[摘要]目的探討米諾環(huán)素(Mcy)對(duì)腦出血(ICH)小鼠認(rèn)知功能障礙的影響及其機(jī)制。方法將C57BL/6J雄性小鼠隨機(jī)分為A~E組,每組20只。A組小鼠尾靜脈注射生理鹽水,B組小鼠尾靜脈注射自體血構(gòu)建ICH模型,C、D組小鼠在B組基礎(chǔ)上每天分別灌胃20、50 mg/kg的Mcy,E組小鼠在D組基礎(chǔ)上再腹腔注射5 μL含有12 μg MK-2206的DMSO溶液,共14 d。處理結(jié)束后依據(jù)改良神經(jīng)病學(xué)嚴(yán)重程度評(píng)分(mNSS)評(píng)估各組小鼠神經(jīng)損傷情況,采用水迷宮實(shí)驗(yàn)檢測(cè)各組小鼠的認(rèn)知能力,計(jì)算各組小鼠腦組織含水量,采用HE染色方法觀察各組小鼠海馬組織的病理形態(tài),采用TUNEL法檢測(cè)各組小鼠海馬組織中神經(jīng)細(xì)胞凋亡情況,采用酶聯(lián)免疫吸附試驗(yàn)(ELISA)檢測(cè)各組小鼠海馬組織中超氧化物歧化酶(SOD)、谷胱甘肽過(guò)氧化物酶(GSH-Px)和丙二醛(MDA)水平,采用Western blot方法檢測(cè)各組小鼠海馬組織中Bax、Bcl-2、磷酸酶張力蛋白同源物(PTEN)、蛋白激酶B(Akt)及p-Akt蛋白水平。結(jié)果神經(jīng)損傷評(píng)估結(jié)果顯示,C、D組小鼠mNSS評(píng)分較B組顯著降低(q=22.925、55.457,Plt;0.05),E組小鼠mNSS評(píng)分較D組顯著升高(q=44.448,Plt;0.05);水迷宮實(shí)驗(yàn)結(jié)果顯示,與B組比較,C、D組小鼠逃避潛伏期、探索時(shí)間延長(zhǎng)(q=22.169~91.845,Plt;0.05),穿越次數(shù)增加(q=18.347、41.936,Plt;0.05);與D組比較,E組小鼠逃避潛伏期、探索時(shí)間延長(zhǎng)(q=30.765、85.881,Plt;0.05),穿越次數(shù)減少(q=39.315,Plt;0.05);腦組織含水量和TUNEL染色檢測(cè)結(jié)果顯示,C、D組小鼠腦組織含水量、海馬組織神經(jīng)細(xì)胞凋亡率較B組降低(q=7.269~33.327,Plt;0.05),E組小鼠腦組織含水量、海馬組織神經(jīng)細(xì)胞凋亡率較D組升高(q=9.957、31.004,Plt;0.05);ELISA及Western blot實(shí)驗(yàn)檢測(cè)結(jié)果顯示,與B組比較,C、D組小鼠海馬組織中MDA含量、Bax和PTEN相對(duì)表達(dá)量降低(q=10.734~22.978,Plt;0.05),SOD和GSH-Px水平、Bcl-2相對(duì)表達(dá)量及p-Akt/Akt值升高(q=11.862~31.997,Plt;0.05);與D組比較,E組小鼠海馬組織中MDA含量、Bax和PTEN相對(duì)表達(dá)量升高(q=14.766~20.400,Plt;0.05),SOD和GSH-Px水平、Bcl-2相對(duì)表達(dá)量及p-Akt/Akt值降低(q=24.007~30.370,Plt;0.05)。結(jié)論Mcy可抑制ICH模型小鼠海馬組織神經(jīng)細(xì)胞凋亡,進(jìn)而減輕海馬組織損傷,提高學(xué)習(xí)和記憶能力,改善認(rèn)知功能障礙,其作用機(jī)制可能與其抑制PTEN并激活PI3K/Akt信號(hào)通路有關(guān)。
[關(guān)鍵詞]米諾環(huán)素;腦出血;PTEN磷酸水解酶;原癌基因蛋白質(zhì)c-akt;信號(hào)傳導(dǎo);認(rèn)知障礙;疾病模型,動(dòng)物
[中圖分類號(hào)]R743.34;R741[文獻(xiàn)標(biāo)志碼]A
Effect of minocycline on cognitive dysfunction in mice with intracerebral hemorrhage and its mechanismLI Yangyang, FANG Jian, WANG Xiaoxue(Department of Neurology for the Elderly, The First Affiliated Hospital of Henan University, Kaifeng 475001, China)
[ABSTRACT]ObjectiveTo investigate the effect of minocycline (Mcy) on cognitive dysfunction in mice with intracerebral hemorrhage (ICH) and its mechanism. MethodsMale C57BL/6J mice were randomly divided into groups A, B, C, D, and E, with 20 mice in each group. The mice in group A were given injection of normal saline via the caudal vein, those in group B were given injection of autologous blood via the caudal vein to establish a model of ICH, those in groups C and D were given Mcy by gavage every day at a dose of 20 mg/kg and 50 mg/kg, respectively, in addition to the treatment in group B, and those in group E were given intraperitoneal injection of 5 μL DMSO solution containing 12 μg MK-2206 in addition to the treatment in group D; the course of treatment was 14 days for all groups. After treatment, modified Neurological Severity Score (mNSS) was used to assess nerve injury of mice in each group; the water maze test was used to evaluate the cognitive ability of mice in each group; brain water content was calculated for mice in each group; HE staining was used to observe the pathological morphology of hippocampal tissue; the TUNEL method was used to measure neuronal apoptosis in hippocampal tissue of mice in each group; ELISA was used to measure the levels of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) in hippocampal tissue of mice, and Western blot was used to measure the protein expression levels of Bax, Bcl-2, phosphatase and tensin ho-molog (PTEN), protein kinase B (Akt), and phosphorylated Akt (p-Akt) in hippocampal tissue. ResultsNerve injury assessment showed that groups C and D had a significantly lower mNSS score than group B (q=22.925,55.457,Plt;0.05), and group E had a significantly higher mNSS score than group D (q=44.448,Plt;0.05). The water maze test showed that compared with group B, groups C and D had significantly longer escape latency and exploration time (q=22.169-91.845,Plt;0.05) and a significantly higher number of crossings (q=18.347,41.936,Plt;0.05), and compared with group D, group E had significantly longer escape latency and exploration time (q=30.765,85.881,Plt;0.05) and a significantly lower number of crossings (q=39.315,Plt;0.05). The results of brain water content and TUNEL staining showed that compared with group B, groups C and D had significantly lower brain water content and neuronal apoptosis rate in hippocampal tissue (q=7.269-33.327,Plt;0.05), and compared with group D, group E had significantly higher brain water content and neuronal apoptosis rate (q=9.957,31.004,Plt;0.05). ELISA and Western blot showed that compared with group B, groups C and D had significantly lower content of MDA and relative expression levels of Bax and PTEN in hippocampal tissue (q=10.734-22.978,Plt;0.05) and significantly higher activities of SOD and GSH-Px, relative expression level of Bcl-2, and p-Akt/Akt ratio (q=11.862-31.997,Plt;0.05), and compared with group D, group E had significantly higher content of MDA and relative expression levels of Bax and PTEN in hippocampal tissue (q=14.766-20.400,Plt;0.05) and significantly lower activities of SOD and GSH-Px, relative expression level of Bcl-2, and p-Akt/Akt ratio (q=24.007-30.370,Plt;0.05). ConclusionMcy can inhibit neuronal apoptosis in the hippocampus of ICH mice, thereby alleviating hippocampal injury and improving learning and memory abilities and cognitive dysfunction, possibly by activating the PI3K/Akt signaling pathway after inhibiting PTEN.
[KEY WORDS]Minocycline; Cerebral hemorrhage; PTEN phosphohydrolase; Proto-oncogene proteins c-akt; Signal transduction; Cognition disorders; Disease models, anima
腦出血(ICH)是指原發(fā)性而非外傷性腦實(shí)質(zhì)出血[1],ICH后會(huì)引發(fā)腦組織血腫,導(dǎo)致顱內(nèi)活性氧增加,促進(jìn)顱內(nèi)氧化應(yīng)激,進(jìn)而導(dǎo)致繼發(fā)性神經(jīng)損傷[2]。已知ICH患者的病死率高達(dá)35%~52%,出院后患者也可能同時(shí)伴有不可逆的神經(jīng)功能損傷和相關(guān)后遺癥,預(yù)后較差[3]。統(tǒng)計(jì)結(jié)果顯示,ICH患者中19.0%~63.3%患者在發(fā)病后4年之內(nèi)會(huì)出現(xiàn)認(rèn)知障礙,并且認(rèn)知障礙可能會(huì)造成患者生活質(zhì)量的下降以及生存期縮短[4]。磷酸酶張力蛋白同源物(PTEN)是一種腫瘤抑制基因,是磷脂酰肌醇3-激酶(PI3K)/蛋白激酶B(Akt)途徑的負(fù)調(diào)節(jié)因子,可使磷脂酰肌醇3,4,5-三磷酸去磷酸化,抑制Akt活性[5]。研究顯示,抑制PTEN表達(dá)能夠減輕蛛網(wǎng)膜下腔出血大鼠的白質(zhì)軸突損傷和神經(jīng)元凋亡,改善ICH后大鼠的繼發(fā)性海馬組織損傷和認(rèn)知功能障礙[5-6]。米諾環(huán)素(Mcy)屬于四環(huán)素類抗生素,可促進(jìn)創(chuàng)傷性腦損傷小鼠的神經(jīng)功能恢復(fù),使腦神經(jīng)血管重塑[7];還可改善阿爾茨海默癥小鼠的認(rèn)知功能障礙以及減輕老年大鼠ICH后的腦積水癥狀[8-9]。但是關(guān)于Mcy對(duì)ICH小鼠認(rèn)知功能障礙的作用機(jī)制是否與PTEN/PI3K/Akt通路有關(guān)目前尚不明確。本研究通過(guò)建立ICH小鼠模型,探討Mcy對(duì)ICH小鼠認(rèn)知功能障礙的影響及其具體影響機(jī)制,旨在為ICH臨床治療策略的研究提供理論依據(jù)。
1材料與方法
1.1實(shí)驗(yàn)動(dòng)物
SPF級(jí)C57BL/6J雄性小鼠100只,8周齡,體質(zhì)量22~25 g,購(gòu)自湖南斯萊克景達(dá)實(shí)驗(yàn)動(dòng)物有限公司,許可證號(hào)SCXK(湘)2019-0004。所有小鼠均飼養(yǎng)于河南大學(xué)實(shí)驗(yàn)動(dòng)物中心,飼養(yǎng)環(huán)境:溫度為24~26 ℃,濕度為50%~60%,12/12 h晝夜光照節(jié)律,小鼠自由飲食。
1.2主要試劑及儀器
Mcy片劑(規(guī)格:0.1 g/片,丹東醫(yī)創(chuàng)藥業(yè)有限責(zé)任公司,國(guó)藥準(zhǔn)字H10940263);MK-2206(美國(guó)MedChemExpress公司);蘇木精-伊紅(HE)染色液(上海源葉生物科技有限公司);TUNEL細(xì)胞凋亡檢測(cè)試劑盒(上海弗元生物科技有限公司);超氧化物歧化酶(SOD)、谷胱甘肽過(guò)氧化物酶(GSH-Px)、丙二醛(MDA)酶聯(lián)免疫吸附試驗(yàn)(ELISA)試劑盒(南京森貝伽生物科技有限公司);PTEN、Akt、p-Akt兔單抗和GAPDH兔多抗(英國(guó)abcam公司);過(guò)氧化物酶標(biāo)記酶標(biāo)儀(上海帝肯實(shí)驗(yàn)器材有限公司);ChemiDoc MP System全能型成像系統(tǒng)(上海伯樂(lè)生命醫(yī)學(xué)產(chǎn)品有限公司)。
1.3實(shí)驗(yàn)方法
1.3.1ICH模型制備以及各組小鼠的處理將C57BL/6J小鼠適應(yīng)性飼養(yǎng)1周以后,禁食不禁水12 h,隨機(jī)分為A~E組,每組20只。B~E組小鼠參照相關(guān)文獻(xiàn)[10]建立ICH小鼠模型并通過(guò)Bederson神經(jīng)功能分級(jí)[11]驗(yàn)證模型是否成功,1~3級(jí)為ICH模型構(gòu)建成功;A組小鼠則以生理鹽水代替自體血注射;C、D組小鼠分別灌胃20、50 mg/kg的Mcy[11]并注射5 μL DMSO溶液;E組小鼠在灌胃50 mg/kg Mcy 30 min后,腹腔注射12 μg的MK-2206(溶于5 μL DMSO溶液)[12];A、B組小鼠灌胃等劑量生理鹽水,并注射5 μL DMSO溶液;以上處理均每天1次,共14 d。各組小鼠于末次給藥12 h后根據(jù)改良神經(jīng)病學(xué)嚴(yán)重程度評(píng)分(mNSS)[2]評(píng)估神經(jīng)損傷情況。
1.3.2Morris水迷宮實(shí)驗(yàn)[13]檢測(cè)各組小鼠認(rèn)知和學(xué)習(xí)記憶能力各組小鼠神經(jīng)功能評(píng)估結(jié)束后,首先對(duì)小鼠進(jìn)行4 d的訓(xùn)練,第5天時(shí)記錄小鼠找到水下固定平臺(tái)的時(shí)間(逃避潛伏期),第6天時(shí)撤去水下固定平臺(tái),記錄小鼠入水后首次經(jīng)過(guò)平臺(tái)的時(shí)間(探索時(shí)間)以及2 min內(nèi)穿越平臺(tái)的次數(shù)(穿越次數(shù))。
1.3.3檢測(cè)各組小鼠腦組織含水量每組隨機(jī)取5只小鼠,腹腔注射1%戊巴比妥鈉(40 mg/kg)麻醉后頸椎脫臼處死,分離腦組織稱取濕質(zhì)量,將腦組織置于85 ℃烘箱中干燥24 h后稱取干質(zhì)量,計(jì)算腦組織含水量。腦組織含水量(%)=(濕質(zhì)量-干質(zhì)量)/濕質(zhì)量×100%。
1.3.4HE和TUNEL染色觀察各組小鼠海馬組織病理形態(tài)及神經(jīng)細(xì)胞凋亡情況剩余小鼠按1.3.3中的方法處死,于無(wú)菌環(huán)境下解剖小鼠腦組織并分離海馬組織,每組隨機(jī)取5只小鼠海馬組織于4%多聚甲醛中固定過(guò)夜,各組剩余小鼠的海馬組織置于-80 ℃保存?zhèn)溆谩⒍嗑奂兹┲械暮qR組織進(jìn)行常規(guī)石蠟包埋切片,再脫蠟水化后,每只小鼠的切片隨機(jī)分為兩份。一份進(jìn)行HE染色,于光學(xué)顯微鏡下觀察各組海馬組織的病理形態(tài);另一份進(jìn)行TUNEL染色,于熒光顯微鏡下觀察各組海馬組織神經(jīng)細(xì)胞凋亡情況,并計(jì)算神經(jīng)細(xì)胞凋亡率。
1.3.5ELISA法檢測(cè)各組小鼠海馬組織中SOD、GSH-Px和MDA水平隨機(jī)選取1.3.4中各組凍存的5只小鼠的海馬組織進(jìn)行稱重,按1∶9(質(zhì)量/體積)比例加入預(yù)冷PBS緩沖液中研磨,在4 ℃下離心10 min,收集上清液。按照ELISA試劑盒說(shuō)明書的步驟,檢測(cè)上清液當(dāng)中SOD、GSH-Px和MDA水平。
1.3.6Western blot實(shí)驗(yàn)檢測(cè)各組小鼠海馬組織中Bax、Bcl-2、PTEN、Akt、p-Akt蛋白的表達(dá)水平取1.3.4中凍存的各組剩余的5只小鼠海馬組織加入RIPA裂解液,超聲粉碎后勻漿,4 ℃下離心,取上清液,采用BCA試劑盒測(cè)定總蛋白濃度。各蛋白樣品用十二烷基硫酸鈉-聚丙烯酰氨凝膠分離后轉(zhuǎn)移至聚偏二氟乙烯膜上,置于5%脫脂牛奶中4 ℃下封閉過(guò)夜;TBST洗滌后,加入相應(yīng)的一抗(稀釋比例1∶1 000的Bax、Bcl-2、PTEN、Akt、p-Akt),室溫下孵育1 h;TBST洗滌后,再加入二抗繼續(xù)室溫孵育1 h,ECL試劑避光顯影。以GAPDH為內(nèi)參照,用Image J軟件分析蛋白條帶灰度值,并計(jì)算各目的蛋白的相對(duì)表達(dá)量。
1.4統(tǒng)計(jì)學(xué)處理
采用Graphpad prism 8.0軟件對(duì)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析。符合正態(tài)分布的計(jì)量資料以±s表示,多組之間比較使用單因素方差分析,進(jìn)一步兩兩比較使用Tukey檢驗(yàn)。以Plt;0.05為差異具有統(tǒng)計(jì)學(xué)意義。
2結(jié)果
2.1Mcy對(duì)各組小鼠神經(jīng)功能損傷影響
A~E組小鼠mNSS評(píng)分分別為(1.36±0.15)、(12.75±1.17)、(7.64±0.59)、(3.28±0.34)、(10.87±1.03)分,各組比較差異具有顯著意義(F=805.341,Plt;0.05);其中與A組相比,B組小鼠的mNSS評(píng)分顯著升高(q=66.701,Plt;0.05);與B組相比,C組和D組小鼠的mNSS評(píng)分顯著降低(q=22.925、55.457,Plt;0.05),且D組小鼠的mNSS評(píng)分顯著低于C組(q=25.532,Plt;0.05);同時(shí)與D組相比較,E組小鼠的mNSS評(píng)分顯著升高(q=44.448,Plt;0.05)。
2.2Mcy對(duì)各組小鼠認(rèn)知能力影響
5組小鼠逃避潛伏期、探索時(shí)間、穿越次數(shù)比較差異均具有顯著意義(F=347.982~2 111.114,Plt;0.05);與A組相比,B組小鼠的逃避潛伏期和探索時(shí)間顯著延長(zhǎng),而穿越次數(shù)顯著減少(q=42.844~99.417,Plt;0.05);與B組相比,C組和D組小鼠逃避潛伏期和探索時(shí)間顯著減少,穿越次數(shù)顯著增多(q=18.347~91.845,Plt;0.05),且D組和C組差異顯著(q=15.527~59.164,Plt;0.05);與D組相比,E組小鼠逃避潛伏期和探索時(shí)間顯著延長(zhǎng),穿越次數(shù)顯著減少(q=30.765~85.881,Plt;0.05)。見(jiàn)表1。
2.3Mcy對(duì)各組小鼠腦含水量影響
A~E組小鼠腦組織的含水量分別為(58.94±3.75)%、(86.62±5.21)%、(71.83±4.65)%、(62.98±3.72)%、(83.24±5.18)%,各組間比較差異有顯著性(F=35.594,Plt;0.05);與A組相比,B組小鼠腦組織含水量顯著升高(q=13.604,Plt;0.05);與B組相比,C組和D組小鼠的腦組織含水量顯著降低(q=7.269、11.618,Plt;0.05),且D組顯著低于C組(q=4.350,Plt;0.05);與D組相比,E組小鼠的腦組織含水量顯著升高,差異均具有顯著意義(q=9.957,Plt;0.05)。
2.4Mcy對(duì)各組小鼠海馬組織病理形態(tài)影響
HE染色結(jié)果顯示,A組小鼠海馬區(qū)神經(jīng)元排列緊密,細(xì)胞結(jié)構(gòu)正常,細(xì)胞核清晰;與A組相比,B組小鼠海馬區(qū)神經(jīng)元排列不規(guī)則,大量神經(jīng)元退化,細(xì)胞核固縮,且染色加深;與B組相比,C、D組小鼠海馬組織損傷出現(xiàn)不同程度的減輕,神經(jīng)元排列逐漸規(guī)則,細(xì)胞核固縮減輕,未見(jiàn)明顯的水腫;與D組相比,E組小鼠神經(jīng)元損傷嚴(yán)重,與B組形態(tài)相似。見(jiàn)圖1。
2.5Mcy對(duì)各組小鼠海馬組織神經(jīng)細(xì)胞凋亡影響
A~E組小鼠海馬組織神經(jīng)細(xì)胞的凋亡率分別為(2.27±0.21)%、(38.69±2.43)%、(25.38±1.95)%、(11.72±1.23)%、(36.81±2.26)%,各組間比較差異有顯著性(F=381.568,Plt;0.05);與A組相比,B組小鼠海馬組織神經(jīng)細(xì)胞凋亡率顯著升高(q=45.005,Plt;0.05);與B組相比,C、D組小鼠海馬組織神經(jīng)細(xì)胞凋亡率均顯著降低(q=16.447、33.327,Plt;0.05),且D組低于C組(q=16.880,Plt;0.05);此外,與D組相比,E組小鼠海馬組織神經(jīng)細(xì)胞凋亡率顯著升高(q=31.004,Plt;0.05)。見(jiàn)圖2。
2.6Mcy對(duì)各組小鼠海馬組織中SOD、GSH-Px和MDA水平影響
5組小鼠海馬組織中SOD、GSH-Px、MDA水平比較差異有顯著性(F=132.530~240.371,Plt;0.05);與A組相比,B組小鼠海馬組織中SOD、GSH-Px水平顯著降低,MDA水平顯著升高(q=24.893~33.185,Plt;0.05);與B組相比,C、D組小鼠海馬組織中SOD、GSH-Px水平顯著升高,MDA水平顯著降低(q=11.862~30.650,Plt;0.05),且D組和C組差異顯著(q=6.481~15.977,Plt;0.05);與D組相比,E組小鼠海馬組織中SOD、GSH-Px水平顯著降低,MDA水平顯著升高(q=20.401~28.631,Plt;0.05)。見(jiàn)表2。
5組小鼠海馬組織中Bax、Bcl-2、PTEN、Akt的相對(duì)表達(dá)量及p-Akt/Akt比值比較差異具有顯著性(F=70.350~266.677,Plt;0.05);與A組相比,B組小鼠海馬組織Bax、PTEN相對(duì)表達(dá)量顯著升高,Bcl-2相對(duì)表達(dá)量及p-Akt/Akt比值顯著降低(q=18.501~34.709,Plt;0.05);與B組相比,C、D組小鼠海馬組織中Bax、PTEN的相對(duì)表達(dá)量顯著降低,Bcl-2相對(duì)表達(dá)量及p-Akt/Akt比值顯著升高(q=8.735~31.997,Plt;0.05),且C組和D組比較差異具有顯著性(q=6.863~16.812,Plt;0.05);與D組相比,E組小鼠海馬組織中的Bax、PTEN相對(duì)表達(dá)量顯著升高,Bcl-2相對(duì)表達(dá)量以及p-Akt/Akt的比值顯著降低(q=14.766~30.370,Plt;0.05)。詳見(jiàn)圖3和表3。
3討論
近幾十年研究資料顯示,ICH患者具有較高的相關(guān)死亡率和發(fā)病率,患者不僅有再出血的風(fēng)險(xiǎn),且發(fā)生動(dòng)脈缺血事件的風(fēng)險(xiǎn)也高于普通人群[14]。腦組織血腫部位的周圍水腫是ICH繼發(fā)性腦損傷的可量化標(biāo)志之一,其主要表現(xiàn)為腦組織的含水量增加[15]。目前ICH尚無(wú)特效治療方法,現(xiàn)有療法雖能夠顯著降低患者的死亡率,但對(duì)預(yù)后的改善效果有限。即使通過(guò)手術(shù)清除血腫,ICH患者的神經(jīng)功能缺損也會(huì)持續(xù)惡化,主要是由于ICH后繼發(fā)性腦損傷致神經(jīng)元丟失,進(jìn)一步致神經(jīng)功能發(fā)生不可逆的損傷[16]。目前研究顯示,Mcy可通過(guò)降低ICH小鼠中細(xì)胞外基質(zhì)金屬蛋白酶誘導(dǎo)劑的表達(dá),減輕血腦屏障破壞,緩解神經(jīng)炎癥,抑制神經(jīng)細(xì)胞變性和死亡,進(jìn)而發(fā)揮神經(jīng)保護(hù)作用[17]。Mcy還可通過(guò)抑制腦小血管周圍細(xì)胞外基質(zhì)的降解,降低腦淀粉樣血管病相關(guān)ICH的復(fù)發(fā)風(fēng)險(xiǎn)[18]。基于此,本研究通過(guò)建立ICH小鼠模型探討Mcy對(duì)于小鼠認(rèn)知功能障礙的影響,結(jié)果顯示B組小鼠的神經(jīng)功能損傷評(píng)分升高,且在水迷宮實(shí)驗(yàn)中逃避潛伏期和探索時(shí)間增長(zhǎng),穿越平臺(tái)的次數(shù)減少,腦含水量升高,說(shuō)明ICH小鼠模型建立成功。當(dāng)Mcy低、高劑量干預(yù)后,小鼠神經(jīng)功能損傷評(píng)分顯著降低,腦含水量下降,逃避潛伏期和探索平臺(tái)時(shí)間縮短,2 min內(nèi)穿越平臺(tái)次數(shù)增多,且高劑量Mcy干預(yù)的小鼠上述各指標(biāo)變化幅度均高于低劑量干預(yù)小鼠。上述結(jié)果提示Mcy能夠顯著提高ICH小鼠學(xué)習(xí)和記憶能力,減輕腦血腫周圍組織的水腫,從而改善小鼠認(rèn)知功能障礙,且高劑量Mcy效果更好。
神經(jīng)細(xì)胞凋亡是ICH后血腫周圍組織損傷的主要機(jī)制,ICH后誘導(dǎo)神經(jīng)細(xì)胞凋亡的因素很多,如細(xì)胞因子刺激、血液成分的誘導(dǎo)以及各種基因調(diào)節(jié)作用,包括促進(jìn)凋亡蛋白Bax和抑制凋亡蛋白Bcl-2的表達(dá)[19-20]。本研究結(jié)果顯示,相較于B組,C組和D組小鼠海馬組織神經(jīng)元損傷減輕,腦含水量下降,且神經(jīng)細(xì)胞凋亡率降低,Bax蛋白表達(dá)降低,Bcl-2表達(dá)升高,提示Mcy能夠抑制ICH小鼠的神經(jīng)元凋亡,進(jìn)而改善小鼠的神經(jīng)功能障礙。已知氧化應(yīng)激在ICH引發(fā)腦水腫和繼發(fā)性腦損傷中也起著重要作用[21]。ICH后會(huì)產(chǎn)生大量的自由基,導(dǎo)致脂質(zhì)過(guò)氧化水平升高,MDA是臨床研究中最常用的脂質(zhì)過(guò)氧化生物標(biāo)志物,而SOD和GSH-Px是維持抗氧化防御系統(tǒng)穩(wěn)態(tài)的重要抗氧化酶[21-22]。本研究結(jié)果顯示,C組和D組小鼠海馬組織中SOD和GSH-Px水平較B組升高,MDA水平較B組降低,提示Mcy抑制了ICH小鼠的氧化應(yīng)激反應(yīng),進(jìn)而抑制了其神經(jīng)元凋亡。
近年來(lái),PTEN被發(fā)現(xiàn)是具有脂質(zhì)/蛋白質(zhì)雙特異性磷酸酶活性的癌基因,可以參與多種疾病的發(fā)展,與氧化應(yīng)激和炎癥也密切相關(guān),在神經(jīng)系統(tǒng)疾病的發(fā)生發(fā)展中有重要作用[23]。PTEN作為Akt信號(hào)通路的上游負(fù)調(diào)節(jié)因子,可通過(guò)抑制Akt活性,間接抑制哺乳動(dòng)物雷帕霉素靶蛋白(mTOR)磷酸化。在創(chuàng)傷性腦損傷小鼠中,PTEN缺失可通過(guò)持續(xù)激活A(yù)kt/mTOR通路,促進(jìn)軸突再生和皮質(zhì)重映射,從而改善預(yù)后[24]。近期有研究發(fā)現(xiàn),在帕金森病毒素(6-羥多巴胺或魚藤酮)致小鼠神經(jīng)元損傷模型中,過(guò)氧化氫酶和Mito-TEMPO(一種線粒體特異性超氧化物清除劑)等抗氧化劑的加入可通過(guò)調(diào)節(jié)PTEN/Akt通路介導(dǎo)的自噬,抑制神經(jīng)元凋亡[25]。另外,左西孟旦可能通過(guò)調(diào)控PTEN/Akt信號(hào)通路調(diào)節(jié)鐵死亡,顯著減輕慢性缺氧大鼠的腦損傷程度[26]。本研究結(jié)果顯示,與B組比較,C、D組小鼠海馬組織PTEN表達(dá)顯著降低,p-Akt/Akt比值顯著升高,且D組變化幅度大于C組,表明Mcy可以通過(guò)調(diào)節(jié)PTEN/Akt信號(hào)通路發(fā)揮神經(jīng)保護(hù)作用,并且高劑量效果更好。為了進(jìn)一步證實(shí)PTEN/Akt信號(hào)途徑在Mcy改善ICH小鼠認(rèn)知功能障礙中的作用,本研究在Mcy治療的基礎(chǔ)上又通過(guò)Akt抑制劑進(jìn)行了回補(bǔ)實(shí)驗(yàn),結(jié)果顯示,相較于D組小鼠,E組中Mcy對(duì)ICH小鼠認(rèn)知功能障礙、神經(jīng)損傷以及氧化應(yīng)激反應(yīng)的改善作用被逆轉(zhuǎn),且PTEN的表達(dá)升高,進(jìn)一步說(shuō)明Mcy改善ICH小鼠認(rèn)知功能障礙的作用機(jī)制可能與抑制PTEN并激活PI3K/Akt信號(hào)通路有關(guān)。
綜上所述,Mcy可通過(guò)調(diào)節(jié)ICH模型中小鼠海馬組織的氧化和抗氧化平衡,抑制神經(jīng)元凋亡,提高小鼠的學(xué)習(xí)和記憶能力,進(jìn)而改善ICH模型小鼠的認(rèn)知功能障礙,其作用機(jī)制可能與抑制海馬組織中PTEN表達(dá)并激活PI3K/Akt信號(hào)通路有關(guān)。然而關(guān)于Mcy對(duì)ICH后認(rèn)知功能障礙的具體影響機(jī)制較為復(fù)雜,還需要后續(xù)進(jìn)行進(jìn)一步深入研究和完善。
倫理批準(zhǔn)和知情同意:本研究涉及的所有動(dòng)物實(shí)驗(yàn)均已通過(guò)河南大學(xué)第一附屬醫(yī)院醫(yī)學(xué)倫理委員會(huì)的審核批準(zhǔn)(文件號(hào)202205-078)。所有實(shí)驗(yàn)過(guò)程均遵照《中華人民共和國(guó)實(shí)驗(yàn)動(dòng)物管理?xiàng)l例》進(jìn)行。
作者聲明:李陽(yáng)陽(yáng)、方建參與了研究設(shè)計(jì);李陽(yáng)陽(yáng)、王曉雪參與了論文的寫作和修改。所有作者均閱讀并同意發(fā)表該論文,且均聲明不存在利益沖突。
[參考文獻(xiàn)]
[1]WU Z J, CHEN D Y, PAN C, et al. Surgical robotics for intracerebral hemorrhage treatment: State of the art and future directions[J]. Ann Biomed Eng, 2023,51(9):1933-1941.
[2]DUAN C Y, WANG H B, JIAO D, et al. Curcumin restrains oxidative stress of after intracerebral hemorrhage in rat by activating the Nrf2/HO-1 pathway[J]. Front Pharmacol, 2022,13:889226.
[3]LIN J, XU Y, GUO P W, et al. CCL5/CCR5-mediated peripheral inflammation exacerbates blood-brain barrier disruption after intracerebral hemorrhage in mice[J]. J Transl Med, 2023, 21(1):196.
[4]ZHANG X Y, LI H H, WANG H M, et al. Iron/ROS/Itga3 mediated accelerated depletion of hippocampal neural stem cell pool contributes to cognitive impairment after hemorrhagic stroke[J]. Redox Biol, 2024,71:103086.
[5]CHEN H, ZHOU C, ZHENG J F, et al. PTEN and AKT/GSK-3β/CRMP-2 signaling pathway are involved in neuronal apoptosis and axonal injury in early brain injury after SAH in rats[J]. Genes Dis, 2020,9(1):252-267.
[6]ZHAO M M, GAO J L, CUI C M, et al. Inhibition of PTEN ameliorates secondary hippocampal injury and cognitive deficits after intracerebral hemorrhage: Involvement of AKT/FoxO3a/ATG-mediated autophagy[J]. Oxid Med Cell Longev, 2021, 2021:5472605.
[7]LU Q, XIONG J, YUAN Y, et al. Minocycline improves the functional recovery after traumatic brain injury via inhibition of aquaporin-4[J]. Int J Biol Sci, 2022,18(1):441-458.
[8]AMIRAHMADI S, FARIMANI F D, AKBARIAN M, et al. Minocycline attenuates cholinergic dysfunction and neuro-inflammation-mediated cognitive impairment in scopolamine-induced Alzheimer’s rat model[J]. Inflammopharmacology, 2022,30(6):2385-2397.
[9]WAN Y F, HOLSTE K G, YE F H, et al. Minocycline atte-nuates hydrocephalus and inhibits iron accumulation, ependymal damage and epiplexus cell activation after intraventricular hemorrhage in aged rats[J]. Exp Neurol, 2023,369:114523.
[10]LI M Y, DAI X H, YU X P, et al. Scalp acupuncture protects against neuronal ferroptosis by activating the p62-Keap1-Nrf2 pathway in rat models of intracranial haemorrhage[J]. J Mol Neurosci, 2022,72(1):82-96.
[11]ZHENG Y H, FAN L F, XIA S Q, et al. Role of complement C1q/C3-CR3 signaling in brain injury after experimental intracerebral hemorrhage and the effect of minocycline treatment[J]. Front Immunol, 2022,13:919444.
[12]丁玉美,王瑩,李亞婷,等. 姜黃素對(duì)利多卡因誘導(dǎo)大鼠神經(jīng)損傷的影響:Akt和ERK 1/2信號(hào)通路在其中的作用[J]. 中華麻醉學(xué)雜志, 2019,39(3):309-313.
[13]WANG B, ZHU S, GUO M, et al. Artemisinin ameliorates cognitive decline by inhibiting hippocampal neuronal ferroptosis via Nrf2 activation in T2DM mice[J]. Mol Med, 2024,30(1):35.
[14]LI L X, MURTHY S B. Cardiovascular events after intracerebral hemorrhage[J]. Stroke, 2022,53(7):2131-2141.
[15]CHEN Y H, CHEN S P, CHANG J B, et al. Perihematomal edema after intracerebral hemorrhage: An update on pathogenesis, risk factors, and therapeutic advances[J]. Front Immunol, 2021,12:740632.
[16]LEI P, LI Z Y, HUA Q W, et al. Ursolic acid alleviates neuroinflammation after intracerebral hemorrhage by mediating microglial pyroptosis via the NF-κB/NLRP3/GSDMD pathway[J]. Int J Mol Sci, 2023,24(19):14771.
[17]LIU Y, LI Z, KHAN S, et al. Neuroprotection of minocycline by inhibition of extracellular matrix metalloproteinase inducer expression following intracerebral hemorrhage in mice[J]. Neurosci Lett, 2021,764:136297.
[18]BAX F, WARREN A, FOUKS A A, et al. Minocycline in severe cerebral amyloid angiopathy: A single-center cohort study[J]. J Am Heart Assoc, 2024,13(4):e033464.
[19]TSAI Y C, CHANG C H, CHONG Y B, et al. microRNA-195-5p inhibits intracerebral hemorrhage-induced inflammatory response and neuron cell apoptosis[J]. Int J Mol Sci, 2024,25(19):10321.
[20]袁美玲,張?jiān)疲跗G,等. 羥基紅花紅色素A抑制氧化應(yīng)激和細(xì)胞凋亡改善OGD/R誘導(dǎo)的HT22細(xì)胞損傷[J]. 中南藥學(xué), 2022,20(1):1-7.
[21]YAO Z J, BAI Q Q, WANG G Q. Mechanisms of oxidative stress and therapeutic targets following intracerebral hemorrhage[J]. Oxid Med Cell Longev, 2021,2021:8815441.
[22]張忠立,李淑琪,左月明. 梔子花舒心膠囊、酸橙花舒暢膠囊和酸橙梔子雙花抗腦衰膠囊對(duì)大鼠局灶性腦缺血/再灌注損傷的保護(hù)作用[J]. 中南藥學(xué), 2022,20(6):1309-1315.
[23]HU L T, WANG B Y, FAN Y H, et al. Exosomal miR-23b from bone marrow mesenchymal stem cells alleviates oxidative stress and pyroptosis after intracerebral hemorrhage[J]. Neural Regen Res, 2023,18(3):560-567.
[24]SHI Z Y, MAO L L, CHEN S N, et al. Reversing persistent PTEN activation after traumatic brain injury fuels long-term axonal regeneration via Akt/mTORC1 signaling cascade[J]. Adv Sci, 2025,12(6):e2410136.
[25]YU Q Y, ZHANG R J, LI T J, et al. Mitochondrial hydrogen peroxide activates PTEN and inactivates Akt leading to autophagy inhibition-dependent cell death in neuronal models of Parkinson’s disease[J]. Mol Neurobiol, 2023,60(6):3345-3364.
[26]MENG W, SHU C, GAO H. Levosimendan ameliorates hypoxia-induced brain injury in rats by modulating PTEN/Akt signaling pathway-mediated ferroptosis[J]. Discov Med, 2024,36(186):1453-1463.
(本文編輯耿波)