摘 要:研究了一類在Hilbert空間中具有分?jǐn)?shù)Brown運(yùn)動(dòng)的分?jǐn)?shù)階中立型隨機(jī)微分方程,利用Picard逐步逼近法得到了其非Lipschitz條件和弱化的線性增長(zhǎng)條件下粘性解的新的存在唯一性的充分條件.所提的研究方法使得先前一些研究結(jié)果得到了拓展.最后通過具有分?jǐn)?shù)Brown運(yùn)動(dòng)的隨機(jī)非線性波動(dòng)方程驗(yàn)證了理論的有效性.
關(guān)鍵詞:分?jǐn)?shù)階隨機(jī)微分方程;分?jǐn)?shù)Brown運(yùn)動(dòng);粘性解;存在唯一性
中圖分類號(hào):O175.14 文獻(xiàn)標(biāo)志碼:A文章編號(hào):1000-2367(2025)03-0104-08
1 預(yù)備知識(shí)
2 解的存在唯一性
3 例 子
4 結(jié) 論
本文討論了一類具有分?jǐn)?shù)Brown運(yùn)動(dòng)的分?jǐn)?shù)階中立型隨機(jī)微分方程.運(yùn)用逐步逼近法給出了非Lipschitz條件和弱化的線性增長(zhǎng)條件下粘性解的存在性和唯一性的充分條件,其中Lipschitz條件視為其特殊情形.并通過具有分?jǐn)?shù)Brown運(yùn)動(dòng)的隨機(jī)非線性波動(dòng)方程的應(yīng)用驗(yàn)證了理論的有效性.本文的方法避免了使用較強(qiáng)的Lipschitz條件,對(duì)于研究隨機(jī)非線性系統(tǒng)的解的存在唯一性較為有效.該方法亦可用于討論時(shí)滯中立型隨機(jī)微分方程解的存在唯一性和穩(wěn)定性,為研究其他中立型隨機(jī)微分方程提供了理論依據(jù).
參 考 文 獻(xiàn)
[1] GOVINDAN T E.Almost sure exponential stability for stochastic neutral partial functional differential equations[J].Stochastics,2005,77:139-154.
[2]BAO J H,HOU Z T.Existence of mild solutions to stochastic neutral partial functional differential equations with non-Lipschitz coefficients[J].Comput Math Appl,2010,59:207-214.
[3]JIANG F,SHEN Y.A note on the existence and uniqueness of mild solutions to neutral stochastic partial functional differential equations with non-Lipschitz coefficients[J].Comput Math Appl,2011,61:1590-1594.
[4] BAO H B,CAO J D.Existence of solutions for fractional stochastic impulsive neutral functional differential equations with infinite delay[J].Advances in Difference Equations,2017(1):66.
[5]AHMADOVA A,MAHMUDOV N I.Existence and uniqueness results for a class of fractional stochastic neutral differential equations[J].Chaos,Solitons and Fractals,2020,139:110253.
[6]LI Y J,WANG Y J.The existence and asymptotic behavior of solutions to fractional stochastic evolution equations with infinite delay[J].Journal of Differential Equations,2019,266:3514-3558.
[7]REN Y,XIA N M.Existence,uniqueness and stability of the solutions to neutral stochastic functional differential equations with infinite delay[J].Applied Mathematics and Computation,2009,210:72-79.
[8]CARABALLO T,GARRIDO-ATIENZA M J,TANIGUCHI T.The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion[J].Nonlinear Anal TMA,2011,74:3671-3684.
[9]BOUFOUSSI B,HAJJI S.Neutral stochastic functional differential equations driven by a fractional Brownian motion in a Hilbert space[J].Statiscics and Probability Letters,2012,82:1549-1558.
[10]DENG S F,SHU X B,MAO J Z.Existence and exponential stability for impulsive neutral stochastic functional dierential equations driven by fBm with noncompact semigroup via Mnch fixed point[J].Journal of Mathematical Analysis and Applications,2018,467:398-420.
[11]PAZY A.Semigroups of Linear Operators and Applications to Partial Differential Equations[M].Berlin:Springer-Verlag,1983.
[12]PODLUBNY I.Fractional Differential Equations[C]//Mathematics in Science and Engineering.[S.l.:s.n.],1999.
[13]MAINARDI F.Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models[M].London:Imperial College Press,2010.
[14]MAO X R.Stochastic Differential Equations and Applications(Second Edition)[M].New York:Academic Press,2006.
[15]TANIGUCHI T.The existence and asymptotic behaviour of solutions to non-Lipschitz stochastic functional evolution equations driven by Poisson jumps[J].Stochastics,2010,82:339-363.
Existence and uniqueness of solutions to fractional neutral stochastic
differential equations with fractional brownian motionLi Guoping1, Han Ting1,2
(1. Xinhua College, Ningxia University, Yinchuan 750021, China;
2. College of Mathematics and Statistics, Ningxia University, Yinchuan 750021, China)
Abstract: In this paper, we consider a class of fractional-order neutral stochastic" differential" equations with fractional Brownian motion by using picard step by step in a Hilbert space. A novel sufficient condition for the existence and uniqueness of mild solutions is obtained in conditions of the non-Lipschitz condition and the weakened linear growth. The result generalizes a few previous known results. An application to the stochastic nonlinear wave equation with fractional Brownian motion is given to illustrate the validity of the obtained theory.
Keywords: fractional" stochastic" differential" equations; fractional Brownian motion; mild solution; existence and uniqueness
[責(zé)任編校 陳留院 楊浦]
河南師范大學(xué)學(xué)報(bào)(自然科學(xué)版)2025年3期