摘 要:子空間碼特別是循環(huán)子空間碼在隨機(jī)網(wǎng)絡(luò)編碼中具有高效的編碼和譯碼算法,因此近年來受到了廣泛關(guān)注.Sidon空間是構(gòu)造循環(huán)子空間碼的重要工具,利用有限域上的本原元和不可約多項式的根,構(gòu)造了不同維數(shù)的Sidon空間,并在此基礎(chǔ)上得到了碼字個數(shù)更多的循環(huán)子空間碼.
關(guān)鍵詞:有限域;循環(huán)子空間碼;Sidon空間;不可約多項式的根
中圖分類號:O157.4 文獻(xiàn)標(biāo)志碼:A文章編號:1000-2367(2025)03-0066-06
子空間碼,尤其是循環(huán)子空間碼具有高效的編碼和譯碼算法,在隨機(jī)網(wǎng)絡(luò)編碼[1-2]中得到了廣泛的應(yīng)用.近年來,文獻(xiàn)[3-4]研究了子空間碼的構(gòu)造方法,因此對于給定的n,k,q,尋找碼字個數(shù)和最小距離盡可能大的循環(huán)子空間碼也成為數(shù)學(xué)研究者關(guān)注的重點之一.目前,研究循環(huán)子空間碼主要有兩種思路:一種是通過線性化多項式構(gòu)造循環(huán)子空間碼,如文獻(xiàn)[5]使用線性化多項式xqk+xq+x∈Fq[x]構(gòu)造出碼字個數(shù)為(qn-1/q-1),最小距離為2k-2的循環(huán)子空間碼.更多的用線性化多項式構(gòu)造循環(huán)子空間碼的方法,可參考文獻(xiàn)[6-8].另一種思路是用Sidon空間構(gòu)造循環(huán)子空間碼.ROTH等[9]提出了Sidon空間的概念,并找到了Sidon空間與循環(huán)子空間碼之間的關(guān)系.文獻(xiàn)[10]利用Sidon空間的并集來構(gòu)造具有更多碼字的循環(huán)子空間碼,且最小距離仍然為2k-2.文獻(xiàn)[11]給出了幾個Sidon空間的直和仍然是Sidon的充分條件,為構(gòu)造Sidon空間提供了新的思路.有關(guān)Sidon空間構(gòu)造循環(huán)子空間碼的更多方法,可參考文獻(xiàn)[12-13].本文利用有限域上的本原元和不可約多項式的根構(gòu)造了一些新的Sidon空間,進(jìn)而得到了新的循環(huán)子空間碼,并在此基礎(chǔ)上得到了碼字個數(shù)更多且最小距離仍為2k-2的循環(huán)子空間碼.
參 考 文 獻(xiàn)
[1] AHLSWEDE R,CAI N,LI SYR.Network information flow[J].IEEE Transactions on Information Theory,2000,46(4):1204-1216.
[2]董贊強(qiáng),沈蘇彬.網(wǎng)絡(luò)編碼研究綜述[J].南京郵電大學(xué)學(xué)報(自然科學(xué)版),2012,32(3):66-75.
DONG Z Q,SHEN S B.The survey on network coding research[J].Journal of Nanjing University of Posts and Telecommunications(Natural Science),2012,32(3):66-75.
[3]郭軍,李鳳高.基于辛空間中全迷向子空間的糾錯碼(英文)[J].數(shù)學(xué)進(jìn)展,2017,46(6):919-931.
GUO J,LI F G.Error-correcting codes based on totally isotropic subspaces in symplectic spaces[J].Advances in Mathematics(China),2017,46(6):919-931.
[4]李超,馮克勤,胡衛(wèi)群.一類性能好的線性碼的構(gòu)造[J].電子學(xué)報,2003,31(1):51-53.
LI C,F(xiàn)ENG K Q,HU W Q.Construction of A class of linear codes with good parameters[J].Acta Electronica Sinica,2003,31(1):51-53.
[5]BEN-SASSON E,KOPPARTY S,RADHAKRISHNAN J.Subspace polynomials and limits to list decoding of reed-Solomon codes[J].IEEE Transactions on Information Theory,2010,56(1):113-120.
[6]CHEN B C,LIU H W.Constructions of cyclic constant dimension codes[J].Designs,Codes and Cryptography,2018,86(6):1267-1279.
[7]OTAL K,ōZBUDAK F.Cyclic subspace codes via subspace polynomials[J].Designs,Codes and Cryptography,2017,85(2):191-204.
[8]ZHAO W,TANG X L.A characterization of cyclic subspace codes via subspace polynomials[J].Finite Fields and Their Applications,2019,57:1-12.
[9]ROTH R M,RAVIV N,TAMO I.Construction of Sidon spaces with applications to coding[J].IEEE Transactions on Information Theory,2018,64(6):4412-4422.
[10]NIU Y F,YUE Q,WU Y S.Several kinds of large cyclic subspace codes via Sidon spaces[J].Discrete Mathematics,2020,343(5):111788.
[11]LI Y,LIU H W.Cyclic subspace codes via the sum of Sidon spaces[EB/OL].[2024-01-03].https://arxiv.org/abs/2105.12520v1.
[12]ZHANG H,CAO X W.Constructions of Sidon spaces and cyclic subspace codes[J].Frontiers of Mathematics in China,2022,17:275-288.
[13]FENG T,WANG Y.New constructions of large cyclic subspace codes and Sidon spaces[J].Discrete Math,2021,344(4):112273.
[14]BACHOC C,SERRA O,ZEMOR G.An analogue of Vosper's theorem for extension fields[C].Mathematical Proceedings of the Cambridge Philosophical Society,2017,163(3):423-452.
[15]GLUESING-LUERSSEN H,MORRISON K,TROHA C.Cyclic orbit codes and stabilizer subfields[J].Advances in Mathematics of Communications,2015,9(2):177-197.
[16]FENG T,WANG Y.New constructions of large cyclic subspace codes and Sidon spaces[J].Discrete Math,2021,344(4):112273.
Constructions of Sidon spaces and cyclic subspace codes
Liu Xuemei, Zhang Jiarong
(College of Science, Civil Aviation University of China, Tianjin 300300, China)
Abstract: Subspace codes, especially cyclic subspace codes, have attracted much attention in recent years due to their efficient coding and decoding algorithms in random network coding. Sidon space is an important tool for constructing cyclic subspace codes. In this paper, by using primitive elements and the root of irreducible polynomial over finite fields, we give a new construction of Sidon spaces with different dimensions, obtaining a new cyclic subspace code based on them.
Keywords: finite fields; cyclic subspace code; Sidon space; the root of irreducible polynomial
[責(zé)任編校 陳留院 楊浦]