摘 要:在Pythagorean模糊粗糙集的基礎(chǔ)上,結(jié)合優(yōu)勢(shì)關(guān)系與多粒度,提出了一種基于優(yōu)勢(shì)關(guān)系的多粒度Pythagorean模糊粗糙集模型,并對(duì)其進(jìn)行研究.首先給出了優(yōu)勢(shì)關(guān)系的Pythagorean模糊粗糙集、Pythagorean模糊熵概念,討論其性質(zhì),然后定義了在樂(lè)觀、悲觀下的優(yōu)勢(shì)關(guān)系的多粒度Pythagorean模糊粗糙集4種模型,以及Pythagorean模糊貼近度,并證明了其性質(zhì),設(shè)計(jì)了其最優(yōu)粒度選擇算法.通過(guò)遂昌金礦優(yōu)化采礦的案例,對(duì)該模型進(jìn)行了分析,驗(yàn)證了其有效性.
關(guān)鍵詞:優(yōu)勢(shì)關(guān)系;Pythagorean模糊集;多粒度粗糙集;模糊熵;貼近度
中圖分類(lèi)號(hào):O159 文獻(xiàn)標(biāo)志碼:A文章編號(hào):1000-2367(2025)03-0079-09
1982年,PAWLAK[1]最早提出了粗糙集理論,是一種描述不精確、不完整和不確定性的數(shù)學(xué)工具,自粗糙集提出以來(lái),針對(duì)不同的要求對(duì)其進(jìn)行了推廣,如:決策理論粗糙模糊集[2]、變精度粗糙集[3]、概率粗糙集[4]、基于優(yōu)勢(shì)的粗糙集方法[5-7]、多粒度粗糙集[8]等,已在機(jī)器學(xué)習(xí)、數(shù)據(jù)挖掘等領(lǐng)域得到廣泛應(yīng)用.經(jīng)典粗糙集及其多數(shù)的拓展模型均為單粒度,這不足以處理復(fù)雜而龐大的數(shù)據(jù),所以從多層次和多角度對(duì)復(fù)雜模糊問(wèn)題進(jìn)行分析處理顯得尤為重要.因此,QIAN等[9]將粗糙集理論與粒計(jì)算思想相結(jié)合,提出了多粒度粗糙集,以彌補(bǔ)原始粗糙集中的缺陷.在粗糙集中通常將等價(jià)關(guān)系作為二元關(guān)系進(jìn)行等價(jià)類(lèi)的劃分,但是由于等價(jià)關(guān)系過(guò)于嚴(yán)格限制了粗糙集的應(yīng)用范圍.為解決這一問(wèn)題,眾多學(xué)者將等價(jià)關(guān)系進(jìn)行推廣,如周悅麗等[10]提出了一種基于相容關(guān)系的局部多粒度粗糙集模型,ZHAN等[11]提出了基于覆蓋的多粒度模糊粗糙集,劉力凱等[12]提出了基于糾纏關(guān)系的變精度優(yōu)勢(shì)關(guān)系粗糙集模型.
ZADEH[13]提出的模糊集(fuzzy set,F(xiàn)S),用隸屬度來(lái)描述元素屬于某個(gè)集合的程度,突破了經(jīng)典Cantor集合“非0即1”的限制,模糊集增強(qiáng)了表達(dá)不確定信息的能力,為研究不精確信息提供了一個(gè)新的途徑.但是該理論不能同時(shí)描述支持和反對(duì)的態(tài)度.ATANASSOV[14]提出了直覺(jué)模糊集(intuitionistic fuzzy set,IFS),該理論同時(shí)考慮了隸屬度μ(x)與非隸屬度ν(x),表達(dá)了對(duì)事物的支持和反對(duì),可以更全面地包含決策信息,在直覺(jué)模糊集中,隸屬度μ(x)與非隸屬度ν(x)滿(mǎn)足0≤μ(x)+ν(x)≤1的限制條件,隨著決策情況的不確定性增加,隸屬度與非隸屬度的取值范圍不再滿(mǎn)足于現(xiàn)狀,當(dāng)隸屬度與非隸屬度之和大于1的時(shí)候,直覺(jué)模糊集無(wú)法刻畫(huà)此問(wèn)題,為此,YAGER[15]提出畢達(dá)哥拉斯模糊集(Pythagorean fuzzy set,PFS),與直覺(jué)模糊集相似,但是Pythagorean模糊集的條件相對(duì)寬泛,這使得Pythagorean模糊集比直覺(jué)模糊集更具有普遍性.如:一個(gè)決策者對(duì)做出的決策是((3/2),(1/2))時(shí),此時(shí)(3/2)+(1/2)>1,不能使用直覺(jué)模糊集,但是((3/2))2+((1/2))2≤1,顯然Pythagorean模糊集比直覺(jué)模糊集更好處理實(shí)際問(wèn)題中的模糊性,Pythagorean模糊集一經(jīng)提出就受到了眾多研究者的廣泛關(guān)注.近年來(lái),研究者對(duì)Pythagorean模糊集進(jìn)行了廣泛的研究,取得了豐富的理論成果,如:宋娟[16]提出了考慮融合算法與交叉熵的Pythagorean決策模型,ZHANG等[17]提出了基于Pythagorean模糊集新相似度量的多準(zhǔn)則決策方法,丁恒等[18]提出基于Pythagorean模糊冪加權(quán)平均算子的多屬性群決策方法,羅靜等[19]提出基于風(fēng)險(xiǎn)偏好得分函數(shù)和Choquet積分算子的Pythagorean模糊決策方法,李美娟等[20]提出基于一種新得分函數(shù)和累積前景理論的Pythagorean模糊TOPSIS法,范建平等[21]提出了Pythagorean模糊環(huán)境下基于交叉熵和TOPSIS的多準(zhǔn)則決策方法,姬儒雅等[22]提出Pythagorean模糊三支概念格,趙杰等[23]提出了基于優(yōu)勢(shì)關(guān)系的Pythagorean模糊三支決策模型等等,Pythagorean模糊集作為直覺(jué)模糊集的一種擴(kuò)展,能更有效地描述不確定信息,在決策問(wèn)題中得到了較好的應(yīng)用,因此在Pythagorean模糊粗糙集理論的基礎(chǔ)上結(jié)合優(yōu)勢(shì)關(guān)系與多粒度,提出了一種基于優(yōu)勢(shì)關(guān)系的多粒度Pythagorean模糊粗糙集模型.
綜合上述,本文首先闡述了直覺(jué)模糊集、Pythagorean模糊集的基礎(chǔ)理論以及優(yōu)勢(shì)關(guān)系的相關(guān)知識(shí),然后定義了Pythagorean模糊熵,討論了其性質(zhì),提出了悲觀、樂(lè)觀的優(yōu)勢(shì)關(guān)系的多粒度Pythagorean模糊粗糙集4種模型,并證明其相關(guān)性質(zhì),最后結(jié)合Pythagorean模糊熵、Pythagorean模糊貼近度以及優(yōu)勢(shì)關(guān)系的Pythagorean模糊粗糙集,提出了一種粒度選擇方法,為決策者在悲觀、樂(lè)觀兩種不同情況下提供了最優(yōu)選擇.
步驟7 根據(jù)定義12,計(jì)算A={A1,A2,A3,A4}樂(lè)觀、悲觀多粒度下的貼近度,可得A1,A2,A3,A4在樂(lè)觀、悲觀多粒度粗糙集下的貼近度分別為:0.720 7、0.676 7,0.695 0、0.635 7;0.709 3、0.701 7、0.721 6、0.674 0.
步驟8 根據(jù)步驟 7所得,得出樂(lè)觀、悲觀2種情況下的最優(yōu)粒度,在樂(lè)觀多粒度下的貼近度排序?yàn)椋篘(A1)>N(A3)>N(A2)>N(A4),最優(yōu)粒度為A1,則在樂(lè)觀多粒度模型下應(yīng)該選擇機(jī)械化上向水平分層法對(duì)礦山進(jìn)行升級(jí)改造,最優(yōu)粒度選擇結(jié)果與參考文獻(xiàn)[27]中的選擇保持一致,在悲觀多粒度下的貼近度排序?yàn)椋篘(A3)>N(A1)>N(A2)>N(A4),最優(yōu)粒度為A3,則在悲觀多粒度模型下應(yīng)該選擇上向水平進(jìn)路充填法對(duì)礦山進(jìn)行升級(jí)改造.
步驟9 輸出最優(yōu)粒度.
3.2 不同方法對(duì)比分析
由參考文獻(xiàn)[21]中數(shù)據(jù)為依據(jù),根據(jù)上述步驟可得到樂(lè)觀多粒度下的貼近度分別為:y1=0.604,y2=0.789,y3=0.761,y4=0.668,悲觀多粒度下的貼近度分別為:y1=0.600,y2=0.775,y3=0.793,y4=0.673.則不同方法下的排序結(jié)果,如表5所示.
由表5知,文獻(xiàn)[16,18]中方法,得到的結(jié)果排序是一樣的,而文獻(xiàn)[21]所得結(jié)果的排序中y1、y4與文獻(xiàn)[16,18]中排序結(jié)果不同,可能是采用了不同的融合算子所導(dǎo)致的,但最優(yōu)結(jié)果都為y2,而本文所提方法在樂(lè)觀多粒度模型中,所得結(jié)果排序與參考文獻(xiàn)保持一致,最優(yōu)結(jié)果也是y2,說(shuō)明了本文所提模型的有效性與可行性,本文所提悲觀多粒度模型中,排序結(jié)果與上述方法都不相同,最優(yōu)結(jié)果是y3,這為決策者提供了不同的選擇,如果決策者偏好保守策略,那么基于“求同排異”的悲觀多粒度模型下的最優(yōu)結(jié)果y2將是最好的選擇,如果決策者偏好激進(jìn)策略,那么基于“求同存異”的樂(lè)觀多粒度模型下的最優(yōu)結(jié)果y3將是最好的選擇,決策者可以根據(jù)自己的風(fēng)險(xiǎn)偏好選擇這最優(yōu)選擇.
4 結(jié) 語(yǔ)
經(jīng)典的粗糙集理論是建立在等價(jià)關(guān)系的基礎(chǔ)上,等價(jià)關(guān)系條件過(guò)于嚴(yán)格,限制了粗糙集模型的應(yīng)用范圍,因此在Pythagorean模糊粗糙集模型的基礎(chǔ)上,將優(yōu)勢(shì)關(guān)系與多粒度Pythagorean模糊粗糙集相結(jié)合,構(gòu)造基于優(yōu)勢(shì)關(guān)系的樂(lè)觀、悲觀多粒度Pythagorean模糊粗糙集模型,定義了Pythagorean模糊熵、Pythagorean模糊貼近度,增加了猶豫度對(duì)信息評(píng)價(jià)的影響,最后通過(guò)遂昌金礦實(shí)例進(jìn)行了驗(yàn)證分析,證明了該模型的有效性,并為決策者在2種不同的情況下提供了最優(yōu)選擇.今后在對(duì)信息融合的研究中,將會(huì)進(jìn)一步考慮屬性權(quán)重對(duì)評(píng)價(jià)結(jié)果的影響.
附錄見(jiàn)電子版(DOI:10.16366/j.cnki.1000-2367.2023.08.24.0001).
參 考 文 獻(xiàn)
[1] PAWLAK Z.Rough sets[J].International Journal of Computer amp; Information Sciences,1982,11:341-356.
[2]SUN B Z,MA W M,ZHAO H Y.Decision-theoretic rough fuzzy set model and application[J].Information Sciences,2014,283:180-196.
[3]ZIARKO W.Variable precision rough set model[J].Journal of Computer and System Sciences,1993,46(1):39-59.
[4]YAO Y Y.Three-way decisions with probabilistic rough sets[J].Information Sciences,2010,180(3):341-353.
[5]AHMAD A,QAMAR U,RAZA M S.An optimized method to calculate approximations in Dominance based Rough Set Approach[J].Applied Soft Computing,2020,97:106731.
[6]YANG X,HUANG B.Dominance-based fuzzy rough sets in multi-scale decision tables[J].International Journal of Machine Learning and Cybernetics,2022,13(12):3849-3866.
[7]SALAMA A S,EL-SEIDY E,SALAH A K.Properties of different types of rough approximations defined by a family of dominance relations[J].International Journal of Fuzzy Logic and Intelligent Systems,2022,22(2):193-201.
[8]QIAN Y H,LI S Y,LIANG J Y,et al.Pessimistic rough set based decisions:a multigranulation fusion strategy[J].Information Sciences,2014,264:196-210.
[9]QIAN Y H,LIANG J Y,YAO Y Y,et al.MGRS:a multi-granulation rough set[J].Information Sciences,2010,180(6):949-970.
[10]周悅麗,林國(guó)平.基于相容關(guān)系的局部多粒度粗糙集模型[J].山西大學(xué)學(xué)報(bào)(自然科學(xué)版),2020,43(4):858-864.
ZHOU Y L,LIN G P.Local multigranulation rough sets based on tolerance relations[J].Journal of Shanxi University(Natural Science Edition),2020,43(4):858-864.
[11]ZHAN J M,ZHANG X H,YAO Y Y.Covering based multigranulation fuzzy rough sets and corresponding applications[J].Artificial Intelligence Review,2020,53(2):1093-1126.
[12]劉力凱,李建林,劉金林.基于糾纏關(guān)系的變精度優(yōu)勢(shì)關(guān)系粗糙集模型[J].計(jì)算機(jī)應(yīng)用與軟件,2023,40(2):281-286.
LIU L K,LI J L,LIU J L.Variable consistency model of dominance-based rough set approach based on entangled-relationship[J].Computer Applications and Software,2023,40(2):281-286.
[13]ZADEH L A.Fuzzy sets[J].Information and control,1965,8(3):338-353.
[14]ATANASSOV K.Intuitionistic fuzzy sets[J].International journal bioautomation,2016,20:1-6.
[15]YAGER R R.Pythagorean fuzzy subsets[C]//2013 Joint IFSA World Congress and NAFIPS Annual Meeting(IFSA/NAFIPS).[S.l.]:IEEE,2013:57-61.
[16]宋娟.考慮融合算法與交叉熵的畢達(dá)哥拉斯決策模型[J].計(jì)算機(jī)工程與應(yīng)用,2020,56(5):74-79.
SONG J.Pythagorean decision-making model considering fusion algorithms and cross-entropy[J].Computer Engineering and Applications,2020,56(5):74-79.
[17]ZHANG Q,HU J H,F(xiàn)ENG J F,et al.Multiple criteria decision making method based on the new similarity measures of Pythagorean fuzzy set[J].Journal of Intelligent amp; Fuzzy Systems,2020,39(1):809-820.
[18]丁恒,李延來(lái).基于畢達(dá)哥拉斯模糊冪加權(quán)平均算子的多屬性群決策方法[J].計(jì)算機(jī)工程與應(yīng)用,2018,54(5):1-6.
DING H,LI Y L.Multiple attribute group decision making method based on Pythagorean fuzzy power weighted average operator[J].Computer Engineering and Applications,2018,54(5):1-6.
[19]羅靜,孫剛,王貴君.基于風(fēng)險(xiǎn)偏好得分函數(shù)和Choquet積分算子的畢達(dá)哥拉斯模糊決策方法[J].模糊系統(tǒng)與數(shù)學(xué),2022,36(4):70-79.
LUO J,SUN G,WANG G J.Pythagorean fuzzy decision making method based on the risk preference score function and choquet integral operator[J].Fuzzy Systems and Mathematics,2022,36(4):70-79.
[20]李美娟,盧錦呈.基于一種新得分函數(shù)和累積前景理論的畢達(dá)哥拉斯模糊TOPSIS法[J].控制與決策,2022,37(2):483-492.
LI M J,LU J C.Pythagorean fuzzy TOPSIS based on novel score function and cumulative prospect theory[J].Control and Decision,2022,37(2):483-492.
[21]范建平,閆彥,吳美琴.Pythagorean模糊環(huán)境下基于交叉熵和TOPSIS的多準(zhǔn)則決策方法[J].計(jì)算機(jī)工程與應(yīng)用,2018,54(16):146-151.
FAN J P,YAN Y,WU M Q.TOPSIS and cross entropy method for multicriteria decision making under Pythagorean fuzzy environment[J].Computer Engineering and Applications,2018,54(16):146-151.
[22]姬儒雅,魏玲,任睿思,等.畢達(dá)哥拉斯模糊三支概念格[J].山東大學(xué)學(xué)報(bào)(理學(xué)版),2020,55(11):58-65.
JI R Y,WEI L,REN R S,et al.Pythagorean fuzzy three-way concept lattice[J].Journal of Shandong University(Natural Science),2020,55(11):58-65.
[23]趙杰,萬(wàn)仁霞,苗奪謙.基于優(yōu)勢(shì)關(guān)系的畢達(dá)哥拉斯模糊三支決策模型[J].西南師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2022,47(12):22-30.
ZHAO J,WAN R X,MIAO D Q.Pythagorean fuzzy three-way decision model based on dominant relation[J].Journal of Southwest China Normal University(Natural Science Edition),2022,47(12):22-30.
[24]SAIKIA B,DUTTA P,TALUKDAR P.An advanced similarity measure for Pythagorean fuzzy sets and its applications in transportation problem[J].Artificial Intelligence Review,2023,56(11):12689-12724.
[25]JANA C,GARG H,PAL M.Multi-attribute decision making for power Dombi operators under Pythagorean fuzzy information with MABAC method[J].Journal of Ambient Intelligence and Humanized Computing,2023,14(8):10761-10778.
[26]張嬌嬌,張少譜,馮濤.畢達(dá)哥拉斯模糊系統(tǒng)的優(yōu)勢(shì)關(guān)系及其約簡(jiǎn)[J].山東大學(xué)學(xué)報(bào)(理學(xué)版),2021,56(3):96-110.
ZHANG J J,ZHANG S P,F(xiàn)ENG T.Dominance relationship and reduction of Pythagorean fuzzy systems[J].Journal of Shandong University(Natural Science),2021,56(3):96-110.
[27]LI S,HUANG Q,HU B Y,et al.Mining method optimization of difficult-to-mine complicated orebody using Pythagorean fuzzy sets and TOPSIS method[J].Sustainability,2023,15(4):3692.
Granularity selection method of multi-granularity Pythagorean fuzzy rough set based on dominance relationship
Xue Zhan'ao, Yang Mengli, Xin Xianwei, Zheng Yu, Sun Lin
(College of Computer and Information Engineering; Engineering Lab of Intelligence Business amp; Internet of Things,
Henan Normal University, Xinxiang 453007, China)
Abstract: In this paper, on the basis of the Pythagorean fuzzy rough set, combining dominance with multiple granularity, a multi-granularity Pythagorean fuzzy rough set model based on dominance relationship was proposed, for studying." Firstly giving the concept of dominance relationship Pythagorean fuzzy rough set and Pythagorean fuzzy entropy, discussing their properties, then, four models of multi-granularity Pythagorean fuzzy rough set of dominance relations under optimism and pessimism are defined, and" for Pythagorean fuzzy closeness, proving their properties, designing their optimal granularity selection algorithm. Through the case of optimizing mining in Suichang Gold Mine, the effectiveness of the model was analyzed and verified.
Keywords: dominance relationship; Pythagorean fuzzy set; multi-granularity rough set; fuzzy entropy; closeness degree
[責(zé)任編校 劉洋 楊浦]
河南師范大學(xué)學(xué)報(bào)(自然科學(xué)版)2025年3期