Abstract:Necrotic apoptosis is a regulated mannerof celldeath,usuall triggered by the binding of death re ceptors and tumor necrosis factors or viral infection. Unlike cell apoptosis,necrotic apoptosis is characterized by cell sweling,membrane rupture,and the release of cytoplasmic contents,which may trigger an inflammatory response and surrounding tissue damage. The discovery process and molecular mechanism of necrotic apoptosis are reviewed,and the TNF- α signaling pathway and the formation of receptor interacting protein kinase 1(RIPK1)/receptor interacting protein kinase 3(RIPK3) complex are focused on discussing. At the same time,the central role of active oxygen in RIPK1-mediated necrotic apoptosis is emphasized and the key role of necrotic apoptosis in host antiviral defense is explained.This review providesa reference of the biological function of necrotic apoptosis and also a theoretical basis for the development of new therapeutic strategies.
Keywords: necrotic apoptosis;virus;programmed cell death;active oxygen
壞死性調(diào)亡的發(fā)現(xiàn)
壞死性凋亡是一種受調(diào)控的細(xì)胞死亡過(guò)程,其受細(xì)胞外及細(xì)胞內(nèi)的信號(hào)調(diào)控,包括死亡受體-配體結(jié)合、病原體感染等,是不同于細(xì)胞凋亡、焦亡與自噬的細(xì)胞死亡方式。壞死性凋亡機(jī)制在形態(tài)學(xué)上與細(xì)胞凋亡存在顯著差異,這種機(jī)制不形成凋亡小體,特征是細(xì)胞腫脹、膜破裂,以及細(xì)胞質(zhì)內(nèi)容物的釋放,這些過(guò)程會(huì)引發(fā)炎癥反應(yīng)和周圍組織損傷。
最初壞死性凋亡是作為死亡結(jié)構(gòu)域受體參與后凋亡的替代方法,1988年,Laster等[1]發(fā)現(xiàn)腫瘤壞死因子(TNF)可觸發(fā)細(xì)胞凋亡及細(xì)胞壞死,但當(dāng)時(shí)人們還沒(méi)有意識(shí)到細(xì)胞壞死是一個(gè)可調(diào)控的過(guò)程。2000年,Holler等[2發(fā)現(xiàn)Fas/FasL可誘導(dǎo)一種細(xì)胞壞死,這個(gè)細(xì)胞壞死的過(guò)程必須依賴受體相互作用蛋白(RIP),即第一次發(fā)現(xiàn)細(xì)胞壞死的過(guò)程具有蛋白依賴性,但此時(shí)仍未發(fā)現(xiàn)細(xì)胞壞死可有程序性調(diào)控過(guò)程。直到 2005年,Degterev等[3]發(fā)現(xiàn)受體相互作用蛋白激酶1(RIPK1)抑制劑(Nec-1)可觸發(fā)一種RIPK1依賴的壞死,這種壞死可受嚴(yán)格的程序性調(diào)控。2005年,壞死性凋亡被正式定義,即由 RIPK1介導(dǎo)的程序性死亡方式。隨著研究的進(jìn)一步深人,Cho等[4發(fā)現(xiàn)壞死性凋亡的一些相關(guān)蛋白,如受體相互作用蛋白激酶3(RIPK3)。2O12年,Sun等[5」發(fā)現(xiàn)RIPK3可對(duì)混合譜系激酶結(jié)構(gòu)域樣蛋白(MLKL)進(jìn)行磷酸化和激活,生成p-MLKL,并最終執(zhí)行細(xì)胞壞死性凋亡,p-MLKL也成為現(xiàn)今壞死性凋亡的檢測(cè)標(biāo)志物之一。
至此,壞死性凋亡通路的基礎(chǔ)已經(jīng)建立,此后的研究均基于此通路的理論與假說(shuō)。壞死性凋亡已成為當(dāng)下研究前沿與熱點(diǎn),其機(jī)制亟待進(jìn)一步探索。
2 壞死性調(diào)亡的發(fā)生機(jī)制
目前,對(duì)壞死性凋亡研究主要集中于探討TNF- ?α 受體系統(tǒng)的作用和機(jī)制。 TNF-α 是一種多效性分子,能夠激發(fā)基于順序但相互排斥的細(xì)胞死亡復(fù)合物組裝的存活、凋亡或壞死性凋亡反應(yīng)。凋亡依賴于半胱天冬酶(caspase)的激活,當(dāng)抑制caspase-8的活性表達(dá)以后, TNF-α 與腫瘤壞死因子受體1(TNFR-1)相結(jié)合,RIPK1募集并RIPK3 磷酸化,形成一種壞死體的復(fù)合物[4,6]。壞死體復(fù)合物包含具有死亡結(jié)構(gòu)域的RIPK1、RIPK3和Fas 相關(guān)蛋白,蛋白使細(xì)胞能夠通過(guò)RIPK3直接磷酸化MLKL,從而發(fā)生壞死性凋亡[5,-8]。
活性氧(ROS)在RIPK1依賴的壞死性凋亡中起關(guān)鍵作用,盡管其具體機(jī)制尚未完全明了[9-11]。最新研究表明,由TNF或某些化療藥物引發(fā)的ROS水平上升形成了一個(gè)正反饋機(jī)制,具體來(lái)說(shuō),ROS 促進(jìn)了RIPK1在 Ser161位點(diǎn)的自磷酸化,促進(jìn)了RIPK1的寡聚化,以及RIPK1與RIPK3之間的相互作用[12]。這表明,ROS在壞死體的形成中通過(guò)RIPK1的正反饋機(jī)制發(fā)揮作用。然而,值得注意的是,在壞死性凋亡過(guò)程中,ROS 的產(chǎn)生也發(fā)生在RIPK1的信號(hào)通路下游[9]。因此,深人研究ROS與 RIPK1在壞死性凋亡過(guò)程中的相互作用及其調(diào)控機(jī)制,對(duì)于理解這一生物學(xué)過(guò)程至關(guān)重要。除了 TNF-α 受體系統(tǒng)外,其他細(xì)胞受體的激活也能觸發(fā)壞死性凋亡,如死亡受體(Fas/FasL)、Toll樣受體3(TLR3)、TLR4,以及胞質(zhì)核酸傳感器(RIG-I和 STING),這些受體的激活可以誘導(dǎo)型干擾素(IFN-I)和 的產(chǎn)生,進(jìn)而促進(jìn)自分泌反饋回路,增強(qiáng)壞死性凋亡的效應(yīng)。
目前尚不完全清楚壞死性凋亡通路中的下游介質(zhì),但推測(cè)質(zhì)膜通道參與了壞死性凋亡細(xì)胞的快速腫脹,從而導(dǎo)致細(xì)胞膜破裂。RIPK3可以通過(guò)存在于RIPK1和RIPK3中的RIP同型相互作用基序(RHIM)與其他蛋白相互作用。迄今為止,已鑒定出4種含RHIM的蛋白,包括RIPK1、RIPK3、DNA依賴性激活劑(DAI)和含 TIR 結(jié)構(gòu)域的銜接子誘導(dǎo)干擾素-β(TRIF)。TRIF 能夠在連接 TLR3 和TLR4 后觸發(fā)壞死性凋亡[13],DAI將病毒信號(hào)整合到壞死性凋亡通路中[1]。
免疫系統(tǒng)已經(jīng)進(jìn)化出一種方法繞過(guò) RIPK3上游的抑制,能夠快速阻止病毒的傳播[15-20]。DAI通過(guò)RHIM 結(jié)構(gòu)域直接與RIPK3 結(jié)合,幾乎繞過(guò)了RIPK1[16.21]。當(dāng)RIPK3或 MLKL 缺失時(shí),能夠彌補(bǔ)小鼠因 RIPK1缺失引發(fā)的缺陷,RIPK1非依賴性壞死性凋亡得到進(jìn)一步的證明[17]。最新研究表明,一定閾濃度的DAI是執(zhí)行促生存功能必需的[22],根據(jù)具體情況,DAI可作為壞死性凋亡的激活劑或抑制劑[23],但如何調(diào)節(jié)DAI相反功能還有待闡明。值得注意的是,DAI并不是唯一一種在缺乏RIPK1 時(shí)能夠激活 RIPK3的含有RHIM 結(jié)構(gòu)域的蛋白。在沒(méi)有 RIPK1的情況下,TRIF 會(huì)與 RIPK3 相互作用并直接激活 RIPK1[24-25] 。RHIM結(jié)構(gòu)域蛋白觸發(fā)RIPK3的具體機(jī)制依賴于細(xì)胞的具體環(huán)境和初始的激活途徑,而要徹底理解這一現(xiàn)象,需要對(duì)導(dǎo)致壞死性凋亡的調(diào)控機(jī)制進(jìn)行更深入的研究。
3 壞死性凋亡與病毒性疾病
盡管壞死性凋亡的分子機(jī)制已逐步清晰,其在病毒感染中的雙重作用(宿主防御與免疫病理?yè)p傷)仍是當(dāng)前研究的焦點(diǎn),壞死性凋亡已被認(rèn)為是對(duì)抗許多病毒的重要反應(yīng)。病毒感染會(huì)激活宿主中依賴RHIM的壞死性凋亡,從而導(dǎo)致抗病毒炎癥。同時(shí),病毒通過(guò)編碼具有競(jìng)爭(zhēng)性RHIM結(jié)合能力的抑制劑,調(diào)節(jié)壞死性凋亡途徑。不同病毒干擾壞死性凋亡的靶點(diǎn)和機(jī)制,如表1所示。表1中:牛痘病毒、痘苗病毒、鼠巨細(xì)胞病毒、單純皰疹病毒1、單純皰疹病毒2為DNA病毒;甲型流感病毒、寨卡病毒、仙臺(tái)病毒、柯薩奇病毒A6型、柯薩奇病毒B3型、呼腸孤病毒、新型冠狀病毒為RNA病毒。
3.1DNA病毒與壞死性凋亡
3.1.1痘病毒 多種痘病毒能夠編碼 caspase-1和 caspase-8 的抑制劑,其中,對(duì) caspase-8 的抑制可能會(huì)為壞死性凋亡提供自然啟動(dòng)信號(hào)[25]。
牛痘病毒(CPXV)通過(guò)表達(dá)細(xì)胞因子反應(yīng)調(diào)節(jié)因子A(CrmA),從而抑制半胱天冬酶FLICE,進(jìn)而阻斷由各種刺激引發(fā)的程序性細(xì)胞死亡[26]。
痘苗病毒(VACV)是天花疫苗的活性成分,具有高度免疫原性,但會(huì)引起相對(duì)良性的疾病。VACV具備雙重機(jī)制,能夠阻斷壞死性凋亡的啟動(dòng)。VACV可以編碼CrmA樣直系同源物B13R(又名 Spi2)以抑制caspase-8,從而阻止感染細(xì)胞。壞死性凋亡[27-28]還可以編碼含 Zα 的蛋白 E3L、E3L與 DAI競(jìng)爭(zhēng)結(jié)合配體,抑制 DAI的激活,進(jìn)而阻止壞死性凋亡[29]。缺乏RIPK1或RIPK3的小鼠無(wú)法控制VACV 復(fù)制,甚至有病毒誘導(dǎo)的組織嚴(yán)重壞死和炎癥反應(yīng)發(fā)生,表明壞死性凋亡在小鼠抵抗VACV 感染過(guò)程中的重要作用。E3L 病毒蛋白是目前已知的唯一一種不具有RHIM 結(jié)構(gòu)域卻能夠抑制細(xì)胞壞死性凋亡的蛋白,這一點(diǎn)揭示了病毒可能采用了多種機(jī)制來(lái)實(shí)現(xiàn)免疫逃逸。
3.1.2皰疹病毒RHIM突變的M45小鼠巨細(xì)胞病毒(MCMV-M45mutRHIM)感染成纖維細(xì)胞后,DAI通過(guò)其RHIM結(jié)構(gòu)域與RIPK3發(fā)生同型互作,進(jìn)而誘導(dǎo)程序性壞死[16]。為了逃避壞死性凋亡介導(dǎo)的病毒復(fù)制抑制作用,鼠巨細(xì)胞病毒(MCMV)表達(dá)一種含有RHIM的蛋白,稱為RIP 激活病毒抑制劑(vIRA),作為壞死性凋亡抑制劑抵消DAI和RIPK3之間的相互作用[30]。除 MCMV以外,另外一種皰疹病毒,單純皰疹病毒1(HSV-1)也已被證明可以被 DAI感知。與 MCMV 類似,HSV-1也可抑制DAI引發(fā)的壞死性凋亡,HSV-1編碼含 RHIM 的蛋白 ICP6,在人類細(xì)胞中,ICP 是一種 RHIM 信號(hào)抑制因子,可阻斷 TNF誘導(dǎo)的壞死性凋亡[31]。但在小鼠細(xì)胞中,HSV-1誘導(dǎo)的細(xì)胞死亡分為ICP6 依賴性與非依賴性兩種方式,其中,ICP6 非依賴性細(xì)胞死亡與DAI密切相關(guān)[32],RHIM介導(dǎo) ICP6 和RIPK3之間的相互作用驅(qū)動(dòng)壞死性凋亡[33]。
Liu 等[25]發(fā)現(xiàn)部分正痘病毒中存在一種病毒抑制劑 RIPK3 降解的病毒誘導(dǎo)劑(vIRD),vIRD 能夠觸發(fā)泛素化和蛋白酶體介導(dǎo)的RIPK3 降解,并抑制壞死性凋亡。雖然 MCMV、HSV-1和 HSV-2 等皰疹病毒都可以編碼阻斷caspase 依賴性細(xì)胞凋亡和RIP 激酶介導(dǎo)的壞死性凋亡的抑制劑,但其具體編碼蛋白有所不同。MCMV通過(guò)激活 vIRA,干擾RIPK3磷酸化,以防止壞死性凋亡[16];HSV-1 和HSV-2 通過(guò)核糖核苷酸還原酶的大亞基、HSV-1編碼的ICP6 蛋白和 HSV-2 編碼的ICP1O 蛋白抑制壞死性調(diào)亡[34]。
3.2 RNA病毒與壞死性凋亡
甲型流感病毒(IAV)產(chǎn)生的Z-RNA作為配體在感染IAV的細(xì)胞中激活DAI,激活RIPK3后,誘發(fā)細(xì)胞發(fā)生壞死性凋亡[35]。除IAV外,正粘病毒、柯薩奇病毒 A6型(CVA6)、寨卡病毒(ZIKV)和新型冠狀病毒(SARS-CoV-2)也通過(guò) RIPK3 誘導(dǎo)細(xì)胞發(fā)生壞死性凋亡[35]。ZIKV 是一種蚊媒黃病毒,可感染人類并引起神經(jīng)系統(tǒng)疾病。研究表明,人類星形膠質(zhì)細(xì)胞易受寨卡病毒感染,且在感染后不發(fā)生細(xì)胞凋亡,而是發(fā)生不依賴于 RIPK1的壞死性調(diào)亡[36]。
敲除RNA感應(yīng)分子RIG-I或RIP1去泛素蛋白(CYLD)可阻斷仙臺(tái)病毒(SeV)誘導(dǎo)的壞死性凋亡,這說(shuō)明 SeV誘導(dǎo)的壞死性凋亡需要RIG-I激活,以及病毒編碼蛋白Y1Y2的存在,Y1/Y2蛋白通過(guò)下調(diào)cIAP1表達(dá)促進(jìn)壞死性凋亡[37-38]。研究證明,CVA6 通過(guò)自身表達(dá)的3D蛋白上調(diào)壞死性凋亡信號(hào)分子 RIPK3 的表達(dá),誘導(dǎo)細(xì)胞壞死性凋亡[39]。壞死性凋亡在柯薩奇病毒 B3 型(CVB3)引起的病毒性心肌炎(VMC)中起重要作用,并且是急性VMC 細(xì)胞死亡的重要途徑。RIP1/RIP3在急性 VMC小鼠模型的心肌細(xì)胞中高表達(dá),壞死性凋亡通路特異性阻滯劑Nec-1通過(guò)下調(diào)RIP1/RIP3的表達(dá)顯著降低心肌損傷。現(xiàn)有研究表明,CVB3同時(shí)也存在抑制壞死性凋亡的機(jī)制,在感染CVB3的極化上皮細(xì)胞中,RIPK3 因被病毒蛋白酶切割而失去壞死性凋亡誘導(dǎo)功能[40]。與CVB3 類似,SARS-CoV-2 與呼腸孤病毒(Reovirus)也可同時(shí)誘導(dǎo)和抑制壞死性凋亡。呼腸孤病毒通過(guò)激活I(lǐng)FN1信號(hào)轉(zhuǎn)導(dǎo)及新合成病毒dsRNA來(lái)誘導(dǎo)壞死性凋亡[41]。由于病毒外衣殼蛋白 μ1 的敲除會(huì)增加壞死性凋亡[42],因此,呼腸孤病毒外衣殼蛋白 μ1 通過(guò)限制RNA合成負(fù)調(diào)控呼腸孤病毒誘導(dǎo)的壞死性凋亡[43]。
SARS-CoV-2引起的COVID-19疫情全球大流行,揭示了RNA 病毒感染與壞死性凋亡之間的復(fù)雜關(guān)系。COVID-19 作為由 SARS-CoV-2 引起的RNA病毒感染性疾病,其病理機(jī)制與壞死性凋亡的關(guān)聯(lián)已成為研究熱點(diǎn)。研究表明,SARS-CoV-2感染可通過(guò)多種途徑激活宿主細(xì)胞的壞死性凋亡通路。病毒 RNA 通過(guò)激活宿主蛋白 ZBP1,誘導(dǎo)RIPK1-RIPK3-MLKL 級(jí)聯(lián)反應(yīng),導(dǎo)致肺泡上皮細(xì)胞死亡[44];同時(shí),SARS-CoV-2的RNA依賴性RNA聚合酶 NSPl2直接促進(jìn)RIPK1磷酸化,其323L 突變顯著增強(qiáng)該效應(yīng)[45]。此外,病毒通過(guò)干擾線粒體基因表達(dá)引發(fā)腺苷三磷酸(ATP)耗竭,進(jìn)一步觸發(fā)壞死性凋亡并釋放促炎因子,加劇器官衰竭[46-47]。
壞死性凋亡與細(xì)胞焦亡在COVID-19 中具有協(xié)同作用。病毒核酸通過(guò) TLR3/7/8等模式識(shí)別受體激活 ZBP1依賴的泛凋亡,同時(shí),誘導(dǎo)gasderminD介導(dǎo)的膜孔形成和MLKL磷酸化,形成雙重細(xì)胞死亡模式[48-49]。研究對(duì)比發(fā)現(xiàn),Delta 變異株比Omicron 更易引發(fā)壞死性凋亡與焦亡的協(xié)同效應(yīng),導(dǎo)致更高的炎癥反應(yīng)和小鼠死亡率[50-51]。單細(xì)胞轉(zhuǎn)錄組學(xué)分析進(jìn)一步顯示,COVID-19 重癥患者的支氣管肺泡灌洗液中的壞死性凋亡相關(guān)基因顯著上調(diào),且促炎單核細(xì)胞是壞死性凋亡的主要發(fā)生場(chǎng)所[52]。
壞死性凋亡的核心分子機(jī)制涉及RIPK1-RIPK3-MLKL 級(jí)聯(lián)反應(yīng)的激活。Liang 等[44]發(fā)現(xiàn),RIPKl 感染 SARS-CoV-2后,在 Serl66位點(diǎn)的磷酸化促使RIPK3形成壞死復(fù)合物,最終導(dǎo)致 MLKL的 ser358 磷酸化及細(xì)胞膜破裂。臨床數(shù)據(jù)表明,COVID-19患者血清中磷酸化MLKL水平與疾病嚴(yán)重程度呈正相關(guān),提示其作為預(yù)后標(biāo)志物的潛力[51]。在治療策略上,靶向壞死性凋亡的關(guān)鍵分子已取得顯著進(jìn)展:RIPK1抑制劑Nec-1s在小鼠模型中可減輕肺損傷和全身炎癥,并抑制病毒載量[44];地塞米松通過(guò)抑制RIPK1磷酸化調(diào)控壞死性凋亡,降低白細(xì)胞介素-6(IL-6)等促炎因子釋放[52];而核苷酸結(jié)合寡聚化結(jié)構(gòu)域樣受體含pyrin 結(jié)構(gòu)域蛋白3(NLRP3)炎性小體抑制劑與RIPK1抑制劑的聯(lián)用可協(xié)同緩解肺纖維化患者的炎癥反應(yīng)[49]。
4結(jié)束語(yǔ)
壞死性凋亡作為宿主抗病毒防御的關(guān)鍵機(jī)制,通過(guò)RIPK1-RIPK3-MLKL級(jí)聯(lián)反應(yīng)介導(dǎo)的細(xì)胞死亡,有效限制病毒復(fù)制并激活免疫應(yīng)答。然而,過(guò)度激活可導(dǎo)致組織損傷和炎癥風(fēng)暴,形成雙刃劍效應(yīng)。
在治療潛力方面,靶向壞死性凋亡關(guān)鍵分子已在小鼠模型中顯著減輕病毒性肺炎和急性呼吸窘迫綜合征的病理?yè)p傷。此外,聯(lián)合療法通過(guò)協(xié)同抑制炎癥通路,為COVID-19等重癥感染提供了新思路。值得注意的是,病毒逃逸機(jī)制提示未來(lái)需開(kāi)發(fā)針對(duì)宿主-病毒互作界面的精準(zhǔn)藥物。綜上,壞死性凋亡的調(diào)控平衡是抗病毒治療的核心挑戰(zhàn),其分子機(jī)制的深人解析為開(kāi)發(fā)新型免疫調(diào)節(jié)療法奠定了理論基礎(chǔ)。
參考文獻(xiàn):
[1]LASTER S M,WOOD JG,GOODING L R. Tumor necrosis factor can induce both apoptic and necrotic forms of cel lysis[J]. Journal of Immunology,1988,141(8) :2629-2634.
[2]HOLLER N,ZARU R,MICHEAU O,et al.Fas triggers an alternative,caspase-8-independent celldeath pathway using the kinase RIP as effector molecule[J].Nature Immunology,200o,1(6):489-495.DOI:10.1038/82732.
[3]DEGTEREV A,HUANG Zhihong,BOYCE M,et al.Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury[J].Nature Chemical Biology,2005,1(2):112-119.DOI:10.1038/nchembio711.
[4]CHO Y S,CHALLA S,MOQUIN D,et al.Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation[J].Cell,20o9,137(6):1112-1123.DOI:10.1016/j.cell.2009. 05.037.
[5]SUN Liming,WANG Huayi,WANG Zhigao,etal.Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase[J]. Cell,2012,148(1/2):213-227.DO1:10.1016/j.cell.2011.11.031.
[6]LI Jixi,MCQUADE T,SIEMER A B,et al.The RIPl/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis[J].Cell,2012,150(2):339-350.DOI:10.1016/j.cell.2012.06.019.
[7]WU Jianfeng,HUANG Zhe,REN Junming,etal.Mlkl knockout mice demonstrate the indispensable role of Mlkl in necroptosis[J].Cell Research,2013,23(8) :994-1006.DOI:10.1038/cr. 2013.91.
[8]ZHAO Jie,JITKAEW S,CAI Zhenyu,et al.Mixed lineage kinase domain-likeis a key receptor interacting protein 3 downstream component of TNF-induced necrosis[J].Proceedings of the National Academy of Sciences of the United States of America,2012,109(14) :5322-5327. DO1:10.1073/pnas.1200012109.
[9]LIN Yong,CHOKSI S,SHEN Hanming,etal.Tumor necrosis factor-induced nonapoptotic celldeath requires receptor-interacting protein-mediated cellular reactive oxygen species accumulation[J].The Journal of Biological Chemistry,2004,279(11) :10822-10828.DOI:10.1074/jbc.M313141200.
[10]GOOSSENS V,GROOTEN J,DE V K,et al.Direct evidence for tumor necrosis factor-induced mitochondrial reactive oxygen intermediates and their involvement in cytotoxicity[J].Proceedings of the National Academy of Sciences of the United States of America,1995,92(18):8115-8119.DO1:10.1073/pnas.92.18.8115.
[11]ROCA F J,RAMAKRISHNAN L.TNF dually mediates resistance and susceptibility to mycobacteria via mitochon drial reactive Oxygen Species[J]. Cell,2013,153(3):521-534.DOI:10.1016/j. cell.2013.03.022.
[12]ZHANG Yingying,SU S S,ZHAO Shubo,etal.RIPl autophosphorylation is promoted by mitochondrial ROS and is essential for RIP3 recruitment into necrosome[J].Nature Communications,2017,8(1):14329.DOI:10.1038/ ncomms14329.
[13]KAISER W J,UPTON JW,LONG A B,et al.RIP3 mediates the embryonic lethality of caspase-8-deficient mice [J].Nature,2011,471(7338) :368-372.DOI:10.1038/nature09857.
[14]KAISER W J,UPTON J W,MOCARSKI E S. Viral modulation of programmed necrosis[J]. Current Opinion in Virology,2013,3(3):296-306.DO1:10.1016/j. c0viro.2013.05.019.
[15]UPTON J W,KAISER W J,MOCARSKI E S. Virus inhibition of RIP3-dependent necrosis[J]. Cell Host and Microbe,2010,7(4) :302-313.D01:10.1016/j.ch0m.2010.03.006.
[16]UPTON J W,KAISER W J,MOCARSKI E S.DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA[J].Cell Host and Microbe,2Ol2,11(3): 290-297.DO1:10.1016/j.chom.2012.01.016.
[17]KAISER W J,DALEY B L P,THAPA R J,et al. RIPl suppesses innate immune necrotic as wellas apoptotic cel death during mammalian parturition[J].Proceeings of the National Academy of Sciences of the United States of America,2014,111(21) :7753-7758.DO1:10.1073/pnas.1401857111.
[18]RICKARD J A,O'DONNELL JA,EVANS J M,et al. RIPK1 regulates RIPK3-MLKL-driven systemic inflammation and emergency hematopoiesis[J]. Cell,2014,157(5):1175-1188. DOI:10.1016/j.cell.2014.04.019.
[20]DANNAPPEL M,VLANTIS K,KUMARI S,et al. RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis[J]. Nature,2014,513(7516) :90-94.DOI:10.1038/nature13608.
[21]MAELFAIT J,LIVERPOOL L,BRIDGEMAN A,et al.Sensing of viral and endogenous RNA by ZBP1/DAI induces necroptosis[J]. The EMBO Journal,2017,36(17) :2529-2543.DOI:10.15252/embj.201796476.
[22]SAMIE M,LIM J,VERSCHUEREN E,et al.Selective autophagy of the adaptor TRIF regulates innate inflammatory signaling[J]. Nature Immunology,2018,19(3):246-254. DOI:10.1038/s41590-017-0042-6.
[23]LIM J,PARK H,HEISLER J,et al.Autophagy regulates inflammatory programmed cell death via turnover of RHIM-domain proteins[J]. eLife,2019,8:e44452. DOI:10.7554/eLife.44452.
[24]KAISER W J,SRIDHARAN H, HUANG Chunzi,et al. Tol-like receptor 3-mediated necrosis via TRIF,RIP3, and MLKL[J]. The Journal of Biological Chemistry,2013,288(43): 31268-31279. DO1: 10.1074/jbc.M113. 462341.
[25]LIU Zhijun,NAILWAL H,RECTOR J,et al.A classof viral inducer of degradation of the necroptosis adaptor RIPK3 regulates virus-induced inflammation[J]. Immunity,2021,54(2):247-258. DOI:10.1016/j. immuni. 2020. 11.020.
[26]ZHOU Qiao,SNIPAS S,ORTH K,et al.Target protease specificity of the viral serpin CrmA analysis of five caspases[J].The Journal of Biological Chemistry,1997,272(12):7797-7800.DOI:10.1074/jbc.272.12.7797.
[27]CHAN F K,SHISLER J,BIXBY JG,et al.A role for tumor necrosis factor receptor-2 and receptor-interacting protein in programmed necrosis and antiviral responses[J].The Journal of Biological Chemistry,2o03,278(51): 51613-51621.DOI;10.1074/jbc.M305633200.
[28]LI Ming,BEG A A. Inductionof necrotic-like celldeath by tumor necrosis factor alpha and caspase inhibitors:Novel mechanism for kiling virus-infected cells[J].Journalof Virology,20oo,74(16):7470-7477.DOI:10.128/jvi. 74.16.7470-7477.2000.
[29]KOEHLER H,COTSMIRE S,LANGLAND J,et al.Inhibition of DAI-dependent necroptosis by the Z-DNA binding domain of the vaccinia virus innate immune evasion protein,E3[J].Proceedings of the National Academy of Sciences of the United States of America,2017,114(43):11506-11511.DOI:10.1073/pnas.1700999114.
[30]REBSAMEN M,HEINZ L X,MEYLAN E,et al.DAI/ZBP1 recruits RIPl and RIP3 through RIP homotypic interaction motifs to activate NF-kappaB[J].EMBO Reports,2009,10(8):916-922.DO1:10.1038/embor.2009.109.
[31]OMOTO S,GUO Hongyan,TALEKAR G R,et al. Suppression of RIP3-dependent necroptosis by human cytomegalovirus[J].The Journal of Biological Chemistry,2015,290(18):11635-11648.DOI:10.1074/jbc.M115.646042.
[32]GUO Hongyan,GILLEY R P,F(xiàn)ISHER A,et al.Species-independent contribution of ZBPl/DAI/DLM-1-triggered necroptosis in host defense against HSV1[J].Cell Death and Disease,2018,9(8):816.DOI:10.1038/s41419-018- 0868-3.
[33]HUANG Zhe,WU Suqin,LIANG Yaoji,etal.RIP1/RIP3 binding to HSV-1 ICP6 initiates necroptosis to restrict virus propagation in mice[J].CellHost and Microbe,2015,17(2):29-242.DOI:10.1016/j.chom.2015.01.002.
[34]GUO Hongyan,OMOTO S,HARRIS P A,et al. Herpes simplex virus suppresses necroptosis in human cells[J]. Cell Host and Microbe,2015,17(2):243-251. DO1:10.1016/j. chom.2015.01.003.
[35]BALACHANDRAN S,MOCARSKI E S. Viral Z-RNA triggers ZBP1-dependent celldeath[J]. Current Opinion in Virology,2021,51:134-140. DO1:10.1016/j. c0viro. 2021. 10. 004.
[36]WEN Chunxia,YU Yufeng,GAO Chengfeng,et al.RIPK3-dependent necroptosisis induced and restricts viral replicationin human astrocytes infected with Zika virus[J].Frontiers in Celularand Infection Microbiology,201,11: 637710.DO1:10.3389/fcimb.2021.637710.
[37]SCHOCK S N,CHANDRA N V,SUN Yuefang,et al.Induction of necroptotic celldeath by viral activation of the RIG-I or STING pathway[J].Cel Death and Differentiation,2017,24(4):615-625.DO1:10.1038/cdd.2016.153.
[38]ZHOU Fei,JIANG Xuejun,TENG Lin,et al.Necroptosis may be a novel mechanism for cardiomyocyte death in acute myocarditis[J].Molecular and Celllar Biochemistry,2018,442(1/2):11-18.DOI:10.1007/s11010-017-3188- 5.
[39]ZHANG Shuxia,YU Xiaoyan,MENG Xiangling,et al.Coxsackievirus A6 induces necroptosis for viral production [J].Frontiers in Microbiology,2020,11:42. DO1:10. 3389/fmicb.2020.00042.
[40]HARRIS K G,MOROSKY S A,DRUMMOND C G,et al. RIP3 regulates autophagy and promotes coxsackievirus B3 infectionof intestinal epithelial cels[J].Cell Host and Microbe,2015,18(2):221-232.DOI:10.1016/j.chom. 2015.07.007.
[41]BERGER A K,HILLER BE,THETE D,etal.Viral RNA at two stages of reovirus infection is required for the induction of necroptosis[J]. Journal of Virology,2017,91(6):e02404-16.DOI:10.1128/JVI. 02404-16.
[42] ROEBKE K E,DANTHI P.Cell entry-independent role for the reovirus μ1 protein in regulating necroptosis and the accumulation of viral gene products[J]. Journal of Virology,2019,93(11):e00199-19.DOI:10.1128/JV1. 00199-19.
[43] ROEBKE K E,GUO Yingying,PARKER J S L,et al. Reovirus σ3 protein limits interferon expression and cell death induction[J]. Journal of Virology,2020,94(22) :e01485-20. DOI:10.1128/JVI.01485-20.
[44]LIANG Kaixin,BARNETT K C,HSU M,et al. Initiator celldeath event induced by SARS-CoV-2 in the human airway epithelium[J]. Science Immunology,2024,9(97) :eadn0178.DOI:10.1126/sciimmunol. adn0178.
[45] SCHMIDT N,GANSKIH S,WEI Yuanjie,et al.SNDl binds SARS-CoV-2 negative-sense RNA and promotes viral RNA synthesis through NSP9[J].Cell,2023,186(22) :4834-4850. DOI:10.1016/j. cell.2023.09.002.
[46] GAUTAM A,BOYD D F,NIKHAR S,et al. Necroptosis blockade prevents lung injury in severe influenza[J]. Nature,2024,628(8009):835-843.DO1:10.1038/s41586-024-07265-8.
[47]趙琪,楊利軍,鄭艷波,等.程序性壞死誘導(dǎo)劑抗腫瘤作用研究進(jìn)展[J].中國(guó)醫(yī)學(xué)科學(xué)院學(xué)報(bào),2022,44(2):338- 347.DO1:10.3881/j.issn. 1000-503X.13241.
[48] NAJJAR M,SALEH D,ZELIC M,et al. RIPK1 and RIPK3 kinases promote cel-death-ondependent Inflammation by toll-like receptor 4[J]. Immunity,2016,45(1) :46-59.DO1:10.1016/j.immuni.2016.06.007.
[49] YANG Qingyuan,SONG Wanmei,REHEMAN H,et al.PANoptosis,an indicator of COVID-19 severity and outcomes[J].Briefings in Bioinformatics,2024,25(3):bbael24.DOI:10.1093/bib/bbae124.
[50] NEWTON K.RIPK1 and RIPK3:Critical regulators of inflammation and cell death[J]. Trends in CellBiology, 2015,25(6):347-353.DO1:10.1016/j.tcb.2015.01.001.
[51]MURTHY S,GOMERSAILI C D,F(xiàn)OWLER R A. Care for critically ⅢI patients with COVID-19[J].JAMA,2020, 323(15):1499.DOI:10.1001/jama.2020.3633.
[52] FUNG T S,LIU D X.Coronavirus infection,ER stress,apoptosis and innate immunity[J].Frontiers in Microbiology,2014,5:296.DO1:10.3389/fmicb.2014.00296.
(責(zé)任編輯:陳志賢 英文審校:劉源崗)