摘 要:在車(chē)輛群智感知的任務(wù)分配中,大多數(shù)隱私保護(hù)機(jī)制將用戶(hù)暴露于潛在的時(shí)間感知推理下,使攻擊者能夠推斷出用戶(hù)的敏感信息。針對(duì)該問(wèn)題,提出一種感知時(shí)間不可區(qū)分的隱私保護(hù)任務(wù)分配方案。首先,該方案為滿足用戶(hù)對(duì)感知時(shí)間隱私保護(hù)的需求,運(yùn)用差分隱私技術(shù),對(duì)車(chē)輛的原始停留數(shù)據(jù)添加拉普拉斯噪聲進(jìn)行模糊處理。其次,在考慮任務(wù)之間旅行時(shí)間的同時(shí),計(jì)算出車(chē)輛用戶(hù)完成感知任務(wù)概率,以此來(lái)判斷是否可以進(jìn)行任務(wù)分配。若概率大于0,則合理分配所有任務(wù)保證負(fù)載均衡,否則不再分配任務(wù)。因此,該方案一方面提供了感知時(shí)間的隱私保護(hù),另一方面能夠保障分配任務(wù)的有效性。最后通過(guò)與其他方案進(jìn)行比較,并分析它們的相對(duì)性能,進(jìn)一步證實(shí)了該方案的優(yōu)越性。
關(guān)鍵詞:車(chē)輛群智感知;感知時(shí)間;差分隱私;隱私保護(hù);任務(wù)分配
中圖分類(lèi)號(hào):TP311"" 文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1001-3695(2025)04-031-1198-06
doi: 10.19734/j.issn.1001-3695.2024.09.0320
Indistinguishable sensing time privacy-preserving task allocation scheme for vehicular crowdsensing
Zhang Lei1, 2, 3, Zhang Xiao1, 2, Ji Lili1
(1.College of Information Science amp; Electronic Technology, Jiamusi University, Jiamusi Heilongjiang 154007, China; 2. The Heilongjiang Provincial Key Laboratory of Autonomous Intelligence amp; Information Processing, School of Information Science amp; Electronic Technology, Jiamusi University, Jiamusi Heilongjiang 154007, China; 3. Jiamusi Key Laboratory of Satellite Navigation Technology amp; Equipment Engineering Technology, Jiamusi Heilongjiang 154007, China)
Abstract:In the task allocation of vehicular crowdsensing, most privacy protection mechanisms expose users to potential temporal sensing inferences, enabling attackers to deduce sensitive user information. To address this issue, this paper proposed a privacy-preserving task allocation scheme that ensured indistinguishability of sensing times. Firstly, to meet the demand for privacy protection of sensing times, this scheme applied differential privacy technology to add Laplace noise to the original dwell data of vehicles, thereby obfuscating the data. Secondly, considering the travel time between tasks, it calculated the probability of vehicle users completing the sensing tasks, which helped to determine if task allocation could proceed. If the probability was greater than zero, it allocated all tasks reasonably to ensure load balancing; otherwise, no further tasks were assigned. Thus, this scheme provided privacy protection for sensing times on one hand and ensured the effectiveness of task allocation on the other. Finally, by comparing this scheme with others and analyzing their relative performance through simulation experiments, the results further confirm the superiority of the proposed scheme.
Key words:vehicular crowdsensing; sensing time; differential privacy; privacy protection; task allocation
0 引言
隨著群智感知技術(shù)的日益成熟和移動(dòng)設(shè)備內(nèi)置傳感器種類(lèi)與功能的不斷豐富[1, 2],多樣化任務(wù)高效分配成為了可能[3]。當(dāng)今智能網(wǎng)聯(lián)汽車(chē)(intelligent connected vehicle,ICV)的快速發(fā)展,車(chē)輛群智感知(vehicular crowdsensing,VCS)已成為移動(dòng)群智感知(mobile crowdsensing,MCS)最有前途的解決方案之一[4]。VCS通過(guò)招募車(chē)輛作為參與者來(lái)執(zhí)行感知任務(wù),新型的群智感知應(yīng)用日益增多[4, 5]。大多車(chē)載網(wǎng)絡(luò)可以提供非??煽康臒o(wú)線通信,同時(shí)車(chē)輛配備更加豐富的傳感器,具有更強(qiáng)大的計(jì)算和存儲(chǔ)能力[6],比普通MCS更適合移動(dòng)傳感任務(wù)[7]。因此,基于VCS的各種應(yīng)用層出不窮,如交通監(jiān)控[8]、智能停車(chē)[9]、空氣質(zhì)量監(jiān)測(cè)[10]等,提高交通效率和駕駛體驗(yàn)的同時(shí),為城市發(fā)展作出了貢獻(xiàn)[11]。由于VCS服務(wù)的客戶(hù)對(duì)特定區(qū)域和時(shí)間段內(nèi)的感知數(shù)據(jù)感興趣,所以VCS的有效感知在很大程度上取決于任務(wù)分配方案的有效性,且隨著群智感知系統(tǒng)中車(chē)輛用戶(hù)與感知任務(wù)量的迅速增加,有效的任務(wù)分配策略是提升用戶(hù)參與度和獲得實(shí)用收益的關(guān)鍵[12, 13]。
車(chē)輛群智感知應(yīng)用也存在許多可能影響群智感知結(jié)果的安全和隱私問(wèn)題[14, 15]。一些方案由于沒(méi)有考慮到對(duì)用戶(hù)隱私的保護(hù),從而影響任務(wù)分配的有效性[16~18]。部分在時(shí)間限制下的任務(wù)分配方案,不僅忽略了執(zhí)行每項(xiàng)任務(wù)所需的時(shí)間,還沒(méi)有對(duì)其進(jìn)行隱私保護(hù),使得方案具有一定的風(fēng)險(xiǎn)[19~21]。因此在VCS任務(wù)分配的過(guò)程中,隱私保護(hù)問(wèn)題非常重要[22, 23]。用戶(hù)需要將感知到的數(shù)據(jù)上傳到平臺(tái),這些數(shù)據(jù)可能包含用戶(hù)身份、位置和其他私人屬性等敏感信息。如果平臺(tái)出現(xiàn)安全漏洞,用戶(hù)的隱私將暴露給未經(jīng)授權(quán)的實(shí)體。Xiao等人[24]使用秘密共享方案保護(hù)用戶(hù)隱私;Zhuo等人[25]的研究致力于保護(hù)用戶(hù)采集的傳感結(jié)果的隱私性;Basudan等人[26]設(shè)計(jì)一種基于無(wú)證書(shū)聚合簽名加密方案,實(shí)現(xiàn)數(shù)據(jù)的保密性、完整性、隱私性和匿名性。
當(dāng)前已有的隱私保護(hù)方案對(duì)感知時(shí)間的隱私保護(hù)和任務(wù)分配處理并不理想。因此,需要提出有效的解決方案,能夠在優(yōu)化時(shí)空相關(guān)的VCS任務(wù)分配的同時(shí),滿足用戶(hù)對(duì)隱私保護(hù)的需求。為此,本文提出感知時(shí)間不可區(qū)分的隱私保護(hù)任務(wù)分配方案,它在考慮任務(wù)之間的旅行時(shí)間的同時(shí),對(duì)車(chē)輛用戶(hù)真實(shí)停留時(shí)間運(yùn)用差分隱私技術(shù)來(lái)進(jìn)行混淆,以此來(lái)保護(hù)感知時(shí)間的隱私,并將接收到的任務(wù)合理分配給多個(gè)資源(車(chē)輛用戶(hù)),以此來(lái)保證負(fù)載均衡。
1 預(yù)備知識(shí)
1.1 問(wèn)題提出
目前,大部分研究只關(guān)注任務(wù)期限[19, 20],并且在任務(wù)分配過(guò)程中的大多數(shù)隱私保護(hù)機(jī)制都強(qiáng)調(diào)保護(hù)用戶(hù)的位置信息[12, 27, 28]。然而與時(shí)空相關(guān)的車(chē)輛群智感知在任務(wù)分配過(guò)程中,由于對(duì)用戶(hù)感知時(shí)間隱私保護(hù)的疏忽,而導(dǎo)致用戶(hù)敏感數(shù)據(jù)泄露,這仍是未有效關(guān)注的問(wèn)題。如果一個(gè)車(chē)輛用戶(hù)在感知周期c內(nèi)完成了感知任務(wù),并且在感知區(qū)域a內(nèi)完成了感知任務(wù),則稱(chēng)在周期c內(nèi)覆蓋了區(qū)域a。因此,本方案給定一組愿意參與傳感項(xiàng)目的車(chē)輛用戶(hù)U,劃分的傳感區(qū)域設(shè)為A,以及所有車(chē)輛用戶(hù)的呼叫記錄(包括呼叫時(shí)間和通信塔ID)和停留時(shí)間數(shù)據(jù),滿足時(shí)空覆蓋的同時(shí),運(yùn)用差分隱私技術(shù)對(duì)停留時(shí)間數(shù)據(jù)混淆后進(jìn)行負(fù)載均衡的任務(wù)分配。
1.2 隱私保護(hù)思想
在車(chē)輛群智感知任務(wù)分配過(guò)程中,車(chē)輛用戶(hù)往往通過(guò)無(wú)線接入點(diǎn)或蜂窩基礎(chǔ)設(shè)施與平臺(tái)共享數(shù)據(jù),因此涉及到許多敏感數(shù)據(jù)泄露。在本文中,車(chē)輛用戶(hù)的感知時(shí)間對(duì)任務(wù)能否順利完成起著至關(guān)重要的作用。為準(zhǔn)確高效地分配任務(wù),車(chē)輛用戶(hù)首先向平臺(tái)提交他們?cè)诟兄獣r(shí)段和區(qū)域的停留時(shí)間。然而,由于潛在的惡意攻擊者可能會(huì)從真實(shí)的停留時(shí)間推斷出日常習(xí)慣、軌跡和其他敏感信息,從而導(dǎo)致隱私風(fēng)險(xiǎn)。為解決這個(gè)問(wèn)題,本方案將拉普拉斯噪聲添加到用戶(hù)的真實(shí)停留時(shí)間,以此來(lái)進(jìn)行混淆數(shù)據(jù),并通過(guò)規(guī)定合適的隱私參數(shù),使方案既能夠運(yùn)用差分隱私技術(shù)讓用戶(hù)獲得較好的隱私保護(hù),又能保證良好的任務(wù)完成率。因?yàn)檐?chē)輛用戶(hù)上傳的是模糊停留時(shí)間,而不是實(shí)際時(shí)間,使攻擊者無(wú)法從用戶(hù)完成任務(wù)的停留時(shí)間推斷出真實(shí)感知時(shí)間數(shù)據(jù),從而成功保護(hù)隱私。
1.3 系統(tǒng)架構(gòu)
整個(gè)VCS系統(tǒng)架構(gòu)如圖1所示,該系統(tǒng)主要由云平臺(tái)和參與者兩方實(shí)體構(gòu)成。
參與者是愿意參與傳感任務(wù)的車(chē)輛用戶(hù),他們向云平臺(tái)發(fā)送原始數(shù)據(jù),并在特定的感知區(qū)域執(zhí)行任務(wù)后,上傳混淆的停留數(shù)據(jù)至云平臺(tái);云平臺(tái)具有巨大的計(jì)算和存儲(chǔ)能力,需要收集并存儲(chǔ)參與者發(fā)送的歷史通話記錄和停留時(shí)間數(shù)據(jù),并向參與者發(fā)放感知任務(wù)。在該圖中,群智感知傳感項(xiàng)目采用以云平臺(tái)為中心的任務(wù)分配方法。在每個(gè)感知周期中,參與者接收到任務(wù)后,將真實(shí)數(shù)據(jù)發(fā)送到云平臺(tái),并在執(zhí)行任務(wù)的過(guò)程中,運(yùn)用本文方案上傳混淆后的停留數(shù)據(jù)至云平臺(tái)。
1.4 差分隱私
在差分隱私中, 要求攻擊者無(wú)法根據(jù)發(fā)布后的結(jié)果推測(cè)出哪一條結(jié)果對(duì)應(yīng)于哪一個(gè)數(shù)據(jù)集。
3.3 實(shí)驗(yàn)結(jié)果與分析
為了驗(yàn)證本文方案與其他方案上的性能優(yōu)勢(shì),本文將該方案與UBTA[31]、LBTA[32]和MPPTA[33]進(jìn)行比較,并以LBTA作為基準(zhǔn)。本實(shí)驗(yàn)主要測(cè)量了本文方案與UBTA、LBTA和MPPTA在TCR和LFI中的性能以及AvTCT。
圖2為固定100個(gè)任務(wù),不同用戶(hù)數(shù)的TCR。從圖2中可以看出,當(dāng)用戶(hù)數(shù)在40~80時(shí),本文方案的任務(wù)完成率僅次于LBTA,因?yàn)楸疚姆桨傅募s束條件最多,但在任務(wù)分配過(guò)程中能夠?qū)崿F(xiàn)負(fù)載均衡,最大化分配所提供的任務(wù)。通常,設(shè)置A的TCR值隨著用戶(hù)數(shù)量的增加而增加,因?yàn)樵黾痈嗟挠脩?hù)使它們有可能執(zhí)行更多的任務(wù)。
圖3為固定100位用戶(hù),不同任務(wù)數(shù)的TCR。從圖3可以看出,當(dāng)任務(wù)數(shù)量足夠多時(shí),本文方案的任務(wù)完成率是最高的,并且能夠維持較為平穩(wěn)的狀態(tài)。TCR隨著任務(wù)數(shù)量的增加而降低,是因?yàn)樵谟脩?hù)數(shù)量固定的情況下,任務(wù)數(shù)量的增加會(huì)導(dǎo)致無(wú)法執(zhí)行其他任務(wù)。其中,MPPTA的任務(wù)完成率隨著任務(wù)數(shù)量的增加,急劇減少,因?yàn)槠浼s束條件要求每名用戶(hù)最多可以執(zhí)行一個(gè)任務(wù),所以當(dāng)用戶(hù)數(shù)固定時(shí),隨著發(fā)出的任務(wù)數(shù)增多,無(wú)法完成的任務(wù)數(shù)也會(huì)逐漸增加。
圖4顯示了固定100個(gè)任務(wù),不同用戶(hù)數(shù)的LFI圖。從圖4中可以看出,本文方案在負(fù)載平衡方面的公平性在用戶(hù)數(shù)少于80時(shí)最高。當(dāng)用戶(hù)數(shù)大于80時(shí),MPPTA的指數(shù)急劇增高,因?yàn)楫?dāng)用戶(hù)數(shù)和任務(wù)數(shù)越發(fā)接近時(shí),其約束條件會(huì)使分配給用戶(hù)的任務(wù)數(shù)和最大任務(wù)數(shù)接近一致。UBTA急劇下降是由于在其方案中只給出了能否成功分配的條件,并沒(méi)有給出在任務(wù)分配時(shí)如何保證公平性的約束條件,所以沒(méi)有任何內(nèi)在的公平性。
圖5顯示了固定100位用戶(hù),不同任務(wù)數(shù)的LFI圖。從圖5中可以看出,MPPTA的負(fù)載公平較高,因其約束條件使得分配給任何用戶(hù)的任務(wù)數(shù)皆為0或1,本文方案和LBTA的負(fù)載公平指數(shù)基本持平,并相對(duì)平穩(wěn)。
圖6為固定100個(gè)任務(wù),不同用戶(hù)數(shù)的AvTCT,該參數(shù)未與MPPTA進(jìn)行比較,因?yàn)镸PPTA中的任務(wù)沒(méi)有任何開(kāi)始或結(jié)束時(shí)間。從圖6中可以看出,本文方案完成任務(wù)的速度快于UBTA,因?yàn)殡m然其約束條件最多,但能夠使在任務(wù)分配時(shí),達(dá)到較快的負(fù)載均衡,并且與另外兩種方案相比,本方案的速度變化較為平穩(wěn)。AvTCT隨著用戶(hù)的增加而減少,是因?yàn)殡S著任務(wù)數(shù)量的固定,引入更多的用戶(hù)會(huì)導(dǎo)致每個(gè)用戶(hù)的任務(wù)減少,所以AvTCT得到了降低。
圖7為固定100位用戶(hù),不同任務(wù)數(shù)的AvTCT。在圖7中,本文方案完成任務(wù)的速度略高于UBTA的速度,LBTA速度最快是因?yàn)槠洳粌H約束條件少,并且也能夠?qū)崿F(xiàn)負(fù)載均衡的任務(wù)分配。隨著用戶(hù)數(shù)量的固定,用戶(hù)總數(shù)的增加導(dǎo)致每個(gè)用戶(hù)的任務(wù)增加,AvTCT也因此相應(yīng)地逐漸增多。
圖8和9分別為固定100個(gè)任務(wù),不同用戶(hù)數(shù)和固定100位用戶(hù),不同任務(wù)數(shù)的不同隱私參數(shù)的本文方案的TCR。從圖中可以看出,隱私參數(shù)的變化會(huì)導(dǎo)致任務(wù)完成數(shù)量的增減,當(dāng)隱私參數(shù)ε=1.0時(shí),任務(wù)完成率是最高的。因?yàn)殡S著隱私參數(shù)的減少,噪聲數(shù)量急劇增加,使本文方案完成任務(wù)的條件更加苛刻,從而當(dāng)隱私參數(shù)ε=0.1時(shí),任務(wù)完成率是最低的。
4 結(jié)束語(yǔ)
為解決感知時(shí)間隱私暴露問(wèn)題,本文提出感知時(shí)間不可區(qū)分的的隱私保護(hù)任務(wù)分配方案。它將感知到的任務(wù)合理分配給多個(gè)車(chē)輛用戶(hù),并且在考慮任務(wù)之間旅行時(shí)間的同時(shí),運(yùn)用差分隱私技術(shù)對(duì)車(chē)輛用戶(hù)的停留時(shí)間進(jìn)行處理,通過(guò)向真實(shí)數(shù)據(jù)中注入拉普拉斯噪聲實(shí)現(xiàn)數(shù)據(jù)混淆,從而滿足用戶(hù)對(duì)感知時(shí)間的隱私需求。該方案完成所需感知任務(wù)需要滿足三個(gè)條件:a)每個(gè)車(chē)輛用戶(hù)在特定的感知周期和感知區(qū)域內(nèi)至少進(jìn)行一次呼叫;b)每個(gè)車(chē)輛用戶(hù)在特定感知周期和感知區(qū)域內(nèi)的停留時(shí)間等于或大于任務(wù)所需的感知持續(xù)時(shí)間;c)每個(gè)車(chē)輛用戶(hù)在特定感知周期和感知區(qū)域內(nèi)的行程時(shí)間小于每個(gè)任務(wù)的開(kāi)始時(shí)間。在以上條件都滿足的情況下,計(jì)算出完成感知任務(wù)的概率,最后以循環(huán)方式合理分配任務(wù),確保沒(méi)有單個(gè)車(chē)輛用戶(hù)獨(dú)占系統(tǒng)中的所有任務(wù),從而在任務(wù)分配方面保持負(fù)載均衡。
參考文獻(xiàn):
[1]
Chen Min, Hao Yixue, Gharavi H, et al. Cognitive information mea-surements: a new perspective [J]. Information Sciences: an International Journal, 2019, 505 (C): 487-497.
[2]Jin Xiaocong, Zhang Rui, Chen Yimin, et al. DPSense: differentially private crowdsourced spectrum sensing. in computer and communications security [C]//Proc of Computer and Communications Security. New York:ACM Press,2019:296-307.
[3]Guo Bin, Liu Yan, Wu Wenle, et al. ActiveCrowd: a framework for optimized multi-task allocation in mobile crowdsensing systems [J]. IEEE Trans on Human-Machine Systems, 2017(3): 392-403.
[4]Basudan S, Lin Xiaodong, Sankaranarayanan K.A privacy-perserving vehicular crowdsensing-based road surface condition monitoring system using fog computing [J]. IEEE Internet of Things Journal, 2017,4 (3): 772-782.
[5]Wan Jiafu, Liu Jianqi, Shao Zihui, et al. Mobile crowdsensing for traffic prediction in Internet of Vehicles [J]. Sensors, 2016,16: 88.
[6]Jiau M K, Huang S C, Hwang J N,et al. Multimedia services in cloud-based vehicular networks [J]. IEEE Intelligent Transportation Systems Magazine, 2015,7 (3): 62-79.
[7]Wang Xiumin, Wu Weiwei, Qi Deyu. Mobility-aware participant recruitment for vehicle-based mobile crowdsensing [J]. IEEE Trans on Vehicular Technology, 2018,67(5): 4415-4426.
[8]Li Meng, Zhu Liehuang, Lin Xiaodong. Privacy-preserving traffic monitoring with 1 report filtering via fog-assisted vehicular crowdsensing [J]. IEEE Trans on Services Computing, 2019, 14 (99): 1902-1913.
[9]Lai Chengzhe, Li Qian, Zhou Haibo, et al. SRSP: a secure and reliable smart parking scheme with dual privacy preservation [J]. IEEE Internet of Things Journal, 2021,8(13): 10619-10630.
[10]Liu Rui, Pan Jianping. Lightweight privacy-preserving truth discovery for vehicular air quality monitoring [J]. Digital Communications and Networks, 2023,9 (1): 280-291.
[11]王振寧, 曹越, 江愷, 等. 車(chē)輛群智感知中激勵(lì)驅(qū)動(dòng)的車(chē)輛選擇與調(diào)度方法 [J]. 計(jì)算機(jī)研究與發(fā)展, 2024, 61 (9): 2213-2228. (Wang Zhenning, Cao Yue, Jiang Kai, et al. Incentive-driven vehicle selection and scheduling method in vehicular crowdsensing [J]. Journal of Computer Research and Development, 2024, 61 (9): 2213-2228. )
[12]Qian Yongfeng, Ma Yujun, Chen Jing, et al. Optimal location privacy preserving and service quality guaranteed task allocation in vehicle-based crowdsensing networks [J]. IEEE Trans on Intelligent Transportation Systems, 2021, 22: 4367-4375.
[13]Yu Yantao, Xue Xiaoping, Ma Jingxiao, et al. Efficient privacy-preserving task allocation with secret sharing for vehicular crowdsensing [J]. IEEE Internet of Things Journal, 2024,11 (6): 9473-9486.
[14]Wang Zhihong, LiYongbiao, Li Dingcheng, et al. Enabling fairness-aware and privacy-preserving for quality evaluation in vehicular crowdsensing: a decentralized approach [J]. Security and Communication Networks, 2021,2021: 1-11.
[15]Xu Guowen, Li Hongwei, Tan Chen, et al. Achieving efficient and privacy-preserving truth discovery in crowd sensing systems [J]. Elsevier Advanced Technology, 2017, 69: 114-126.
[16]Li Hanshang, Li Ting, Wang Weichao, et al. Dynamic participant selection for large-scale mobile crowd sensing [J]. IEEE Trans on Mobile Computing, 2018,18: 2842-2855.
[17]Wang Jingtao, Wang Feng, Wang Yasha, et al. HyTasker: hybrid task allocation in mobile CrowdSensing [J]. IEEE Trans on Mobile Computing, 2020,19 (3): 598-611.
[18]Wang Liang, Yu Zhiwen, Wu Kaishun, et al. Towards robust task assignment in mobile crowdsensing systems [J]. IEEE Trans on Mobile Computing, 2023, 22 (7): 4297-4313.
[19]Huang Yang, Chen Honglong, Ma Guoqi, et al. OPAT: optimized allocation of time dependent tasks for mobile crowdsensing [J]. IEEE Trans on Industrial Informatics, 2021, 18 (4): 2476-2485.
[20]Li Xin, Zhang Xinglin. Multi-task allocation under time constraints in mobile crowdsensing [J]. IEEE Trans on Mobile Computing, 2019,20 (4): 1494-1510.
[21]Peng Shuo, Liu Kun, Wang Shiji, et al. Time window-based online task assignment in mobile crowdsensing: problems and algorithms [J]. Peer-to-Peer Networking Applications, 2023,16 (2): 1069-1087.
[22]Luo Chengwen, Liu Xiao, Xue Wanli, et al. Predictable privacy-preserving mobile crowd sensing: a tale of two roles [J]. IEEE/ACM Trans on Networking, 2019,27: 361-374.
[23]Wang Zhibo, Hu Jiahui, Lyu Ruizhao, et al. Personalized privacy-preserving task allocation for mobile crowdsensing [J]. IEEE Trans on Mobile Computing, 2018, 18 (6): 1330-1341.
[24]Xiao Mingjun, Wu Jie, Zhang Sheng, et al. Secret-sharing-based secure user recruitment protocol for mobile crowdsensing [C]//Proc of IEEE Conference on Computer Communications. Piscataway,NJ:IEEE Press, 2017:1-9.
[25]Zhuo Gaoqiang, Jia Qi, Guo Linke, et al. Privacy-preserving verifiable data aggregation and analysis for cloud-assisted mobile crowdsourcing [C]//Proc of IEEE Conference on Computer Communications. Piscataway,NJ:IEEE Press, 2016:1-9.
[26]Basudan S, Lin Xiaodong, Sankaranarayanan K. A privacy-preserving vehicular crowdsensing-based road surface condition monitoring system using fog computing [J]. IEEE Internet of Things Journal, 2017, 4 (3): 772-782.
[27]Cheng Yudan, Ma Jianfeng, Liu Zhiquan, et al. A lightweight privacy preservation scheme with efficient reputation management for mobile crowdsensing in vehicular networks [J]. IIEEE Trans on Dependable and Secure Computing, 2023, 20 (3): 1771-1788.
[28]Guan Yunguo, Lu Rongxing, Zheng Yandong, et al. Achieving privacy-preserving vehicle selection for effective content dissemination in smart cities [C]//Proc of IEEE Global Communications Conference. Piscataway,NJ:IEEE Press, 2020:1-6.
[29]Dwork C. Differential privacy [C]// Proc of the 33rd International Conference on Automata, Languages and Programming. Berlin:Springer,2006:338-340.
[30]Meitei M G, Marchang N. A user-centric task allocation approach in mobile crowdsensing [C]//Proc of Electronic Systems and Intelligent Computing. Singapore:Springer,2020: 627-639.
[31]Li Zhe, Liu Xiaolong, Huang Yang,et al. Probabilistic coverage constraint task assignment with privacy protection in vehicular crowdsen-sing [J]. Sensors, 2023, 23 (18):7798 .
[32]Meitei M G, Marchang N. Provisioning load balancing in time-sensitive task allocation for mobile crowdsensing [J]. Journal of Network Systems Management, 2022,32 (1):9783.
[33]Yu Longxin, Meng Haofei,Yu Wenwu. Privacy preserving task allocation with multi-objectives in edge computing enhanced mobile crowdsensing[C]//Proc of the 4th International Conference on Industrial Artificial Intelligence . 2022: 1-5.