摘要:淡黃金花茶(Camellia flavida)是分布于廣西西南部的國家二級保護植物,具有重要的觀賞價值。了解珍稀瀕危物種的遺傳多樣性和遺傳結構,可為其種質(zhì)資源的保護和管理提供理論依據(jù)。該研究基于14對微衛(wèi)星(SSR)引物對已知分布區(qū)內(nèi)的12個淡黃金花茶自然種群進行了遺傳多樣性和遺傳結構分析。結果表明:(1)14對引物共檢測到63個等位基因;SSR位點的平均多態(tài)性信息含量(PIC)為0.691,顯示出高度遺傳多態(tài)性。(2)12個種群的平均等位基因數(shù) 為4.476,平均有效等位基因數(shù)(
為2.720,平均觀測雜合度(
為0.590,平均期望雜合度
為0.575,而種群間遺傳分化系數(shù)(
為0.212。(3)AMOVA分析結果顯示,種群間的分子變異為 2 1 . 1 9 % (
),種群間存在高水平的遺傳分化,該結果得到了STRUCTURE分析和UPGMA分析的支持。(4)Mantel檢驗結果表明種群間的遺傳距離與地理距離存在顯著正相關(
。該研究認為淡黃金花茶群體維持著一定水平的遺傳多樣性,而且種群間存在高水平的遺傳分化,建議加強對淡黃金花茶自然種群的保護,以及夏石種群的保護。
中圖分類號:Q943 文獻標識碼:A 文章編號:1000-3142(2025)04-0654-13
Genetic diversity and genetic structure of Camellia flavida based on SSR markers
XIANG Yingying , TANG Shaoqing
, LU Yongbin3 (1.KeybotofoofreddgeredSecEtalrotetostrfucoilUeit Guili54006,Guangi,Cna;.CollgeofLifeSciencs,GuagxiNoalUniesitGui540,uangxi,ina;3.GuagiKey LaboratoryofPlantConseruationandRestorationEcologyin Karst Terain,Guangxi Instituteof Botany,Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences,Guilin ,Guangxi,China)
Abstract: Camellia flavida is listedasanational ClassI protected plant distributed in southwestern Guangxi with high ornamental value. Understanding the genetic diversityand genetic structure of rareand endangered species can provideatheoretical reference for theconservation and management oftheir germplasmresources.Thepresent study analysed the genetic diversity and genetic structure of 12 natural populations of C .flavida in its currently known range using 14 simple sequence repeat (SSR)primers.The results were as follows:(1)A total of63 aleles were detected by the 14 pairs of primers,and the mean value of polymorphic information content (PIC)of SSR loci was 0.691, indicatinga high level of genetic polymorphism.(2)The average allele number( )of the 12 populations was 4.476,the average effective allele number (
)was2.720,the average observed heterozygosity(
)was 0.590,the average expected heterozygosity (
)was O.575,and the genetic differentiation coefficient(
)among populations (
)was O.212. (3)Analysis of molecular variance(AMOVA)revealed that 21.19 % occurred among populations (
),suggesting significant genetic differentiation among populations,which was corroborated by the STRUCTURE and UPGMA analyses.(4)Mantel test indicated a significant positive correlation between genetic distance and geographical distance among populations (
, Plt;0 . 0 5 ). The study concludes that C .flavida maintains adegree of genetic diversityand exhibits high levelsof genetic diferentiation among populationsand itis recommended to protect the C . flavida population,as well as the Xiashi population.
Key Words: Camelia flavida,genetic diversity,genetic differentiation,genetic structure,SSR marker
遺傳多樣性是指一個種群或物種的個體之間的遺傳變異(Brown,1983)。遺傳結構是指等位基因或基因型在時間和空間上的非隨機分布(Lovelessamp;Hamrick,1984)。遺傳多樣性和種群遺傳結構是植物的分布范圍、種群歷史、繁殖方式、種子傳播能力、人為干擾等多種因素共同作用的結果,是植物對外界環(huán)境的適應性響應(李昂和葛頌,2002)。遺傳多樣性的喪失可能會降低物種對環(huán)境的適應能力,甚至導致物種瀕臨滅絕(Soltisamp;Soltis,1991)。因此,評估珍稀瀕危物種的遺傳多樣性和遺傳結構對于制定保護策略至關重要。
山茶科(Theaceae)山茶屬(Camellia)金花茶組(sect.ChrysanthaChang)開黃花的植物具有重要的觀賞價值和醫(yī)藥價值,是珍貴的種質(zhì)資源(張富達和任善湘,1998;劉青等,2021)。由于金花茶植物具有重要的經(jīng)濟價值,該組植物頻遭濫挖濫采,導致其植株數(shù)量急劇減少。因此,《國家重點保護野生植物名錄》將金花茶組的所有種都列為二級保護植物(國家林業(yè)和草原局農(nóng)業(yè)農(nóng)村部,2021)。此外,已有多種金花茶組植物開展了遺傳多樣性以及遺傳結構研究,如金花茶(Camellianitidissima)(Tangetal.,2006;Weietal.,2008;Luet al.,2019;Li XL et al.,2020;Lu et al.,2020;Chenetal.,2022)貴州金花茶(C.huana)(LiSetal.,2020)顯脈金花茶(C.euphlebia)(Weietal.,2005)、毛瓣金花茶(C.pubipetala)(柴勝豐等,2014)簇蕊金花茶(C.fascicularis)(Lietal.,2022;Maetal.,2022)東興金花茶(C.tunghinensis)(Zhuet al.,2023)、薄葉金花茶(C.chrysanthoides)(陳海玲等,2019)、小花金花茶(C.micrantha)(陳海玲等,2019)、小瓣金花茶(C.parvipetala)(陳海玲等,2019)小果金花茶(C.nitidissimavar.microcarpa)(路雪林等,2019)、平果金花茶(C.pingguoensis)(陳莉萍等,2020)等,這為進一步有針對性地開展珍稀瀕危金花茶組植物的管理與保護提供了理論依據(jù)。
淡黃金花茶(C.flavida)是金花茶組植物的一種,生長在石灰?guī)r山地(張宏達,1981;張宏達和任善湘,1998)。近年來,對淡黃金花茶開展了一系列研究,包括遺傳特征(彭國清和唐紹清,2017;Weietal.,2017,2023b)、群落特征(阮枰臻等,2024)形態(tài)特征(Qinamp;Liang,1991;Yeamp;Xue,2013;秦琳娟等,2023)等。其中,關于淡黃金花茶遺傳多樣性和遺傳結構方面,Wei等(2023b)探討了毛籽金花茶(C.ptilosperma)是否是淡黃金花茶和小花金花茶雜交起源的假設;彭國清和唐紹清(2017)在一個淡黃金花茶監(jiān)測樣地內(nèi)基于微衛(wèi)星(simplesequencerepeat,SSR)標記進行了基因流分析,結果表明淡黃金花茶的花粉和種子的傳播距離短;Wei等(2017)基于一個葉綠體DNA(cpDNA)片段和一個苯丙氨酸解氨酶(phenylalanine ammonia-lyase, P A L )片段研究了淡黃金花茶的群體遺傳結構和譜系地理,結果表明種群內(nèi)具有高水平的遺傳多樣性(cpDNA的單倍型多樣性為0.941,核苷酸多樣性為 0 . 0 0 2 ; P A L 基因的單倍型多樣性為0.980,核苷酸多樣性為
0.009),而種群間存在高水平的遺傳分化(cpDNA的 基因的
,
)和有限的基因流。綜上認為,淡黃金花茶的群體研究仍存在研究群體數(shù)量較少或僅依靠少數(shù)片段提供遺傳信息位點等不足,需要進一步增加群體(個體)數(shù)量并應用基因組覆蓋度更廣的分子標記深入研究其遺傳多樣性和遺傳結構。
重復序列微衛(wèi)星是目前應用比較廣的分子標記技術,由1~6個堿基為重復單位,組成長達數(shù)十個核苷酸的串聯(lián)序列。微衛(wèi)星序列廣泛分布于植物基因組中,具有多態(tài)性高、重復性好、覆蓋度廣、低成本和高效率等優(yōu)點(孫亞莉等,2020),被廣泛用于植物群體分析(羅群鳳等,2022;王芝懿等,2023)、品種鑒定(劉海燕等,2023)指紋圖譜構建(王清明等,2016;雷剛等,2024)以及性狀關聯(lián)位點分析(劉麗等,2024)等研究。本研究基于微衛(wèi)星標記對淡黃金花茶目前已知分布區(qū)的代表種群進行進一步的遺傳多樣性和遺傳結構分析,旨在為淡黃金花茶的資源保護提供理論依據(jù)。本研究擬探討以下問題:(1)淡黃金花茶的遺傳多樣性水平如何;(2)淡黃金花茶的遺傳結構。
1材料與方法
1.1實驗材料
根據(jù)Flora of China(Min amp; Bartholomew,2007),淡黃金花茶包括淡黃金花茶原變種(C.flavidavar.flavida)和直脈金花茶(C.flavidavar.patens)2個變種。原變種分布于廣西崇左市龍州縣、寧明縣和憑祥市,而直脈金花茶分布于廣西扶綏縣和武鳴縣(Minamp;Bartholomew,2007)。直脈金花茶在地理分布、形態(tài)和遺傳上與淡黃金花茶原變種具有明顯差異,被認為是獨立的種(Weietal.,2023a)。因此,本研究僅采集淡黃金花茶原變種的種群,對其12個自然種群進行群體采樣(表1),個體間的間距至少 1 0 m ,每個種群采集27\~42個個體,共416個個體,代表淡黃金花茶目前已知分布區(qū)。采集的新鮮葉片放入含有變色硅膠的密封袋中干燥儲存。
1.2總DNA的提取和SSR分型
采用CTAB法(Doyleamp;Doyle,1987)提取淡黃金花茶的總DNA。從Liufu等(2014)針對淡黃金花茶設計的38對SSR引物和Lu等(2014)針對頂生金花茶(C.pingguoensisvar.terminalis)設計的21對SSR引物中共篩選了14對擴增條帶清晰、多態(tài)性高的引物用于本研究(表2)。PCR反應體系和反應程序參照Lu等(2014)的方法進行。擴增產(chǎn)物用 6 % 的聚丙烯酰胺凝膠電泳分離,用銀染顯色。
1.3數(shù)據(jù)分析
使用Genepopv4.2.2在線軟件(http://genepop.curtin.edu.au/)進行哈迪-溫伯格平衡(Hardy-Weinbergequilibrium,HWE)檢驗,并對所得 P 值進行 Sequential Bonferroni 校正(Rice,1989)。為檢驗各位點是否獨立遺傳,用該軟件對各個種群位點間進行基因連鎖不平衡(linkagedisequilibrium,LD)分析,馬爾可夫鏈(Markovchain)參數(shù)為10O00dememorisation,5000batches,5 OoO iterationsper batch。
用GenAlEx v6.5 軟件(http://biology-assets.anu.edu.au/GenAlEx/Welcome.html)計算淡黃金花茶的等位基因數(shù)(allelenumber, )、有效等位基因數(shù)(effective allele number,
)、觀測雜合度(observed heterozygosity,
)、期望雜合度(expectedheterozygosity,
)和遺傳分化系數(shù)(geneticdifferentiation coefficient,
),并進行分子方差分析(analysisofmolecularvariance,AMOVA)?;?img alt="" src="https://cimg.fx361.com/images/2025/0619/D7XPjXxbUvEpURSUnzS8wH.webp"/> 計算種群間基因流
(204號(Wright,1931)。利用該軟件的Mantel檢驗分析遺傳分化系數(shù)(用
表示)與地理距離的相關性。用PIC_CALA(https://github.com/luansheng/PIC_CALC)計算每個位點的多態(tài)性信息含量(polymorphism information content,PIC)。
使用BOTTLENECKv1.2.02軟件(Piryetal.,1999)分別用逐步突變模型(stepwisemutationmodel,SMM)和雙向突變模型(two-phasemodelofmutation,TPM)中的Wilcoxon標記秩檢驗來推斷種群近期是否經(jīng)歷過瓶頸效應。其中,TPM檢驗是基于 9 5 % SMM和 5 % 無限等位基因模型(infiniteallelemodel,IAM)的檢驗。每個突變模型運行5000次重復。
使用STRUCTURE v2 . 3 . 4 軟件(Evanno et al.,2005)分析種群的遺傳結構。STRUCTURE軟件運行的相關參數(shù)為 length of burn in period,
numberofMCMCrepsafterburn in, K 值為1\~13,每個 K 值獨立重復運行20次。運行結果用在線軟件StructureSelector(https://lmme.ac.cn/StructureSelector/)計算最佳 K 值,并將結果可視化。用Populationsv1.2.32(https://www.bioinformatics.org/\~ tryphon/populations/)構建了以Nei's遺傳距離(Neietal.,1983)為基礎的UPGMA樹。
2 結果與分析
2.1遺傳多樣性
基于14對引物對12個淡黃金花茶種群進行了168次Hardy-Weinberg平衡檢驗,共檢測出19次偏離平衡( ),但經(jīng)過SequentialBonferroni校正后,所有的檢測結果均未偏離平衡。進行1092次連鎖不平衡檢驗,有47次連鎖平衡,但同一對連鎖位點最多出現(xiàn)在3個種群中。因此,所有數(shù)據(jù)都可用于后續(xù)分析。
由表2可知,14對SSR引物在416個個體中共檢測到63個等位基因,等位基因數(shù)( 在2(FLA16)至6(TER21和FLA38)之間,平均每對引物有4.476個等位基因。位點多態(tài)性信息含量(PIC)平均值為0.691,位點TER4的PIC最高(0.807),僅FLA16的PIC小于0.500。這些指標說明這14對引物具有較高的多態(tài)性。
遺傳多樣性分析結果(表3)表明,淡黃金花茶的 平均值分別為4.476、2.720、0 . 5 9 0 , 0 . 5 7 5 。其中,LM種群的遺傳多樣性水平較高(
,
,
,
0.644),而XS種群的遺傳多樣性水平較低(
4.071,
,
)。總體上,保護區(qū)內(nèi)(LD、NF、LQ、MQ、SL、LL、LM)的種群遺傳多樣性高于保護區(qū)外(XS、NX、LT、LLS、NZ)的,表明保護區(qū)內(nèi)的淡黃金花茶保護得更好,維持著更高的遺傳多樣性水平。
BOTTLENECK分析結果(表4)表明,在雙向突變模型(TPM)檢驗中,種群SL與NF存在瓶頸效應;在逐步突變模型(SMM)檢驗中,只有NF種群存在近期的遺傳瓶頸效應;從等位基因頻率分
表2淡黃金花茶14對SSR引物的特征
布檢測結果看,也只有NF種群發(fā)生了等位基因頻率分布的轉換,其他種群均屬于L形分布。因此,推測淡黃金花茶中只有NF種群可能存在近期的遺傳瓶頸。
2.2遺傳結構
由表5可知,12個淡黃金花茶種群的遺傳分化系數(shù)為 0 . 1 1 8 ~ 0 . 3 1 5 ,其中有8組( 1 2 . 1 2 % )種群間 為 0 . 0 5 0 ~ 0 . 1 5 0 ,有45組( 6 8 . 1 8 % )種群間
為0 . 1 5 0~0 . 2 5 0 ,有13組( 1 9 . 7 0 % )種群間的
大于0.250,其中NF種群與XS種群之間的遺傳分化系數(shù)最大,LM種群與SL種群之間的遺傳分化系數(shù)最??;種群間的基因流
為 0 . 5 4 5 ~ 1 . 8 7 1 ,其中有6 5 . 1 5 % 的
小于1;總體上,淡黃金花茶種群間的遺傳分化系數(shù)為0.212,群體間遺傳分化大,種群間基因流小。AMOVA分析結果(表6)顯示, 2 1 . 1 9 % 的分子變異存在于種群間( P lt; 0 . 0 5 ) 7 8 . 8 1 % 的分子變異存在于種群內(nèi)( Plt;0 . 0 5 ) 。Mantel檢驗結果(圖1)表明,12個種群間的遺傳距離與地理距離呈顯著正相關(
,表明種群間的地理距離對種群遺傳結構的影響顯著。
表312個淡黃金花茶種群的遺傳多樣性
采用STRUCTURE軟件對12個淡黃金花茶種群進行聚類分析,結果(圖2)表明,當 K = 2 和 K =
10時,Delta K ( Δ K ) 具有明顯的波峰(圖2:A)。K = 2 和 K = 1 0 的遺傳組成分別如圖2:C和圖2:D所示。Evanno等(2005)認為最佳 K 值不僅在 Δ K 具有明顯的波峰,而且在平均后驗概率[ normal probabilityof thedata,
趨于穩(wěn)定或略有增加(圖2:B)。因此, K = 1 0 是最佳的遺傳分組,即12個種群被劃分為10個遺傳組,LL與NX為一組,LT種群的遺傳組成復雜,其余9個種群分別是一個遺傳組(圖2:D)。
基于Neis遺傳距離對12個種群構建UPGMA樹,聚類結果(圖3)表明有9個種群(NZ、XS、LQ、NX、LM、SL、NF、LD 和LT)基本分別聚為一支。這一結果與STRUCTURE分析結果基本一致,表明種群間的遺傳分化程度均較高。
3 討論與結論
3.1遺傳多樣性水平
遺傳多樣性代表著物種的適應能力和進化潛力,其水平的高低與物種的分布范圍密切相關(Heetal.,2024),對物種的進化和保護具有重要的意義(Ellegrenamp;Galtier,2016)。一般廣泛分布的物種比狹域分布的物種具有更高的遺傳多樣性(Levyetal.,2016; etal.,2020)。本研究基于14對SSR引物對12個自然種群進行了遺傳多樣性分析,結果表明淡黃金花茶具有一定水平的遺傳多樣性(
4.4
。與狹域分布的貴州金花茶(
(Li Setal.,2020)、金花茶(
(LiXLetal.,2020)、平果金花茶(
)(陳莉萍等,2020)、薄葉金花茶(
0.431)(陳海玲等,2019)、小花金花茶(
0(陳海玲等,2019)、小瓣金花茶(
)(陳海玲等,2019)和小果金花茶(
(路雪林等,2019)等物種相比略高;而與分布范圍更廣的浙江紅山茶(C.chekiangoleosa,
)(黃彬等,2023)以及廣布種油茶(C.oleifera,
)(Chengetal.,2024)相比,淡黃金花茶的遺傳多樣性較低。
本研究結果表明,淡黃金花茶維持著一定水平的遺傳多樣性,與Wei等(2017)基于單拷貝核基因(PAL)觀察到較多特有單倍型(種群單倍型多樣性在0.668至0.921之間)的研究結論一致。淡黃金花茶狹域分布于廣西南部和西南部常綠闊葉林喀斯特洼地,但其仍能夠保持一定水平的遺傳多樣性,這可能與以下兩個因素相關。一方面,淡黃金花茶對獨特的局部小生境產(chǎn)生了適應性,有助于維持一定水平的多樣性;另一方面,淡黃金花茶種群與多個金花茶植物[四季金花茶(C.perpatua)凹脈金花茶(C.impressinervis)、檸檬金花茶(C.indochinensis)、薄葉金花茶以及小花金花茶)]同域或鄰域分布,甚至與薄葉金花茶重疊分布,可能存在種間雜交?;诤喕蚪M數(shù)據(jù)也證實了淡黃金花茶與小花金花茶之間的自然雜交以及由小花金花茶向淡黃金花茶種群的單向漸滲事件(Weietal.,2023b)。雜交和漸滲是遺傳變異的重要來源,從而增加遺傳多樣性(Braueretal.,2023)。此外,淡黃金花茶大多數(shù)種群位于保
A. K 與Delta K 間的關系;B. K 與平均 間的關系;C. K = 2 時,淡黃金花茶種群的STRUCTURE 聚類;D. K = 1 0 時,淡黃 金花茶種群的STRUCTURE聚類。
A.Therelationship between K and Delta K ;B.Therelationship between K and themeanlnP(D);C.STRUCTURE clusterof C flavida populations when K = 2 ; D.STRUCTURE cluster of C . flavida populations when K = 1 0
護區(qū)內(nèi),保護狀態(tài)良好,種群內(nèi)有不同年齡段的植株,這不僅有助于維持種群更新演替的動態(tài)平衡,而且有利于維持種群的遺傳多樣性。相比之下,保護區(qū)外的淡黃金花茶種群則遭受嚴重的人為干擾。大型植株頻遭盜挖,僅存少量幼齡植株,導致種群分布日趨狹窄,遺傳漂變以及近交繁殖等可能加劇保護區(qū)外分布的淡黃金花茶種群遺傳多樣性水平的喪失(Ellstrandamp;Elan,1993;Chenetal.,2022)。總體而言,淡黃金花茶能維持一定的遺傳多樣性可能歸功于其許多種群分布在保護區(qū)內(nèi),受到人為干擾的程度比較小,種群數(shù)量多,并且絕大部分種群在近期都沒有遭受遺傳瓶頸。
3.2淡黃金花茶的遺傳結構
種群的遺傳結構受物種生活史、基因流、生境片段化以及遺傳漂變等因素影響(Chenetal.,2017;吳敏等,2024)。遺傳分化是種群遺傳結構中的一個關鍵指標,用來衡量種群間的遺傳差異程度。本研究中, 8 7 . 8 8 % 種群間的 大于0.15,AMOVA分析表明有 2 1 . 1 9 % 的遺傳變異存在于種群間,這些結果表明淡黃金花茶種群間具有高水平的遺傳分化。基因流是影響遺傳分化的重要因素。淡黃金花茶種群間有 6 5 . 1 5 % 的基因流小于1,表明大部分種群間的基因流不能防止遺傳漂變引起的種群間遺傳分化(Wright,1931;孫維悅等,2022)。植物進行基因交流的主要方式是種子和花粉(Ozawaetal.,2013;歐金梅,2022)。淡黃金花茶的果實為蒴果,其種子可能與同屬的山茶(C.japonica)一樣主要通過重力傳播(Uenoetal.,
2000),傳播的平均距離僅為 的種子傳播距離在 2 0 m 范圍內(nèi)(彭國清和唐紹清,2017)?;谌~綠體DNA片段的研究也證實了淡黃金花茶依靠種子傳播的基因流低(Weietal.,2017)。淡黃金花茶的花粉可能是由具有遠距離傳播能力的太陽鳥和蜜蜂傳播(Sunetal.,2017;Chaietal.,2019),但彭國清和唐紹清(2017)研究表明其平均傳粉距離僅為 2 9 . 0 3 m, 7 2 . 2 % 的花粉傳播距離在 2 0 m 范圍內(nèi),傳播距離短。這可能與淡黃金花茶的生境和生態(tài)位有關。淡黃金花茶屬于常綠的灌木,位于森林生態(tài)系統(tǒng)的中層位置,受光線等影響可能不易被傳粉者發(fā)現(xiàn)(彭國清和唐紹清,2017)。此外,喀斯特生態(tài)系統(tǒng)的土壤養(yǎng)分含量和濕度沿著地形梯度呈現(xiàn)高度異質(zhì)性,導致許多專性基質(zhì)的瀕危植物(如淡黃金花茶)在空間上呈片段化分布(朱守謙,2003;Clementsetal.,2006;Gongetal.,2010),淡黃金花茶常分布于土壤層較厚的喀斯特洼地,相鄰洼地之間常被喀斯特峰叢隔開,這種被高聳峰叢隔開的種群分布格局阻礙了花粉和種子在種群間的傳播。Mantel分析結果進一步表明,淡黃金花茶種群的遺傳距離與地理距離存在顯著正相關,表明淡黃金花茶的種群遺傳結構可用距離隔離模型解析,喀斯特生境的地理隔離可能是造成其種群間遺傳分化的主要驅動力。因此,淡黃金花茶種群間的基因交流是有限的,而且小種群受到基因漂變的影響大,進而促進種群間的遺傳分化,導致其遺傳分組接近于取樣種群。
3.3保護生物學意義和保護對策
瀕危物種的遺傳多樣性和遺傳結構是評估種群持續(xù)存在和適應環(huán)境變化潛力的重要手段(Hohenloheetal.,2021),對制定保護策略至關重要。淡黃金花茶為石灰?guī)r專性種,生態(tài)系統(tǒng)脆弱,很容易受到氣候變化和其他干擾因素的影響(Liuetal.,2018)。即使是對生態(tài)系統(tǒng)的一個相對較小和短暫的干擾也會導致適應特定生態(tài)條件而進化的年輕特有物種的滅絕(Vonlanthenetal.,2012;Jardimetal.,2022)。本研究表明,淡黃金花茶種群維持一定水平的遺傳多樣性,但種群間的遺傳分化水平較高,基因流較小。因此,在制定保護策略時,應盡可能多的保護淡黃金花茶的自然種群。特別是NZ、LL和SL種群,這些遺傳多樣性高的種群具有更高的生態(tài)可塑性,更容易適應不斷變化的環(huán)境條件。同時,防止生境破碎化和棲息地喪失也是就地保護措施的重要內(nèi)容。位于保護區(qū)外的夏石(XS)種群,遺傳結構分析結果支持其遺傳分化大,具有進化成獨立譜系的潛力。但是,該種群遺傳多樣性最低,近年來持續(xù)跟蹤調(diào)查后發(fā)現(xiàn)種群個體僅剩不到10株,面臨著極大威脅。因此,該種群需要得到特別的關注,除了就地保護外,還可以通過扦插繁殖方式進行遷地保護,從而保存其遺傳資源。
參考文獻:
BRAUER CJ, SANDOVAL-CASTILLO J,GATES K,et al.,2023.Natural hybridizationreducesvulnerabilitytoclimatechange[J]. Nature Climate Change,13(3):282-289.
BROWN WL,1983. Genetic diversity and genetic vulnerability-an appraisal[J].Economic Botany, 3 7 ( 1 ) : 4 - 1 2 :
CHAI SF,CHEN ZY,TANG JM,et al.,2019.Breeding systemandbird pollination of Camellia pubipetala,a narrowlyendemicplant fromkarst regionsof south China[J].PlantSpeciesBiology,34(4):141-151.
CHAI SF,ZHUANG XY,ZOU R,et al.,2014.Geneticdiversityanalysisof endangered plant Camellia pubipetaladetectedbyISSR[J].Acta Botanica Boreali-OccidentaliaSinica,34(1):93-98.[柴勝豐,莊雪影,鄒蓉,等,2014.瀕厄祖物七瓣金化余退傳羅什仕時 I33n分價[J].西北植物學報,34(1):93-98.]
CHEN HL,LU XL,YE QQ,et al.,2019.Genetic diversityand structure of three yellow Camellia species based on SSRmarkers[J].Guihaia,39(3):318-327.[陳海玲,路雪林,葉泉清,等,2019.基于 SSR 標記探討三種金花茶植物的遺傳多樣性和遺傳結構[J].廣西植物,39(3):318-327.]
CHEN LP,XIE BB,TANG SQ,2020. Genetic diversity andgenetic structure of Camellia pingguoensis based on SSRmarkers[J].MolecularPlant Breeding,18(1O):3288-3293.[陳莉萍,解兵斌,唐紹清,2020.基于SSR標記的平果金花茶的遺傳多樣性和遺傳結構分析[J].分子植物育種,18(10):3288-3293.]
CHEN YY,LIU Y,F(xiàn)AN XR,et al.,2017.Landscape-scalegenetic structure of wild rice Zizania latifolia:The roles ofrivers,mountains and fragmentation [J]. FrontiersinEcology and Evolution,5:17.
CHEN ZY,WANG JF,TANG JM,et al.,2022. Conservationgenetics of the rare and endangered tree species,Camellianitidissima(Theaceae),inferred from microsatellite DNAdata[J]. Forests,13(10):1662.
CHENG L, CAO B, XIE SL,et al.,2024. Genetic diversity ofwild Camellia oleifera in Northern China revealed by simplesequence repeat markers [J]. Genetic Resources and CropEvolution,71:2657-2672.
CLEMENTS R, SODHI NS,SCHILTHUIZEN M,et al.,2006. Limestone karsts of Southeast Asia: Imperiled arks ofbiodiversity[J].Bioscience,56(9):733-742.
DOYLE JJ, DOYLE JL,1987. A rapid DNA isolation procedurefor small quantities of fresh leaf tissue [J].PhytochemicalBulletin,19:11-15.
ELLEGREN H,GALTIER N,2016.Determinants of geneticdiversity[J]. Nature Reviews Genetics,17(7): 422-433.
ELLSTRAND NC,ELAM DR,1993.Populationgeneticconsequences of small population size:Implications for plantconservation [J].Annual Review of Ecology,Evolution,andSystematics, 24: 217-242.
EVANNO G,REGNAUT S,GOUDET J,2005. Detecting thenumber of clustersof individualsusing the softwareSTRUCTURE:a simulation study[J]. Molecular Ecology,14(8): 2611-2620.
GONG W,GU L,ZHANG D,2010.Low genetic diversity andhigh genetic divergence caused by inbreeding and geographicalisolation in the populations of endangered species Loropetalumsubcordatum(Hamamelidaceae)endemic to China[J].Conservation Genetics,11(6) : 2281-2288.
HE ZZ,STOTZ GC,LIU X,et al.,2024. A global synthesis ofthe patterns of genetic diversity in endangered and invasiveplants[J].Biological Conservation,291:110473.
HOHENLOHE PA, FUNK WC, RAJORA OP,2021.Populationgenomicsforwildlifeconservationandmanagement [J]. Molecular Ecology,30(1): 62-82.
HUANG B, HUANG JJ, TANG YL, et al., 2023. SSR analysisof genetic diversity of Camellia chekiangoleosa Hu.and itsrelated species in Jiangxi Province [J].Acta AgriculturaeUniversitatis Jiangxiensis,45(5):1084-1095.
黃彬,黃建建,湯優(yōu)令,等,2023.江西省浙江紅山茶及近緣種群體遺傳多樣性的SSR分析[J].江西農(nóng)業(yè)大學學報,45(5): 1084-1095.]
JARDIM DE QUEIROZ L,DOENZ CJ,ALTERMATT F,etal., 2022.Climate, immigration and speciation shapeterrestrial and aquatic biodiversity in the European Alps[J].Proceedings of the Royal Society B:BiologicalSciences,289(1980):20221020.
LEI G,CHEN XJ,ZHOU KH,et al.,2024. Genetic diversityand fingerprint analysis of 6O pepper founder parents basedon SSR markers[J]. Journal of Plant Genetic Resources,25(8):1321-1335.
雷剛,陳學軍,周坤華,等,2024.60份辣椒骨干親本的SSR遺傳多樣性分析及指紋圖譜構建[J].植物遺傳資源學報,25(8):1321-1335.]
LEVY E,BYRNE M,COATES DJ,et al.,2016. Contrastinginfluences of geographic range and distribution of populationson patterns of genetic diversity in two sympatric Pilbaraacacias[J]. PLoS ONE,11(1O):e0163995.
LI A,GE S,2002. Advances in plant conservation genetics[J].BiodiversityScience,10(1):61-71.[李昂,葛頌,2002.植物保護遺傳學研究進展[J].生物多樣性,10(1) : 61-71.]
LI B,LIUC,TANG JR,et al.,2022.Genetic diversityanalysis of Camellia fascicularis H. T. Chang based on SSRmarkers[J]. Journal of Applied Research on Medicinal andAromatic Plants,31:100404.
LI S,LIU SL,PEI SY,et al.,2O2O.Genetic diversity andpopulation structure of Camellia huana (Theaceae),alimestone species with narrow geographic range,based onchloroplast DNAsequenceand microsatellitemarkers[J].Plant Diversity,42(5):343-350.
LI XL,WANG J,F(xiàn)AN ZQ,et al., 2O2O.Genetic diversity intheendangered Camellianitidissima assessedusingtranscriptome-based SSR markers [J]. Trees,34(2):543-552.
LIU H, ZHANG M,LIN Z,et al.,2018. Spatial heterogeneityof the relationship between vegetation dynamics and climatechange and their driving forces at multiple time scales inSouthwest China[J].Agricultural and Forest Meteorology,256/257: 10-21.
LIU HY,LU JN,YIN XG,et al.,2023.Identification ofresistance to root rot and preliminary establishment of its SSRmarkers incastor bean[J].Guihaia,43(7):1326-1334.
劉海燕,陸建農(nóng),殷學貴,等,2023.蓖麻根腐病抗性鑒定及其 SSR標記的初步建立[J].廣西植物,43(7) : 1326-1334.]
LIU L,WANG P,WANG CZ, et al., 2024. Genetic diversityand grain shape association analysis of participating summersoybean in Huanghuaihai region based on SSR[J]. JiangsuJournal of Agricultural Sciences,40(5):785-795.[劉麗,王培,王傳之,等,2024.基于SSR 標記黃淮海地區(qū)夏大豆區(qū)域試驗參試品系遺傳多樣性及粒形性狀關聯(lián)位點分析[J].江蘇農(nóng)業(yè)學報,40(5):785-795.]
LIUQ,LI Y,YANG RM,et al.,2021. Yellow Camellia:resource status and research progress in modern studies[J].Modern Chinese Medicine,23(4):727-733.
劉青,李月,楊潤梅,等,2021.金花茶組植物資源現(xiàn)狀與現(xiàn)代研究進展[J].中國現(xiàn)代中藥,23(4):727-733.]
LIUFU YQ,PENG GQ, LU YB,et al., 2014. Development andcharacterization of 38 microsatellite markers for Camelliaflavida based on transcriptome sequencing [J]. ConservationGenetics Resources,6(4):1007-1010.
LOVELESS MD,HAMRICK JL,1984. Ecological determinantsof genetic structure in plant populations[J].Annual Reviewof Ecology,Evolution,and Systematics,15(15): 65-95.
LU XL,CHEN HL, LIANG XY,et al., 2019. Genetic diversityanalysis of C , nitidissima var. microcarpa and peripheralpopulation of Camellia nitidissima [J].Molecular PlantBreeding,17(1):301-306.[路雪林,陳海玲,梁雪雁,等,2019.金花茶邊緣種群及變種小果金花茶的遺傳多樣性分析[J].分子植物育種,17(1):301-306.]
LU XL,CHEN HL,WEI SJ,et al.,2020.Chloroplast andnuclearDNAanalysesprovideinsightintothephylogeography and conservationgeneticsofCamelianitidissima(Theaceae) insouthern Guangxi, China[J]. Tree Genetics amp; Genomes,16(1):8.
LU YB,LIUFU YQ,PENG GQ,et al.,2014. Development of21microsatelliteprimersforCamelliapingguoensis(Theaceae)using 454sequencing[J].ConservationGenetics Resources, 6: 791-793.
LUO QF,F(xiàn)ENG YH,WU DS, et al., 2022. Genetic diversity ofPinus taiwanensis var. damingshanensis natural populations bySSR markers[J].Guihaia,42(8):1367-1373.[羅群鳳,馮源恒,吳東山,等,2022.基于 SSR 標記的大明松天然群體遺傳多樣性分析[J].廣西植物,42(8):1367-1373.]
MA LY,LIU C,XIN J,et al.,2022.Development of EST-SSRmarkersforanendangeredplantspecies, Camelliafascicularis(Theaceae)[J]. Plant Genetic Resources :Characterization and Utilization,20(4): 263-269.
MIN TL,BARTHOLOMEW B,20O7.Flora of China [M].Beijing: Science Press and Missouri Botanical Garden Press:367-399.
NEI M,TAJIMA F,TATENO Y,1983. Accuracy of estimatedphylogenetic trees from molecular data. II.Gene frequencydata [J]. Journal of Molecular Evolution,19(2):153-170.
OU JM,YANG YT,QIAN CC,et al.,2022.Analysis ofpopulation genetics of medicinal plum based on chloroplastgene[J].Chinese Traditional and Herbal Drugs,53(17):5469-5475.
歐金梅,楊亞,錢程程,等,2022.基于葉綠體基因的藥用梅群體遺傳學研究[J].中草藥,53(17) : 5469-5475.]
OZAWA H, WATANABE A,UCHIYAMA K,et al.,2013.Influence of long-distance seed dispersal on the geneticdiversity of seed rain in fragmented populations relative topollen-mediated gene flow[J]. Journal ofHeredity,104(4) : 465-475.
PENG GQ,TANG SQ,2017. Fine-scale spatial geneticstructure and gene flow of Camellia flavida,a shadetolerantshrub in karst[J]. Acta Ecologica Sinica,37(21):7313-7323.
彭國清,唐紹清,2017.喀斯特耐陰灌木淡黃金花茶的精細空間遺傳結構與基因流[J].生態(tài)學報,37(21) : 7313-7323.]
PIRYS,LUIKART G,CORNUET JM,1999.Computernote. BOTTLENECK: A computer program for detectingrecent reductions in the efective size using allele frequencydata[J]. Journal Hered,90:502-503.
QIN LJ,HAO XD,OUYANG XH,et al.,2023.Pollenmorphology and taxonomic significance of main species ofsect.ChrysanthaChanginGuangxi[J].ActaMicropalaeontologica Sinica,40(3):252-261.[秦琳娟,郝秀東,歐陽緒紅,等,2023.廣西主要金花茶組植物的花粉形態(tài)及其分類學意義[J].微體古生物學報,40(3):252-261.]
QIN XM, LIANG QH,1991. A comparative study on karyotypesin three species of the genus Camellia and their regeneratedplants in tissue culture [J]. Plant Diversity,13(1): 51-57.
RICE WR,1989.Analyzing tables of statistical tests[J].Evolution,43(1) : 223-225.
RUAN PZ,WANG B, ZHONG YQ,et al., 2024. Interspecificassociation and community stability analysis of dominant treesand shrubs in the concomitant community of Camellia flavidaHung T.Chang[J]. Plant Science Journal,42(2):170-180.[阮枰臻,王斌,鐘藝倩,等,2024.淡黃金花茶伴生群落優(yōu)勢喬灌木的種間聯(lián)結及群落穩(wěn)定性分析[J].植物科學學報,42(2):170-180.]
SOLTIS PS,SOLTIS DE,1991. Genetic variation in endemicand widespread plant species [J].Aliso:A Journal ofSystematic Floristic Botany,13(1) :215-223.
State Forestry and Grassland Administration and the Ministry ofAgriculture and Rural Affairs,P.R. China,2O21. List ofNational Key Protected Wild Plants(Decree No.15.in2021)[EB/OL].[國家林業(yè)和草原局農(nóng)業(yè)農(nóng)村部,2021.國家重點保護野生植物名錄(2021年第15號公告)[ EB/OL ]. htps://www. forestry. gov. cn/main/3954/20210908/163949170374051.html.]
SUN SG,HUANG ZH,CHEN ZB,et al.,2017.Nectarproperties and the role of sunbirds as pollinators of thegolden-flowered tea(Camellia petelotii)[J]. AmericanJourmal of Botany,104(3): 468-476.
SUN WY,SHU JP,GU YF,et al.,2022.Conservationgenomics analysis revealed the endangered mechanism ofAdiantum nelumboides [J]. Biodiversity Science,30(7):21508.
孫維悅,舒江平,顧鈺峰,等,2022.基于保護基因組學揭示荷葉鐵線蕨的瀕危機制[J].生物多樣性,30(7) : 21508.]
SUN YL,ZHANG J, ZHANG J,et al.,2020.SSR markingdevelopment and itsapplication in cotton [J].ShanxiJournal of Agricultural Sciences,66(4):84-88.[孫亞莉,張晉,張潔,等,2020.SSR 標記的開發(fā)及其在棉花中的應用[J].陜西農(nóng)業(yè)科學,66(4):84-88.]
TANG S,BIN XY,WANG L, et al.,2006. Genetic diversityand population structure of yellow Camellia (Camellianitidissima) in China as revealed by RAPD and AFLPmarkers [J]. Biochemical Genetics,44(9): 444-456.
UENO S,TOMARU N, YOSHIMARU H,et al.,2000. Geneticstructure of Camellia japonica L. in an old-growth evergreenforest,Tsushima, Japan [J]. Molecular Ecology,9(6):647-656.
VONLANTHEN P,BITTNER D,HUDSON AG,et al.,2012.Eutrophication causes speciation reversal in whitefishadaptive radiations[J]. Nature,482(7385): 357-362.
WANGQM,CHENGY,MA JW,et al.,2016.Construction ofSSR fingerprint for ornamental peach based on primers“random combination”[J].Guihaia,36(3):289-296.[王清明,程怡,馬建偉,等,2016.基于引物“隨機組合”構建觀賞桃 SSR 指紋圖譜[J].廣西植物,36(3):289-296.]
WANG ZY,LI ZF,PENG C,et al., 2023. Genetic diversityanalysis of Lagerstroemia indica based on fluorescent SSRmarkers[J]. Journal of Nanjing Forestry University(NaturalSciencesEdition),47(2):61-69.[王芝懿,李振芳,彭嬋,等,2023.基于熒光SSR標記的紫薇遺傳多樣性分析[J].南京林業(yè)大學學報(自然科學版),47(2):61-69.]
WEI SJ,LIUFU YQ,ZHENG HW,et al.,2023a.Usingphylogenomics to untangle the taxonomic incongruence ofyellow-flowered Camellia species(Theaceae)in China[J]. Journal of Systematics and Evolution,61(5) : 748-763.
WEI SJ,LUYB,YEQQ,etal.,2O17.Population geneticstructure and phylogeography of Camellia flavida (Theaceae)based on chloroplast and nuclear DNA sequences [J].Frontiers in Plant Science,8:718.
WEI SJ,ZHANGQW,TANG SQ,et al.,2O23b.Genetic andecophysiological evidencethat hybridization facilitatedlineage diversification in yellow Camellia ( Theaceae)species:A case study of natural hybridization betweenC. micrantha and C. flavida [J]. BMC Plant Biology,23(1) : 154.
WEI X,CAO HL, JIANG YS,et al.,2008. Population geneticstructure of Camellia nitidissima(Theaceae)and conservationimplications[J].Botanical Studies,49:147-153.
WEIX,WEI JQ,CAO HL,et al.,2005.Genetic diversity anddifferentiation of Camellia euphlebia(Theaceae) in Guangxi,China[J]. Annales Botanici Fennici,42:365-370.
WRIGHT S,1931.Evolution in Mendelian populations[J].Genetics,16(2) : 97-159.
WU M,WU SQ,PANF,et al.,2024.Genetic diversity andgenetic structure of wild Pinellia ternata (Araceae) in China[J].Guihaia,44(4):766-776.
吳敏,吳詩琪,潘鳳,等,2024.中國野生半夏的遺傳多樣性和遺傳結構研究[J].廣西植物,44(4):766-776.]WU X,DUAN L,CHEN Q,et al.,2020. Genetic diversity,population structure,and evolutionary relationships within ataxonomically complex group revealed by AFLP markers:Acasestudy on Fritillaria cirrhosaD.Don and closelyrelatedspecies[J]. Global Ecology and Conservation,24: e01323.YEQQ,XUE YG,2013.Comparisions of morphologicalcharacters of some Camellia species which were reduced toCamellia flavida H.T.Chang and discussion on theirtaxonomicstatus[J]. Acta ScientiarumNaturaliumUniversitatis Sunyatseni,52(3):103-111.
葉泉清,薛躍規(guī),2013.淡黃金花茶歸并種的形態(tài)特征比較及分類探討[J].中山大學學報(自然科學版),52(3):103-111.]ZHANG HD(CHANG HT),1981.A taxonomy of the genusCamellia[M].Guangzhou:TheEditorial Staff of the Journalof Sun YatsenUniversity:104-105.[張宏達,1981.山茶屬植物的系統(tǒng)研究[M].廣州:中山大學學報編輯部:104-105.]ZHANG HD(CHANG HT),RENSX,1998.Flora ReipublicaePopularis Sinicae:Vol.49(3)[M].Beijing:SciencePress:101-112.
張宏達,任善湘,1998.中國植物志:第四十九卷 第三分冊[M].北京:科學出版社:101-112.]ZHU SQ,2003. Reach on karst forest ecology I[M]. Guiyang:Guizhou Scienceand TechnologyPress:52-62.
朱守謙,2003.喀斯特森林生態(tài)研究I[M].貴陽:貴州科技出版社:52-62.]ZHU XL,ZOU R,QIN HZ,et al.,2O23.Genome-widediversity evaluation and core germplasm extraction in ex situconservation:A case of golden Camellia tunghinensis[J].Evolutionary Applications,16(9):1519-1530.
(責任編輯鄧斯麗)