妇裸体淫交视频免费看高清 | 老司机福利观看| 大型黄色视频在线免费观看| 桃红色精品国产亚洲av| 好看av亚洲va欧美ⅴa在| 亚洲精品美女久久久久99蜜臀| 成人亚洲精品av一区二区| 日本免费一区二区三区高清不卡| 精品久久久久久久毛片微露脸| svipshipincom国产片| 色播亚洲综合网| 久久人妻av系列| 日韩欧美国产一区二区入口| 99riav亚洲国产免费| 国产精品99久久99久久久不卡| 免费高清在线观看日韩| 久久热在线av| 国产又色又爽无遮挡免费看| 国产国语露脸激情在线看| 成人国产综合亚洲| 国产精品九九99| 精品久久久久久久久久免费视频| 久久国产精品男人的天堂亚洲| 国产国语露脸激情在线看| 一级a爱视频在线免费观看| 黑丝袜美女国产一区| 日日摸夜夜添夜夜添小说| 日韩欧美三级三区| 黄色丝袜av网址大全| 国产真人三级小视频在线观看| 午夜免费激情av| 欧美精品啪啪一区二区三区| 国内毛片毛片毛片毛片毛片| 在线国产一区二区在线| 琪琪午夜伦伦电影理论片6080| 淫妇啪啪啪对白视频| 精品国产美女av久久久久小说| 久久久久久亚洲精品国产蜜桃av| 自线自在国产av| 青草久久国产| 精品不卡国产一区二区三区| 最近最新免费中文字幕在线| 两性午夜刺激爽爽歪歪视频在线观看 | 中国美女看黄片| 中文字幕精品免费在线观看视频| 国产精品精品国产色婷婷| 男男h啪啪无遮挡| 亚洲熟妇中文字幕五十中出| 成人亚洲精品av一区二区| 国产精品影院久久| 久久久精品国产亚洲av高清涩受| 日韩欧美 国产精品| 99国产精品一区二区蜜桃av| 天天一区二区日本电影三级| 亚洲中文av在线| 黄片播放在线免费| 成年女人毛片免费观看观看9| 亚洲中文字幕日韩| 国产精品久久久久久人妻精品电影| 757午夜福利合集在线观看| 亚洲狠狠婷婷综合久久图片| 精品国内亚洲2022精品成人| 丰满的人妻完整版| 老司机午夜福利在线观看视频| 国产亚洲精品第一综合不卡| 国内精品久久久久久久电影| 亚洲 国产 在线| 男人操女人黄网站| 亚洲 欧美 日韩 在线 免费| 欧美黑人巨大hd| 激情在线观看视频在线高清| 男女之事视频高清在线观看| 国产亚洲精品av在线| 欧美激情极品国产一区二区三区| 黑人欧美特级aaaaaa片| 久久精品国产亚洲av香蕉五月| 免费看日本二区| 久久欧美精品欧美久久欧美| 黄色片一级片一级黄色片| 悠悠久久av| 99精品久久久久人妻精品| 亚洲精品国产区一区二| 欧美成狂野欧美在线观看| 国产黄片美女视频| 大型av网站在线播放| 无限看片的www在线观看| 亚洲精品在线美女| 久久九九热精品免费| 精品不卡国产一区二区三区| 老鸭窝网址在线观看| 波多野结衣巨乳人妻| 午夜福利免费观看在线| 欧美一级a爱片免费观看看 | 亚洲精品一区av在线观看| 女警被强在线播放| 999精品在线视频| 在线观看免费日韩欧美大片| 亚洲色图av天堂| 少妇裸体淫交视频免费看高清 | 日日干狠狠操夜夜爽| 99国产精品99久久久久| 丰满的人妻完整版| 老司机福利观看| 婷婷精品国产亚洲av在线| 国产精品美女特级片免费视频播放器 | 亚洲欧美日韩高清在线视频| 91字幕亚洲| 中文字幕人妻熟女乱码| 夜夜看夜夜爽夜夜摸| 久久精品91无色码中文字幕| 久久国产精品影院| 亚洲国产欧美一区二区综合| 女同久久另类99精品国产91| 亚洲精品久久国产高清桃花| 国产亚洲av高清不卡| 亚洲精品久久国产高清桃花| 白带黄色成豆腐渣| 国产精品av久久久久免费| 可以在线观看毛片的网站| 久久久久久久久久黄片| 午夜久久久久精精品| 亚洲片人在线观看| 精品久久蜜臀av无| 97碰自拍视频| 久久这里只有精品19| 亚洲av成人不卡在线观看播放网| 可以在线观看的亚洲视频| 老熟妇仑乱视频hdxx| 可以在线观看的亚洲视频| 国产精品综合久久久久久久免费| 欧美乱妇无乱码| 亚洲 欧美 日韩 在线 免费| 嫁个100分男人电影在线观看| 变态另类成人亚洲欧美熟女| 亚洲精华国产精华精| av免费在线观看网站| 国产精品久久视频播放| 少妇 在线观看| 中国美女看黄片| 亚洲三区欧美一区| 久久午夜亚洲精品久久| 欧美日韩黄片免| 久久香蕉激情| 999久久久国产精品视频| 午夜老司机福利片| 欧美又色又爽又黄视频| 亚洲欧美激情综合另类| 久久人人精品亚洲av| 色综合欧美亚洲国产小说| 男女下面进入的视频免费午夜 | av免费在线观看网站| a在线观看视频网站| 国产av在哪里看| 级片在线观看| 国产精品精品国产色婷婷| 国产亚洲精品久久久久久毛片| xxxwww97欧美| 精品乱码久久久久久99久播| 亚洲一区二区三区不卡视频| a在线观看视频网站| 国产三级在线视频| 两个人看的免费小视频| 精品国产乱码久久久久久男人| 黑人操中国人逼视频| 亚洲国产欧美一区二区综合| 韩国精品一区二区三区| 久久久久精品国产欧美久久久| 精品久久久久久久毛片微露脸| 精品少妇一区二区三区视频日本电影| aaaaa片日本免费| svipshipincom国产片| 国产一卡二卡三卡精品| 啦啦啦观看免费观看视频高清| 精品久久久久久久毛片微露脸| 老司机深夜福利视频在线观看| 日本 欧美在线| 麻豆久久精品国产亚洲av| 老司机午夜十八禁免费视频| 亚洲国产看品久久| 国产片内射在线| 亚洲熟妇中文字幕五十中出| 国产亚洲精品综合一区在线观看 | 老鸭窝网址在线观看| 在线观看www视频免费| 日本一区二区免费在线视频| 午夜免费成人在线视频| 国产国语露脸激情在线看| 搡老岳熟女国产| 亚洲天堂国产精品一区在线| 国产av不卡久久| 无限看片的www在线观看| av视频在线观看入口| 少妇 在线观看| 国产av又大| 999久久久国产精品视频| 欧美中文日本在线观看视频| 免费av毛片视频| 中文字幕久久专区| 久久人妻福利社区极品人妻图片| 熟妇人妻久久中文字幕3abv| 人成视频在线观看免费观看| 黄网站色视频无遮挡免费观看| 日韩有码中文字幕| 女人高潮潮喷娇喘18禁视频| 99久久精品国产亚洲精品| 日韩成人在线观看一区二区三区| 少妇的丰满在线观看| 一区福利在线观看| 久久久久久久久免费视频了| 老汉色av国产亚洲站长工具| 色播在线永久视频| 午夜福利免费观看在线| 一本综合久久免费| 搡老妇女老女人老熟妇| 欧美 亚洲 国产 日韩一| 亚洲狠狠婷婷综合久久图片| 亚洲av五月六月丁香网| 青草久久国产| 99国产极品粉嫩在线观看| 美女扒开内裤让男人捅视频| 午夜免费观看网址| 最近最新中文字幕大全电影3 | 亚洲成av人片免费观看| 国产成人欧美| 日韩一卡2卡3卡4卡2021年| 国产又色又爽无遮挡免费看|