關(guān)鍵詞金剛石微粉;化學(xué)鍍鎳;鍍層性能;BP神經(jīng)網(wǎng)絡(luò);GRNN
中圖分類號(hào) TQ164文獻(xiàn)標(biāo)志碼A
文章編號(hào) 1006-852X(2025)02-0197-08
DOI碼 10.13394/j.cnki.jgszz.2024.0042
收稿日期 2024-03-06修回日期2024-06-07
隨著我國集成電路、光電技術(shù)迅猛發(fā)展,硅片尺寸的精度要求越來越高[1。金剛石線鋸切割因具有高效、穩(wěn)定、可加工尺寸及品種多樣和切片質(zhì)量優(yōu)良等特點(diǎn)[23]而被廣泛應(yīng)用,同時(shí)金剛石線鋸切割技術(shù)也是材料加工領(lǐng)域最先進(jìn)的加工技術(shù)[45],市場前景廣闊。自前,如何使加工材料損耗更少、質(zhì)量更好,同時(shí)提高線鋸的切割效率,延長其使用壽命,是制備金剛石線鋸需解決的問題,也是打破國外技術(shù)壟斷的關(guān)鍵。
金剛石微粉作為金剛石線鋸的重要組成部分,對(duì)線鋸性能的影響較大。采用表面鍍覆的金剛石微粉可以極大地提高線鋸的性能,從而有效解決上述問題[3]。金剛石微粉化學(xué)鍍鎳是一種良好的表面鍍覆方法,具有鍍層均勻、硬度高、耐磨性和耐腐蝕性好等優(yōu)點(diǎn)[]。微粉鍍層性能受到金剛石顆粒粒徑、次亞磷酸鈉濃度、鍍液溫度和鍍液pH值等多種因素的共同影響,研究化學(xué)鍍工藝參數(shù)對(duì)鍍層沉積速率、鍍層密度、鍍層耐腐蝕性能的影響,對(duì)提高線鋸性能意義深遠(yuǎn)。但化學(xué)鍍工藝參數(shù)與鍍層性能存在非線性關(guān)系,不同粒度的金剛石微粉最佳鍍覆工藝參數(shù)不同,影響了金剛石微粉的應(yīng)用范圍。
人工神經(jīng)網(wǎng)絡(luò)(artificialneuralnetwork,ANN)模型能夠模擬人腦神經(jīng)系統(tǒng)的功能特征,通過對(duì)實(shí)驗(yàn)樣本進(jìn)行學(xué)習(xí)而建立起實(shí)驗(yàn)工藝參數(shù)與結(jié)果的映射,從而實(shí)現(xiàn)對(duì)實(shí)驗(yàn)結(jié)果的精準(zhǔn)預(yù)測(cè),且可以有效簡化實(shí)驗(yàn)流程,優(yōu)化實(shí)驗(yàn)參數(shù)[10-12]。WU等[13]利用神經(jīng)網(wǎng)絡(luò)模擬和預(yù)測(cè)了化學(xué)鍍的鍍覆率和磷含量,結(jié)果表明各因素對(duì)鍍覆率和磷含量的影響趨勢(shì)與實(shí)驗(yàn)結(jié)果一致。郭寶會(huì)等[14利用BP神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)了復(fù)合電鍍工藝參數(shù)對(duì)鍍層組織結(jié)構(gòu)的影響,發(fā)現(xiàn)預(yù)測(cè)結(jié)果與實(shí)驗(yàn)結(jié)果的擬合程度較高,能準(zhǔn)確預(yù)測(cè)復(fù)合鍍層的硬度和厚度。鄧羽等[15]構(gòu)建門控循環(huán)神經(jīng)網(wǎng)絡(luò)(gatedrecurrentneuralnetwork,GRNN)模型對(duì) Ni-ZrO2 納米鍍層的自腐蝕電流密度進(jìn)行了預(yù)測(cè),發(fā)現(xiàn)平均預(yù)測(cè)誤差為 5.30% ,具有較好的預(yù)測(cè)效果。因此,利用ANN預(yù)測(cè)金剛石微粉化學(xué)鍍鍍層性能,對(duì)研究化學(xué)鍍工藝參數(shù)與鍍層性能的相互作用關(guān)系、優(yōu)化化學(xué)鍍實(shí)驗(yàn)方案、提高化學(xué)鍍實(shí)驗(yàn)效果意義重大。
為此,用反向傳播(backpropagation,BP)神經(jīng)網(wǎng)絡(luò)和GRNN,對(duì)3種不同粒度代號(hào)的金剛石微粉表面化學(xué)鍍鎳的鍍層性能進(jìn)行學(xué)習(xí)、預(yù)測(cè)。通過對(duì)75組實(shí)驗(yàn)樣本數(shù)據(jù)進(jìn)行學(xué)習(xí)和訓(xùn)練,探索化學(xué)鍍工藝參數(shù)對(duì)鍍層性能的影響規(guī)律,以期達(dá)到用人工神經(jīng)網(wǎng)絡(luò)準(zhǔn)確預(yù)測(cè)鍍層性能的目的。且通過2種神經(jīng)網(wǎng)絡(luò)模型的模擬對(duì)比,找出不同神經(jīng)網(wǎng)絡(luò)模型的適用范圍,以得到適用于金剛石微粉化學(xué)鍍鎳的高精度神經(jīng)網(wǎng)絡(luò)模型。
1人工神經(jīng)網(wǎng)絡(luò)模型
1.1 BP神經(jīng)網(wǎng)絡(luò)
BP神經(jīng)網(wǎng)絡(luò)是一種按照誤差逆向傳播算法的多層前反饋神經(jīng)網(wǎng)絡(luò),其主要特點(diǎn)是:信號(hào)是正向傳播的,誤差是反向傳播的,且通過誤差的反向傳播,不斷調(diào)整網(wǎng)絡(luò)的權(quán)值和閾值,使網(wǎng)絡(luò)的誤差最小[16-17]。BP神經(jīng)網(wǎng)絡(luò)的算法流程圖如圖1所示。
金剛石微粉化學(xué)鍍層的性能受多種因素影響,并且這些因素之間可能存在復(fù)雜的非線性關(guān)系。BP神經(jīng)網(wǎng)絡(luò)具有較強(qiáng)的非線性建模能力,可以根據(jù)輸人數(shù)據(jù)的特征自適應(yīng)地調(diào)整模型參數(shù),且對(duì)不同類型的數(shù)據(jù)具有較好的適應(yīng)性,能夠捕捉到這些復(fù)雜的因素之間的關(guān)系,從而提高預(yù)測(cè)的準(zhǔn)確性。
1.2 GRNN
GRNN本質(zhì)上是一個(gè)徑向基函數(shù)神經(jīng)網(wǎng)絡(luò),具有很強(qiáng)的非線性映射能力和很快的學(xué)習(xí)速度,預(yù)測(cè)效果好,可以處理不穩(wěn)定數(shù)據(jù),特別是對(duì)數(shù)據(jù)精度較差的樣本有很大的優(yōu)勢(shì)[1.18]。金剛石微粉化學(xué)鍍鎳操作較復(fù)雜,產(chǎn)生的實(shí)驗(yàn)數(shù)據(jù)部分精度可能會(huì)有偏差。GRNN通常具有較高的預(yù)測(cè)性能和較好的泛化能力,即對(duì)新數(shù)據(jù)的適應(yīng)能力強(qiáng),且結(jié)構(gòu)相對(duì)簡單,訓(xùn)練速度快,不需要復(fù)雜的參數(shù)調(diào)整過程。通過結(jié)合金剛石微粉化學(xué)鍍鎳層性能的相關(guān)數(shù)據(jù),可以利用GRNN模型來準(zhǔn)確預(yù)測(cè)鍍層的性能或其他相關(guān)屬性。GRNN算法流程圖[如圖2所示。
2 網(wǎng)絡(luò)訓(xùn)練
2.1訓(xùn)練樣本獲取
2.1.1實(shí)驗(yàn)材料、儀器及工藝條件
實(shí)驗(yàn)材料:金剛石微粉粒度標(biāo)記為M1/2、M6/12、M20/30;電鍍液基本構(gòu)成是硫酸鎳濃度為 25g/L ,次亞磷酸鈉濃度為 25.0~35.0g/L ,檸檬酸濃度為 20g/L ,丁二酸濃度為 5g/L ,十二烷基苯磺酸鈉濃度為 1g/L , z 酸鈉濃度為 15g/L ,硫脲濃度為 1.4mg/L 0
實(shí)驗(yàn)儀器:FA4002B型電子天平,B13-3型智能恒溫?cái)?shù)顯定時(shí)磁力攪拌器,麥奇克S3500SI激光粒度粒形分析儀。
化學(xué)鍍工藝條件:化學(xué)鍍鍍液體積為 200mL ,金剛石微粉裝載量為 3g ,攪拌速度為 200r/min ,化學(xué)鍍時(shí)間為 1h 。其他參數(shù)見表1。
2.1.2 實(shí)驗(yàn)設(shè)計(jì)
對(duì)M1/2、M6/12、M20/303種不同粒徑的金剛石微粉進(jìn)行化學(xué)鍍鎳,影響化學(xué)鍍鎳實(shí)驗(yàn)的工藝參數(shù)是次亞磷酸鈉濃度、鍍液pH值、鍍液溫度。表1為化學(xué)鍍實(shí)驗(yàn)工藝參數(shù)的因素和水平。按表1所示建立3因素5水平共75組實(shí)驗(yàn),檢測(cè)鍍覆樣品的鍍層沉積速率、鍍層密度、鍍層耐腐蝕性能。
2.1.3實(shí)驗(yàn)結(jié)果表征
鍍層沉積速率用單位時(shí)間內(nèi)化學(xué)鍍前后金剛石微粉質(zhì)量的差值來表示。鍍層密度用單位體積鍍層質(zhì)量來表示。鍍層耐腐蝕性能測(cè)試方法為:將每組鍍覆完成的金剛石微粉在質(zhì)量分?jǐn)?shù)為 10% 的鹽酸溶液中浸泡 24h ,用鍍層的腐蝕失重來表示鍍層的耐腐蝕性能,腐蝕失重越多則鍍層耐腐蝕性能越差。
2.2訓(xùn)練樣本生成
將75組實(shí)驗(yàn)中的金剛石微粉粒度標(biāo)記、鍍液中次亞磷酸鈉濃度、鍍液pH值和鍍液溫度作為訓(xùn)練樣本輸入值,將鍍層的沉積速率、鍍層密度和鍍層耐腐蝕性能作為樣本輸出值。通過對(duì)數(shù)據(jù)進(jìn)行分析,發(fā)現(xiàn)化學(xué)鍍鎳工藝參數(shù)與鍍層性能之間的關(guān)系是非線性的,各因素之間相互影響,進(jìn)而影響整體鍍層性能。同時(shí),將樣本數(shù)據(jù)分別用BP神經(jīng)網(wǎng)絡(luò)和GRNN2個(gè)模型進(jìn)行訓(xùn)練,預(yù)測(cè)鍍層的性能并進(jìn)行比較。具體訓(xùn)練樣本如表2所示。
2.3BP神經(jīng)網(wǎng)絡(luò)模型的結(jié)構(gòu)設(shè)計(jì)與樣本學(xué)習(xí)
2.3.1BP神經(jīng)網(wǎng)絡(luò)模型的結(jié)構(gòu)設(shè)計(jì)
將金剛石微粉粒度標(biāo)記、鍍液中次亞磷酸鈉濃度、鍍液 值和鍍液溫度作為網(wǎng)絡(luò)的輸入節(jié)點(diǎn),鍍層沉積速率、鍍層密度和鍍層耐腐蝕性能作為輸出節(jié)點(diǎn),建立 4×9×3 的3層BP神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),其模型如圖3所示。其中:I層為輸入層,共有4個(gè)神經(jīng)元,分別對(duì)應(yīng)金剛石微粉粒度標(biāo)記、鍍液中次亞磷酸鈉濃度、鍍液pH值和鍍液溫度4個(gè)化學(xué)鍍工藝參數(shù); H 層為隱含層,共有9個(gè)神經(jīng)元,其神經(jīng)元數(shù)目由經(jīng)驗(yàn)公式確定( n= 2m+1 ,其中: m 為輸入層神經(jīng)元個(gè)數(shù), m=4;n 為隱含層神經(jīng)元個(gè)數(shù), n=2×4+1=9 )[14]; o 層為輸出層,含有3個(gè)神經(jīng)元,分別對(duì)應(yīng)鍍層沉積速率、鍍層密度和鍍層耐腐蝕性能。
BP神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)分為信號(hào)正向傳播和誤差反向傳播2個(gè)過程。在信號(hào)正向傳播過程中,輸入層和隱含層之間采用Sigmoid函數(shù):
隱含層和輸出層之間采用線性傳輸函數(shù)Purelin:
oi=f(s)
其中: f(s) 為隱含層輸出, oi 為模型預(yù)測(cè)的輸出值。
在BP神經(jīng)網(wǎng)絡(luò)的誤差反向傳播過程中,其模型采用帶動(dòng)量的梯度下降算法traingdm,具體公式為:
其中: Etotal 表示總誤差; ti 表示樣本的真實(shí)輸出值;wi+ 為新的權(quán)重; wi 為舊的權(quán)重; η 為步長,即學(xué)習(xí)率參數(shù)。
2.3.2BP神經(jīng)網(wǎng)絡(luò)模型的樣本學(xué)習(xí)
用表2中75組實(shí)驗(yàn)數(shù)據(jù)的68組數(shù)據(jù)作為BP神經(jīng)網(wǎng)絡(luò)模型的訓(xùn)練樣本,7組數(shù)據(jù)作為驗(yàn)證樣本。訓(xùn)練開始之前,對(duì)輸入的實(shí)驗(yàn)參數(shù)進(jìn)行歸一化處理,處理后的實(shí)驗(yàn)數(shù)據(jù)限定至[0,1]。采用的歸一化方法為最大最小歸一化法,其公式為:
其中: x′ 為歸一化后的數(shù)據(jù), x 為原始數(shù)據(jù), xmax 為數(shù)據(jù)所在列的最大值, xmin 為數(shù)據(jù)所在列的最小值。
數(shù)據(jù)歸一化后,開始訓(xùn)練學(xué)習(xí),樣本的目標(biāo)精度為0.00001,訓(xùn)練最大步數(shù)(即迭代次數(shù))為10000。樣本的訓(xùn)練結(jié)果如圖4所示。圖4中:經(jīng)過8520步的訓(xùn)練,模型精度已經(jīng)滿足目標(biāo)精度0.00001的要求。
2.4GRNN模型的結(jié)構(gòu)設(shè)計(jì)與樣本學(xué)習(xí)
2.4.1GRNN模型的結(jié)構(gòu)設(shè)計(jì)
GRNN以金剛石微粉粒度標(biāo)記、鍍液中次亞磷酸鈉濃度、鍍液pH值和鍍液溫度4個(gè)化學(xué)鍍工藝參數(shù)為網(wǎng)絡(luò)的輸入節(jié)點(diǎn),以鍍層沉積速率、鍍層密度和鍍層耐腐蝕性能為輸出節(jié)點(diǎn),建立如圖5所示的4層結(jié)構(gòu)。圖5中: X 層為輸入層,共有4個(gè)神經(jīng)元,分別對(duì)應(yīng)4個(gè)化學(xué)鍍工藝參數(shù); P 層為模式層,含有4個(gè)神經(jīng)元; s 層為求和層,含有4個(gè)神經(jīng)元,且分為2種。第1種的神經(jīng)元數(shù)目只有1個(gè),為模式層輸出的算術(shù)和 SD; 其余為第2種,其神經(jīng)元為模式層輸出的加權(quán)和 SN1~SNT; Y層為輸出層,含有3個(gè)神經(jīng)元,分別對(duì)應(yīng)鍍層沉積速率、鍍層密度和鍍層耐腐蝕性能。
輸入層直接將輸入變量傳遞給模式層,模式層神經(jīng)元數(shù)目等于學(xué)習(xí)樣本數(shù) n ,其神經(jīng)元傳遞函數(shù)為:
其中: Pi 為第 i 個(gè)神經(jīng)元的歐式距離權(quán)值[20-21], X 為網(wǎng)絡(luò)輸入變量, Xi 為第 i 個(gè)神經(jīng)元對(duì)應(yīng)的學(xué)習(xí)樣本,σ 為光滑因子。
求和層使用2種類型的神經(jīng)元進(jìn)行求和。第1種是對(duì)模式層神經(jīng)元的輸出算術(shù)求和,模式層與各神經(jīng)元的連接權(quán)值為1,其傳遞函數(shù) SD 為:
第2種是對(duì)模式層的神經(jīng)元進(jìn)行加權(quán)求和。模式層中第 i 個(gè)神經(jīng)元與求和層中第 j 個(gè)分子求和神經(jīng)元之間的連接權(quán)值為第 i 個(gè)輸出樣本 yi 中的第 j 個(gè)元素,
其傳遞函數(shù)為:
輸出層結(jié)果是將求和層的2個(gè)輸出結(jié)果相除,即:
2.4.2GRNN模型的樣本學(xué)習(xí)
GRNN不需要訓(xùn)練,但模型中光滑因子的值決定了輸出數(shù)據(jù)的誤差。光滑因子取值越大時(shí),網(wǎng)對(duì)樣本數(shù)據(jù)的逼近越平滑,但誤差相應(yīng)增加[22;光滑因子越小時(shí),網(wǎng)絡(luò)對(duì)樣本數(shù)據(jù)的逼近就越強(qiáng),誤差越小,但此時(shí)的光滑度差,再次給定新的輸入時(shí),預(yù)測(cè)效果會(huì)急劇變差,網(wǎng)絡(luò)失去了可推廣能力。因此,需要不斷優(yōu)化光滑因子的值,使網(wǎng)絡(luò)獲得較好的性能。
圖6給出了光滑因子的尋優(yōu)過程,規(guī)定光滑因子的取值范圍為 0.1~2.0 ,數(shù)值之間的間隔為0.1,設(shè)置4組尋優(yōu)過程,以均方差 RMES 來表示此光滑因子下模型的準(zhǔn)確度。通過分析圖6得出:當(dāng)光滑因子 σ 為0.8時(shí),模型描述實(shí)驗(yàn)數(shù)據(jù)的 RMES 最小,精度最高。
3預(yù)測(cè)及實(shí)驗(yàn)結(jié)果對(duì)比
3.1BP神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)及實(shí)驗(yàn)結(jié)果
設(shè)定4組對(duì)照樣本,檢驗(yàn)BP神經(jīng)網(wǎng)絡(luò)模型預(yù)測(cè)的準(zhǔn)確性。采用BP神經(jīng)網(wǎng)絡(luò)模型預(yù)測(cè)對(duì)照組的鍍層沉積速率、鍍層密度和耐腐蝕性能,并與其相應(yīng)的實(shí)驗(yàn)值對(duì)比。表3給出了對(duì)照組網(wǎng)絡(luò)預(yù)測(cè)值(即網(wǎng)絡(luò)輸出值)與實(shí)測(cè)結(jié)果的對(duì)比,表中的相對(duì)誤差是網(wǎng)絡(luò)預(yù)測(cè)值相對(duì)實(shí)測(cè)結(jié)果的值。從表3中可知:預(yù)測(cè)值與實(shí)驗(yàn)的實(shí)測(cè)結(jié)果相對(duì)誤差均較小,其相對(duì)誤差絕對(duì)值均在15.00% 以內(nèi),處于合理范圍,表明所建立的BP神經(jīng)網(wǎng)絡(luò)模型預(yù)測(cè)的結(jié)果具有較高的可信度。
3.2 GRNN預(yù)測(cè)及實(shí)驗(yàn)結(jié)果
按BP神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)相同的方法,用GRNN模型預(yù)測(cè)相同的4組對(duì)照樣本,其結(jié)果如表4所示。表4的結(jié)果表明:GRNN的預(yù)測(cè)值與實(shí)際值基本吻合,其相對(duì)誤差絕對(duì)值均小于 10.00% ,證明GRNN在預(yù)測(cè)金剛石微粉化學(xué)鍍鎳層性能方面的可靠性。
3.32種神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)結(jié)果對(duì)比
使用BP神經(jīng)網(wǎng)絡(luò)和GRNN對(duì)75組金剛石微粉化學(xué)鍍鎳實(shí)驗(yàn)數(shù)據(jù)訓(xùn)練學(xué)習(xí)后,對(duì) Pl~P44 組金剛石微粉樣本的化學(xué)鍍鎳層性能進(jìn)行預(yù)測(cè),2種神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)結(jié)果的相對(duì)誤差絕對(duì)值對(duì)比如圖7所示。由圖7可以看出:對(duì)于4組對(duì)照樣本,GRNN的預(yù)測(cè)結(jié)果相對(duì)誤差絕對(duì)值大部分都低于BP神經(jīng)網(wǎng)絡(luò)的,即其更接近實(shí)驗(yàn)值;且GRNN的預(yù)測(cè)結(jié)果相對(duì)誤差絕對(duì)值的平均值為 5.07% ,BP神經(jīng)網(wǎng)絡(luò)的為 9.14% ,兩者的平均值都較小,準(zhǔn)確性都較好。這是因?yàn)?,在?shù)據(jù)量較小的情況下,GRNN的收斂速度更快,尋優(yōu)能力更強(qiáng),具有更好的預(yù)測(cè)性能。但由于光滑因子的作用,當(dāng)數(shù)據(jù)量較大時(shí),其預(yù)測(cè)性能可能會(huì)有所下降,只適合于小樣本量的預(yù)測(cè)[15.22];而BP神經(jīng)網(wǎng)絡(luò)的訓(xùn)練速度較慢,但預(yù)測(cè)性能會(huì)隨著數(shù)據(jù)量的增加而提升,更適合多因素大樣本量的預(yù)測(cè)[15.23]。因此,在金剛石微粉化學(xué)鍍鎳層性能預(yù)測(cè)中,GRNN的預(yù)測(cè)性能優(yōu)于BP神經(jīng)網(wǎng)絡(luò)的預(yù)測(cè)性能。
4結(jié)論
(1)用化學(xué)鍍方法在M1/2、M6/12、M20/30金剛石微粉表面鍍鎳,通過BP神經(jīng)網(wǎng)絡(luò)和GRNN對(duì)3種不同粒度代號(hào)的金剛石微粉表面化學(xué)鍍鎳層性能建模,并用這2個(gè)模型分別對(duì)75組實(shí)驗(yàn)樣本數(shù)據(jù)進(jìn)行學(xué)習(xí)、訓(xùn)練和預(yù)測(cè),發(fā)現(xiàn)金剛石微粉粒度代號(hào)、次亞磷酸鈉濃度、鍍液溫度、鍍液pH值4個(gè)化學(xué)鍍鎳工藝參數(shù)與鍍層沉積速率、鍍層密度、鍍層耐腐蝕性能3個(gè)鍍層性能之間是非線性的,且各因素之間相互影響,進(jìn)而影響鍍層性能。
(2)BP神經(jīng)網(wǎng)絡(luò)模型的鍍層性能預(yù)測(cè)值與實(shí)驗(yàn)的實(shí)測(cè)結(jié)果相對(duì)誤差絕對(duì)值均小于 15.00% ,相對(duì)誤差絕對(duì)值的平均值為 9.14% 。
(3)GRNN模型的鍍層性能預(yù)測(cè)值與實(shí)驗(yàn)的實(shí)測(cè)結(jié)果相對(duì)誤差絕對(duì)值均小于 10.00% ,相對(duì)誤差絕對(duì)
值的平均值為 5.07% 。
(4)在金剛石微粉化學(xué)鍍鎳層性能預(yù)測(cè)中,GRNN的預(yù)測(cè)性能優(yōu)于BP神經(jīng)網(wǎng)絡(luò)的預(yù)測(cè)性能。
參考文獻(xiàn):
[1] 劉金婷,賀瑞,劉瑞瑩,等.碳化硅半導(dǎo)體材料應(yīng)用及發(fā)展前景[J].科 技創(chuàng)新導(dǎo)報(bào),2019,16(25):74-76. LIU Jinting,HE Rui, LIU Ruiying,et al. Application and development prospect of silicon carbide semiconductor materials [J].Science and Technology Innovation Herald,2019,16(25): 74-76.
[2] 王寶玉,宋為,張?zhí)?電鍍金剛線技術(shù)探討[J].金屬制品,2018,44(3): 10-13. WANG Baoyu,SONG Wei, ZHANG Taichao.Discussionon electroplating diamond wire technology[J].Metal Products,2018,44(3): 10-13.
[3] 李振興.半導(dǎo)體晶體線鋸切割工藝研究[J].紅外,2019,40(11):29-34. LI Zhenxing. Study on wire sawing technology of semiconductor crystal [J].Infrared,2019,40(11):29-34.
[4] 方莉俐,劉韓,姜羽飛.線鋸用金剛石微粉表面化學(xué)鍍鎳工藝及性能研 究[J].工具技術(shù),2024,58(4):54-58. FANGLili,LIU Han,JIANG Yufei.Research on electroless nickel plating process and performance of diamond powder surface for wire saws[J]. Tool Engineering,2024,58(4):54-58.
[5]張鳳林,袁慧,周玉梅,等.硅片精密切割多線鋸研究進(jìn)展[J].金剛石 與磨料磨具工程,2006(6):14-18. ZHANGFenglin,YUANHui,ZHOU Yumei, etal.Progress of multiwire saw for precision slicingof siliconwafer[J].Diamond amp; Abrasives Engineering,2006(6): 14-18.
[6] 常龍.多線切割機(jī)高線速下振動(dòng)特性及其優(yōu)化控制研究[D].秦皇島: 燕山大學(xué),2023. CHANG Long.Research on vibration characteristics and optimal control of multi-wire saw at high wire speed [D]. Qinhuangdao:Yanshan University,2023.
[7] 李玉偉,鄭坤坤,卞林芝,等.一種電鍍金剛線及其制備方法: CN202211516260.5[P].2022-11-30. LIYuwei,ZHENG Kunkun,BIAN Linzhi,etal.An electroplated
diamond wire and its preparation method: CN202211516260.5[P].2022-
11-30.
[8]黃世玲.金剛石化學(xué)鍍鎳工藝研究及電化學(xué)分析[D].鄭州:鄭州大學(xué), 2014. HUANG Shiling.Research and electrochemical analysis of electroless nickel plating on diamond[D]. Zhengzhou: Zhengzhou University,2014.
[9]RIEDELW.Electroless nickel plating [M]. England:Finishing PublicationLtd,1991.
[10]周瓊宇,謝蔚,王小芬,等.基于人工神經(jīng)網(wǎng)絡(luò)預(yù)測(cè) Ni-W合金鍍層的 硬度和耐腐蝕性能[J].表面技術(shù),2016,45(12):140-146. ZHOU Qiongyu,XIE Wei,WANG Xiaofen, et al. Artificial neural network-based prediction of hardness and corrosion resistance of Ni-W alloy coating[J].Surface Technology,2016,45(12): 140-146.
[11]LIU X, TIAN S, TAO F,et al. Areview of artificial neural networks in the constitutive modeling of composite materials[J].Composites Part B: Engineering,2021(1): 109152.1-109152.15.
[12]JANG D P,F(xiàn)AZILYP,YOONJW. Machine learming-based constitutive modelforJ2-plasticity[J].International Journal ofPlasticity,2021, 138(1): 102919.
[13]WU Y,SHEN B,LUI L, et al. Artificial neural network modelling of plating rate and phosphorus content in the coatings of electroless nickel plating[J].Journal ofMaterials Processing Technology,20o8,205(1/2/3): 207-213.
[14]郭寶會(huì),邱友緒,李海龍.人工神經(jīng)網(wǎng)絡(luò)在鈦合金表面Ni-SiC復(fù)合電 鍍工藝中的應(yīng)用[J].中國腐蝕與防護(hù)學(xué)報(bào),2017,37(4):389-394. GUO Baohui, QIU Youxu,LI Hailong.Application of artificial neural network for preparation processofNi-SiC composite coatings on Ti-alloy [J]. Journal of Chinese Society for Corrosion and Protection,2017,37(4): 389-394.
[15]鄧羽,張杰,彭中波,等.基于人工神經(jīng)網(wǎng)絡(luò)的 Ni-ZrO2 納米鍍層耐腐 蝕性能預(yù)測(cè)[J].裝備環(huán)境工程,2022,19(2):98-105. DENG Yu, ZHANG Jie,PENG Zhongbo,et al.Prediction of corrosion resistance of Ni- .ZrO2 nano-plating based on artificial neural network [J]. Equipment Environmental Engineering,2022,19(2): 98-105.
[16]陳佳兵,吳自銀,趙獲能,等.基于粒子群優(yōu)化算法的PSO-BP海底聲 學(xué)底質(zhì)分類方法[J].海洋學(xué)報(bào),2017,39(9):51-57. CHEN Jiabing,WU Ziyin, ZHAO Dineng, et al. Back propagation neural network classification of sediment seabed acoustic sonar images based on particle swarm optimization algorithms [J].Acta Oceanologica Sinica, 2017,39(9): 51-57.
[17]HAYAJNEHM,HASSANAM,ALRASHDANA,etal.Prediction of tribological behavior of aluminum-copper based composite using artificial neural network [J].Journal ofAlloysamp; Compounds,2009, 470(1/2): 584-588.
[18]XIAO L,WANG J, HOU R,et al.Acombined model based on data preanalysis and weight coefficients optimization for electrical load forecasting[J].Energy,2015,82:524-549.
[19]LINYH, GU S,WU W S,et al. Analysis and prediction of overloaded extra-heavy vehicles for highway safety using machine learning [J]. Mobile Information Systems, 2020(1):1-20.
[20]簡益梅,許承東,王倚文,等.基于改進(jìn)GRNN的電離層VTEC誤差模 型[J].計(jì)算機(jī)仿真,2022,39(8):45-50. JIANYimei,XUChengdong,WANGYiwen,etal.IonosphericVTEC error model based on improved GRNN[J].Computer Simulation,2022, 39(8):45-50.
[21]侯克鵬,包廣拓,孫華芬.改進(jìn)的MVO-GRNN神經(jīng)網(wǎng)絡(luò)巖爆預(yù)測(cè)模型 研究[J].安全與環(huán)境學(xué)報(bào),2024,24(3):923-932. HOU Kepeng,BAO Guangtuo, SUN Huafen. Research on improved MVO-GRNN neural network rockburst predictionmodel[J]. Journal of Safety and Environment,2024,24(3): 923-932.
[22]吳榮華,王江安,任席闖,等.不同波長近紅外激光大氣消光特性的泛 化回歸神經(jīng)網(wǎng)絡(luò)反演算法[J].紅外與毫米波學(xué)報(bào),2010,29(6):461- 464. WU Ronghua,WANG Jiangan, REN Xichuang,etal. Real time meafurement of atmospheric optical properties[J].Journal of Infrared and Millimeter Waves,2010,29(6):461-464.
[23]張寶磊,熊藝文,王為慶,等.高速銑削TC4表面粗糙度預(yù)測(cè)模型研究 [J].組合機(jī)床與自動(dòng)化加工技術(shù),2015,(3):108-110. ZHANG Baolei, XIONG Yiwen,WANG Weiqing,et al.Research on surface roughness prediction model for high-speed miling TC4 [J]. Modular Machine Tool and Automatic Machining Technique,2015, (3): 108-110.
作者簡介
方莉俐,女,1965年生,博士、教授。主要研究方向:薄膜材料和薄膜物理、金剛石及其制品等。
E-mail:hnzzfll@126.com
(編輯:周萬里)
Prediction of properties of electroless nickel plating with diamond powder based on artificial neural network
FANG Lili12,LIU Han12, JIANG Yufei1.2 (1.Physics andOptoelectronic Engineering,Zhongyuan UniversityofTechnology,Zhengzhou 45007,China) (2. Zhengzhou Key Laboratory ofLow-Dimensional Quantum Materials and Devices, Zhengzhou 45oo07, China)
AbstractObjectives: To improve the quality of chemical plating on diamond micropowders,an experimental analysis was conducted on the influence of key processparameters on the plating quality during the chemical plating process. The experimental results were then predicted using artificial neural networks.Methods: Nickel plating experiments were carried out on the surfaces of M1/2,M6/12, and M20/30 micron diamond powders using the electroless plating method.The effects of electrolessplating processparameters—such as diamond particle size,concentrationof sodium hypophosphite,plating solution temperature,and plating solution pH—on the coating properties were investigated.The performance of the coatings were evaluated as follows: (1)The deposition rate of the coating was expressed as the difference in the quality of diamond powder before and after electroless plating per unit time. (2)The coating density was expressed as the mass of the coating per unit volume.(3) Each group of coated diamond powders was immersed in hydrochloric acid solution with a mass fraction of 10% for 24 hours, and the corrosion weight loss of diamond powder was used to indicate the coating's corrosion resistance of the coating—where higher corrosion weight loss indicates poorer corrosion resistance.Data on the influences of process parameters,such as diamond particle size,sodium hypophosphite concentration, plating solution temperature, and plating solution pH on coating performance were used as the training set.Both BP and GRNNartificial neural networks were appied to predict thedeposition rate,coating density,and corrosion resistance under four different conditions.The accuracy of the models was evaluated by comparing experimental data with predicted values.Results: The BP neural network model and the GRNN model can be used to predict the coating performance of micron diamond powders after training on sample data.The absolute relativeeror between the predicted coating performance values ofthe BP neural network model and the experimental values was less than (204號(hào) 15.00% , with an average absolute relative error of 9.14% . The absolute relative error between the predicted coating performance values and experimental values of the GRNN model was less than 10.00% , with an average absolute relative error of 5.07% . In predicting the performance of electroless nickel plating on diamond micro powders, the predictive performance of GRNN is superior to that of BP neural network. Conclusions: The prediction eror values of BP neural network and GRNN for the chemical plating performance of diamond micropowder are both less than 10.00% , which proves that theycan be used to predict the relevant results and reducethe number of experiments to obtain optimal process parameters. And the prediction errorof GRNN is smaler than thatofBP neural network, which proves that the performance of GRNN in prediction experiments is better than that of BP neural network.
Key wordsdiamond powder; chemical nickel plating; coating performance; BP neural network; GRNN