摘 要:降雨是湖泊營養(yǎng)鹽輸入的重要途徑,為了摸清降雨前后城市湖泊水質(zhì)變化特征,選擇典型城市富營養(yǎng)化湖泊武漢東湖為研究對(duì)象,在全湖布設(shè)27個(gè)樣點(diǎn),于2021年9至10月期間采集表層沉積物樣品,并對(duì)期間降雨前后11個(gè)水質(zhì)指標(biāo)進(jìn)行監(jiān)測,識(shí)別表層沉積物氮磷污染現(xiàn)狀與降雨前后東湖水質(zhì)變化特征,利用線性回歸、主成分分析等方法分析造成降雨前后水質(zhì)差異的原因.結(jié)果表明,武漢東湖表層沉積物全氮、總磷平均含量分別為4 065、683 mg/kg,總體處于重度污染水平.與雨前相比,雨后表層水體濁度、總磷、溶解性總磷、活性磷酸鹽顯著升高(P<0.05),溶解氧、pH、硝態(tài)氮顯著降低(P<0.05),但總氮和溶解性總氮無顯著性差異(P>0.05).雨后水體磷素的增加可能是由地表徑流攜帶的面源污染物和徑流引起沉積物內(nèi)源磷釋放所致,導(dǎo)致雨后總氮含量無明顯變化的原因可能是反硝化作用.同時(shí)降雨徑流攜帶的有機(jī)污染物加劇了微生物對(duì)溶解氧的消耗,有機(jī)質(zhì)被分解為有機(jī)酸,這也是導(dǎo)致pH下降的重要原因之一.此外降雨能引起光強(qiáng)減弱,溶解氧和pH的降低可能與浮游藻類的光合作用受到抑制相關(guān).
關(guān)鍵詞:城市湖泊;東湖;表層沉積物;降雨;水質(zhì)差異
中圖分類號(hào):X824 文獻(xiàn)標(biāo)志碼:A文章編號(hào):1000-2367(2025)03-0050-08
湖泊具有水源供應(yīng)、調(diào)節(jié)徑流、溝通航運(yùn)、提供動(dòng)植物繁衍棲息地和改善生態(tài)環(huán)境等多種重要功能[1].由于氣候變化和生產(chǎn)活動(dòng),湖泊水質(zhì)不斷惡化,生物類群受到了極大影響[2].《2022年中國生態(tài)環(huán)境狀況公報(bào)》顯示,全國210個(gè)重要湖庫有26.2%水質(zhì)為Ⅳ~劣Ⅴ類[3].與深水湖泊相比,淺水湖泊環(huán)境容量小,更易受到人類活動(dòng)、風(fēng)浪擾動(dòng)和降雨的影響,從而引起生物多樣性降低、富營養(yǎng)化等多種環(huán)境問題[4-5].
降雨是城市湖泊氮、磷污染的重要來源之一.一方面由于燃煤、工業(yè)生產(chǎn)、機(jī)動(dòng)車尾氣排放等人類活動(dòng),大氣中的污染物含量較高,雨水會(huì)攜帶這些污染物進(jìn)入水體[6];另一方面城市街道、屋頂?shù)炔煌杆砻孑^多,明顯的降雨過程會(huì)形成地表徑流,蓄積在表面的污染物會(huì)隨地表徑流經(jīng)下水道管網(wǎng)進(jìn)入水體[7].王琳芳等[8]對(duì)徐州市2021至2023年的12場典型降雨的地表徑流水質(zhì)進(jìn)行分析,發(fā)現(xiàn)氮元素嚴(yán)重超標(biāo),若任意排放,會(huì)影響城市水生態(tài)環(huán)境質(zhì)量.尹珩等[9]在武漢市東湖進(jìn)行地表徑流監(jiān)測,發(fā)現(xiàn)低強(qiáng)度降雨和高強(qiáng)度降雨地表徑流總磷(total phosphorus,TP)質(zhì)量濃度分別為0.74~1.59 mg/L、0.95~5.82 mg/L,湖泊TP質(zhì)量濃度變化強(qiáng)度與濕沉降TP通量緊密相關(guān).萬帆等[10]在武漢市開展地表徑流面源污染特征研究,選取了道路、綠地和屋面3種下墊面,發(fā)現(xiàn)降雨初期,道路下墊面化學(xué)需氧量、氨氮、TP質(zhì)量濃度分別可達(dá)115.3、4.12、0.55 mg/L.由此可見,如果雨水和地表徑流直接進(jìn)入湖泊,則會(huì)對(duì)水環(huán)境產(chǎn)生不利影響.
已有多個(gè)學(xué)者就水質(zhì)對(duì)降雨的響應(yīng)開展了研究.錢華等[11]發(fā)現(xiàn)雨后巢湖入湖河流南淝河與杭埠河水質(zhì)突發(fā)性下降,氮磷營養(yǎng)鹽升高.周波等[12]發(fā)現(xiàn)隨著降雨強(qiáng)度的增加,遼河流域的氮素含量呈現(xiàn)先增加后減少的趨勢.劉文強(qiáng)等[13]發(fā)現(xiàn)贛江南昌段周坊國考斷面水質(zhì)超標(biāo)的現(xiàn)象多發(fā)生在強(qiáng)降雨后,尤其枯水期發(fā)生強(qiáng)降雨后,水質(zhì)參數(shù)明顯上升.降雨可能通過影響地表徑流和沉積物內(nèi)源營養(yǎng)鹽釋放來影響水體營養(yǎng)鹽含量.以上研究詳細(xì)分析了水質(zhì)和降雨特征的關(guān)系,但未能同時(shí)探討降雨時(shí)內(nèi)源性營養(yǎng)鹽釋放對(duì)水體營養(yǎng)鹽的影響.
東湖位于武漢市東南部,是長江中下游具有代表性的半封閉型淺水湖泊,也是我國最大城市湖泊之一.近年來,隨著旅游景區(qū)開發(fā)、城市建設(shè)規(guī)模擴(kuò)大、人口密度增加,東湖水系連通條件較差,底泥污染嚴(yán)重,水質(zhì)亟需改善[14-15].2021年8月底的東湖藍(lán)藻水華事件很可能與持續(xù)的高溫天氣、緩慢的湖流速度和較高的水體營養(yǎng)鹽含量相關(guān)[16].本研究以武漢東湖作為研究區(qū)域,在全湖布設(shè)27個(gè)樣點(diǎn),于2021年9至10月采集表層沉積物,測定其總氮(total nitrogen,TN)、TP含量,分析營養(yǎng)元素分布特征和污染程度;期間分別監(jiān)測兩次降雨前和降雨后的水質(zhì),并采用線性回歸和主成分分析等方法,揭示水質(zhì)變化特征,探究水質(zhì)差異原因.一方面可以填補(bǔ)降雨引起東湖水質(zhì)變化規(guī)律空白,同時(shí)為汛期保障東湖水質(zhì)質(zhì)量提供科學(xué)依據(jù).
1 材料與方法
1.1 研究區(qū)概況
武漢東湖(30°28′~30°37′N,114°19′~114°31′E)位于武漢市東南部,水域面積33.75 km2,平均水深3 m,是我國最大城中湖泊之一.湖區(qū)地形為殘丘性河湖沖積平原,處于北亞熱帶季風(fēng)性濕潤氣候內(nèi),具有雨水充沛、日照充足、四季分明、夏季酷熱、冬季寒冷等特點(diǎn),多年平均無霜期245 d,平均氣溫16.7 ℃,年均降雨量1 180 mm,4~7月份降水量占全年的60%.武漢東湖因筑壩修路被分為了郭鄭湖、湯菱湖、團(tuán)湖、后湖、廟湖、菱角湖、喻家湖、水果湖、天鵝湖、小潭湖和筲箕湖等11個(gè)子湖.選取了水果湖、廟湖、郭鄭湖、菱角湖、湯菱湖、團(tuán)湖、后湖、喻家湖等8個(gè)湖區(qū)為研究對(duì)象,面積約占水域總面積的80%以上.
1.2 樣品采集
于2021年9月23日(雨前)、9月29日(雨后第1天)、10月11日(雨后第1天)、10月25日(雨前)分別進(jìn)行了4次采樣,10月11日和10月25日的采樣調(diào)查并非針對(duì)同一場降雨.樣點(diǎn)分布如圖1所示.在每個(gè)樣點(diǎn)采集水樣時(shí),在水面以下50 cm處采集3個(gè)平行樣本,充分混合后,裝入1 000 mL高密度聚乙烯瓶中.期間使用彼得森采泥器在采水樣的地點(diǎn)采集表層沉積物(0~20 cm),將樣本轉(zhuǎn)移至自封袋中保存.采集的水樣帶回實(shí)驗(yàn)室后立即放入4 ℃冰箱保存,24 h內(nèi)進(jìn)行分析測試.泥樣帶回實(shí)驗(yàn)室后進(jìn)行冷凍干燥,并研磨過篩(沉積物全氮:60目土壤篩;沉積物總磷:100目土壤篩).
1.3 檢測方法
水溫(water temperature,WT)、pH、溶解氧(dissolved oxygen,DO)、電導(dǎo)率(electrical conductivity,EC)由多參數(shù)水質(zhì)測定分析儀(Hach HQ40d Mutli)現(xiàn)場測定,濁度(turbidity,TUR)由便攜式濁度儀(Hach 2100Q)進(jìn)行測定.TN和溶解性總氮(dissolved total nitrogen,DTN)按照堿性過硫酸鉀氧化-紫外分光光度法(GB 11894-89)進(jìn)行測定;硝態(tài)氮(nitrate nitrogen,NO3-N)按照紫外分光光度法(HJ/T 346-2007)進(jìn)行測定;TP、溶解性總磷(dissolved total phosphorus,DTP)和活性磷酸鹽(soluble phosphate,SRP)按照鉬酸銨分光光度法(GB 11893-89)進(jìn)行測定.沉積物全氮(total nitrogen in sediments,STN)和總磷(total phosphorus in sediments,STP)分別按照凱氏法(HJ 717-2014)和堿熔-鉬銻抗分光光度法(HJ 632-2011)測定.
1.4 沉積物污染評(píng)價(jià)方法
采用綜合污染指數(shù)法評(píng)估東湖表層沉積物污染狀況,計(jì)算公式為:Si=(Ci/C0),F(xiàn)F=(F2+F2max/2).Si為單項(xiàng)污染指數(shù);Ci為評(píng)價(jià)因子i的實(shí)測值;C0為評(píng)價(jià)因子的i的評(píng)價(jià)標(biāo)準(zhǔn)值,SSTN的C0取550 mg/kg,SSTP的C0取600 mg/kg;F為n項(xiàng)污染指數(shù)平均值;Fmax為最大單項(xiàng)污染指數(shù);FF為綜合污染指數(shù).沉積物綜合污染指數(shù)評(píng)價(jià)標(biāo)準(zhǔn)見附表S1[17].
1.5 統(tǒng)計(jì)分析
使用ArcGIS 10.2制作采樣點(diǎn)分布圖,利用反向距離分析法對(duì)表層沉積物中氮、磷含量進(jìn)行空間特征分析,繪制STN、STP含量空間分布圖.在Excel 2019中,采樣雙尾t檢驗(yàn)分析降雨前后湖泊水質(zhì)因子差異,統(tǒng)計(jì)檢驗(yàn)的顯著性水平為P<0.05.在GraphPad 8.0中進(jìn)行線性擬合,分析表層沉積物中總磷對(duì)降雨前后水體總磷的影響.使用SIMCA 14.1進(jìn)行主成分分析,識(shí)別降雨前后影響湖泊水質(zhì)狀況的關(guān)鍵指標(biāo).箱線圖和主成分分析圖均在Origin 2018中完成.
2 結(jié) 果
2.1 武漢東湖表層沉積物氮磷含量
由圖2可知,STN、STP質(zhì)量含量范圍分別為2 128~5 404 mg/kg、316~2 608 mg/kg,平均值分別為4 065、683 mg/kg.STN質(zhì)量含量較高的區(qū)域集中在廟湖、湯菱湖、團(tuán)湖、后湖,分別對(duì)應(yīng)采樣點(diǎn)3、24~26、19~20、16~18,STN質(zhì)量含量均高于4 800 mg/kg.高STP質(zhì)量含量區(qū)域集中在水果湖、喻家湖,分別對(duì)應(yīng)樣點(diǎn)10、14,STP質(zhì)量含量分別為2 608、1 249mg/kg.根據(jù)附表S1和S2,可判斷東湖表層沉積物全氮總體處于中度污染水平,總磷總體處于重度污染水平.全湖表層沉積物綜合污染指數(shù)范圍為3.45~7.94,所有樣點(diǎn)均處于重度污染水平.
2.2 降雨前后武漢東湖水化學(xué)參數(shù)和氮磷濃度變化特征
由圖3((a)~(d))可知,雨前,東湖表層水體TUR、DO、pH、EC分別為4.80~38.04 NTU、3.61~20.40 mg/L、7.71~9.32、151~448 μS/cm,雨后分別為8.06~50.40 NTU、3.12~11.45 mg/L、7.36~8.59、154~395 μS/cm.與雨前相比,雨后表層水體TUR顯著升高(P<0.05),DO和pH顯著降低(P<0.05),EC無顯著性差異(P>0.05).
由圖3((e)~(j))可知,雨前,東湖表層水體TN、DTN、NO3-N、TP、DTP、SRP質(zhì)量濃度范圍為0.79~6.45、0.25~4.30、0.04~1.57、0.03~0.32、0.008~0.137、0~0.056 mg/L,雨后分別為0.85~3.64、0.36~2.86、0.01~0.97、0.07~0.36、0.013~0.153、0~0.071 mg/L.雨后表層水體TP、DTP、SRP質(zhì)量濃度較雨前顯著升高(P<0.05),但NO3-N質(zhì)量濃度顯著降低(P<0.05),TN和DTN無顯著性差異(P>0.05).
2.3 降雨前后武漢東湖表層水體總磷濃度對(duì)沉積物總磷的響應(yīng)
根據(jù)上述結(jié)果,武漢東湖STP污染程度較STN高,且降雨前后水體TP質(zhì)量濃度差異明顯(P<0.05),但TN質(zhì)量濃度無顯著差異(P>0.05).大氣沉降是營養(yǎng)鹽進(jìn)入水體的重要途徑之一.調(diào)查期間磷干沉降平均速率為0.008 mg/(m2·d),1年干沉降對(duì)東湖磷質(zhì)量濃度的貢獻(xiàn)為0.000 8 mg/L(遠(yuǎn)低于水體總磷質(zhì)量濃度);降水中總磷平均質(zhì)量濃度為0.007 mg/L(遠(yuǎn)低于水體總磷質(zhì)量濃度),因此干濕沉降對(duì)東湖水體磷的貢獻(xiàn)基本可以忽略.歷史上東湖污染嚴(yán)重,大量污染物在沉積物中積累,內(nèi)源污染可能對(duì)東湖水質(zhì)產(chǎn)生重要影響.采用一元線性回歸模型分析降雨前后水體總磷質(zhì)量濃度對(duì)武漢東湖表層沉積物總磷的響應(yīng).由圖4可知,水體總磷和沉積物總磷正相關(guān),且雨后水體總磷質(zhì)量濃度受沉積物總磷的影響更大(P<0.000 1).
2.4 降雨前后武漢東湖水質(zhì)因子的主成分分析
主成分1和主成分2的解釋率分別為35.9%和27.5%,累計(jì)解釋率為63.5%.主成分1主要與TN、DTN、NO3-N、EC、WT等理化指標(biāo)和氮元素指標(biāo)相關(guān)性較高.主成分2主要與TP、DTP、SRP、TUR、DO、pH等理化指標(biāo)和磷元素指標(biāo)相關(guān)性高.雨前樣點(diǎn)在PCA圖上較為分散,樣點(diǎn)間水環(huán)境特征差異較大;雨后樣點(diǎn)在PCA圖上較為集中,樣點(diǎn)間水環(huán)境特征差異較小,影響雨后水質(zhì)狀況的指標(biāo)主要為TP、DTP、SRP、TUR(圖5).
3 討 論
3.1 武漢東湖表層沉積物氮磷分布特征分析
此次調(diào)查結(jié)果顯示,武漢東湖表層沉積物氮磷含量處于重度污染水平.受長期沿湖排污影響,加之水體流動(dòng)性較差,污染物不易擴(kuò)散,污染物沉積造成東湖底泥污染嚴(yán)重[18].有研究報(bào)道東湖內(nèi)源污染對(duì)氨氮、TN和TP等負(fù)荷的貢獻(xiàn)比例基本超過30%[19].此次調(diào)查也發(fā)現(xiàn)表層水體總磷與沉積物總磷正相關(guān),且雨后水體總磷質(zhì)量濃度較雨前受沉積物總磷的影響更大.因此底泥內(nèi)源性磷釋放對(duì)東湖水質(zhì)的影響不容忽視.
在空間上,湯菱湖、團(tuán)湖、后湖表層沉積物中全氮含量較高,水果湖和喻家湖表層沉積物中總磷含量較高.武漢市近城區(qū)相對(duì)主城區(qū)建設(shè)用地較少,農(nóng)用地較多,不同土地利用類型與湖泊沉積物各指標(biāo)有一定的相關(guān)性[20].湯菱湖(農(nóng)業(yè)用地:1.84 km2,居住用地:0.34 km2)、團(tuán)湖(農(nóng)業(yè)用地:1.98 km2,居住用地:0.27 km2)和后湖(農(nóng)業(yè)用地:9.53 km2,居住用地:1.62 km2)湖區(qū)農(nóng)業(yè)用地較多,以傳統(tǒng)農(nóng)耕為主,精耕細(xì)作,過量的化肥殘留在土壤中,經(jīng)澆水灌溉和雨水沖刷進(jìn)入水體,加重水體營養(yǎng)鹽負(fù)荷.水果湖(農(nóng)業(yè)用地:0.00 km2,居住用地:1.05 km2)和喻家湖(農(nóng)業(yè)用地:0.50 km2,居住用地:2.09 km2)居住用地較多,污染來源更多地來自于生活污水排放[21].此外,城市建設(shè)中會(huì)增加多種街道、屋頂?shù)炔煌杆砻?,蓄積在表面的污染物可以通過雨水沖刷進(jìn)入水體,進(jìn)而影響地表徑流.因此污染來源的差異可能是導(dǎo)致東湖表層沉積物氮磷含量空間差異的重要原因.
3.2 降雨前后東湖水質(zhì)因子差異分析
降雨引起底泥再懸浮且地表徑流攜帶了大量顆粒物入湖,因此降雨后表層水體TUR顯著升高(P<0.05),這與前人研究一致[22].對(duì)于DO和pH,雨后DO含量和pH相比雨前顯著降低(P<0.05).一般情況下,雨前水環(huán)境較為穩(wěn)定,受外界干擾較小,微生物通過呼吸作用平穩(wěn)降解水體中的有機(jī)物,部分細(xì)菌通過硝化和反硝化過程降解水中的含氮化合物.這些過程需要消耗水中DO.隨著降雨的發(fā)生,地表徑流攜帶有機(jī)物和營養(yǎng)鹽入湖,湖泊內(nèi)源性營養(yǎng)鹽向水體釋放.這些營養(yǎng)物質(zhì)促進(jìn)了微生物的繁殖.在微生物的作用下,有機(jī)質(zhì)被分解為有機(jī)酸,從而導(dǎo)致水體DO含量降低,pH下降[23].此外相關(guān)研究報(bào)道,降雨可能減弱水下光強(qiáng),抑制浮游藻類的光合作用,在降低DO含量的同時(shí),使得水體碳酸鹽平衡CO2-3+H+HCO-3左移,水體中H+增加,水體pH降低[24].本研究還發(fā)現(xiàn)雨后表層水體TP、DTP、SRP顯著升高(P<0.05),但TN、DTN質(zhì)量濃度與雨前相比無明顯差異(P>0.05).降雨是水循環(huán)過程中的重要組成部分,具有沖刷和稀釋的作用,當(dāng)徑流中的污染物含量高于湖泊水體,徑流增加了水體負(fù)荷,反之能起到稀釋水體污染物濃度的作用.雨后表層水體磷素的增加可能是由地表徑流攜帶的面源污染物入湖和沉積物內(nèi)源磷釋放所致[25].氮的轉(zhuǎn)化途徑較多,降雨徑流和內(nèi)源釋放輸入氮負(fù)荷的同時(shí),反硝化作用能去除氮,因此雨后水體TN無明顯變化,這與前人的研究一致[11].
主成分分析結(jié)果表明,雨后樣點(diǎn)水環(huán)境特征差異較小,這與降雨過程相關(guān);雨前樣點(diǎn)水環(huán)境異質(zhì)性較高,可能是入湖污染物來源和含量差異所致.此外TP、DTP、SRP、TUR等4個(gè)水質(zhì)指標(biāo)表現(xiàn)出較強(qiáng)的正相關(guān)關(guān)系,以上4個(gè)水質(zhì)指標(biāo)同時(shí)也是影響雨后水質(zhì)質(zhì)量的關(guān)鍵因子.這也進(jìn)一步表明降雨引起的底泥再懸浮和地表徑流攜帶的顆粒物很可能是導(dǎo)致雨后水體磷素增加的重要原因,降低水體懸浮顆粒物濃度可能是控制雨后東湖水體磷含量的有效途徑.
4 結(jié) 論
1)東湖表層沉積物的全氮總體處于中度污染水平,全氮含量較高的區(qū)域集中在廟湖、湯菱湖、團(tuán)湖和后湖;總磷總體處于重度污染水平,高總磷含量區(qū)域集中在水果湖、喻家湖.
2)與雨前相比,雨后表層水體TUR、TP、DTP、SRP顯著升高(P<0.05),NO3-N、DO和pH顯著降低(P<0.05),TN和DTN無顯著性差異(P>0.05).此外雨后水體總磷質(zhì)量濃度較雨前受沉積物總磷的影響更大(P<0.000 1).
3)受降雨和地表徑流影響,雨后樣點(diǎn)水環(huán)境特征差異較小,TP、DTP、SRP、TUR是影響水質(zhì)質(zhì)量的關(guān)鍵指標(biāo).
附錄見電子版(DOI:10.16366/j.cnki.1000-2367.2023.12.19.0001).
參 考 文 獻(xiàn)
[1] 楊桂山,馬榮華,張路,等.中國湖泊現(xiàn)狀及面臨的重大問題與保護(hù)策略[J].湖泊科學(xué),2010,22(6):799-810.
YANG G S,MA R H,ZHANG L,et al.Lake status,major problems and protection strategy in China[J].Journal of Lake Sciences,2010,22(6):799-810.
[2]史小麗,楊瑾晟,陳開寧,等.湖泊藍(lán)藻水華防控方法綜述[J].湖泊科學(xué),2022,34(2):349-375.
SHI X L,YANG J S,CHEN K N,et al.Review on the control and mitigation strategies of lake cyanobacterial blooms[J].Journal of Lake Sciences,2022,34(2):349-375.
[3]生態(tài)環(huán)境部.2022年中國生態(tài)環(huán)境狀況公報(bào)[EB/OL].[2023-05-30].https://www.gov.cn/lianbo/bumen/202305/content_6883708.htm.
[4]XU H,QIN B Q,PAERL H W,et al.Environmental controls of harmful cyanobacterial blooms in Chinese inland waters[J].Harmful Algae,2021,110:102127.
[5]伍名群,簡永遠(yuǎn),楊江,等.貴州省黔東南州城市湖庫型飲用水源氮磷污染特征及富營養(yǎng)化風(fēng)險(xiǎn)評(píng)價(jià)[J].貴州師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2024,42(1):55-67.
WU M Q,JIAN Y Y,YANG J,et al.Nitrogen and phosphorus pollution characteristics and eutrophication risk assessment of urban lake reservoir type drinking water sources in Qiandongnan Prefecture,Guizhou Province[J].Journal of Guizhou Normal University(Natural Sciences),2024,42(1):55-67.
[6]SONG W,LIU X Y,HU C C,et al.Important contributions of non-fossil fuel nitrogen oxides emissions[J].Nature Communications,2021,12:243.
[7]宋高飛,朱宇軒,米武娟,等.武漢市湖泊浮游動(dòng)物群落特征及其影響因素[J].河南師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2022,50(3):135-142.
SONG G F,ZHU Y X,MI W J,et al.Characteristics of zooplankton community and their influencing factors in lakes of Wuhan[J].Journal of Henan Normal University (Natural Science Edition),2022,50(3):135-142.
[8]王琳芳,李慧嫻,梁森,等.徐州市城市降雨地表徑流污染特征分析[J].江蘇建筑職業(yè)技術(shù)學(xué)院學(xué)報(bào),2023,23(3):32-36.
WANG L F,LI H X,LIANG S,et al.Analysis of pollution characteristics of urban rainfall surface runoff in Xuzhou City[J].Journal of Jiangsu Vocational Institute of Architectural Technology,2023,23(3):32-36.
[9]尹珩,周超群,郭文思,等.城市湖泊總磷對(duì)干濕沉降和地表徑流污染的響應(yīng)研究[J].環(huán)境污染與防治,2023,45(1):14-18.
YIN H,ZHOU C Q,GUO W S,et al.The response of urban lake total phosphorus to dry-wet depositions and surface runoff pollution[J].Environmental Pollution amp; Control,2023,45(1):14-18.
[10]萬帆,甄偉,吳海濤,等.城市地表徑流面源污染分析研究:以武漢市典型下墊面為例[J].工業(yè)安全與環(huán)保,2022,48(1):70-74.
WAN F,ZHEN W,WU H T,et al.Analysis and research on urban surface runoff non-point source pollution:a case study on typical underlying surfaces in Wuhan[J].Industrial Safety and Environmental Protection,2022,48(1):70-74.
[11]錢華,錢圓,高芮.巢湖入湖河流不同污染物對(duì)降雨的響應(yīng)關(guān)系分析[J].水資源開發(fā)與管理,2023,9(12):46-53.
QIAN H,QIAN Y,GAO R.Analysis of the response relationship between different pollutants in Chaohu Lake inflowing rivers and rainfall[J].Water Resources Development and Management,2023,9(12):46-53.
[12]周波,李曉光,童思陳,等.遼河流域氮素時(shí)空分布及其對(duì)土地利用和降雨的響應(yīng)[J].環(huán)境科學(xué),2024,45(4):2373-2384.
ZHOU B,LI X G,TONG S C,et al.Spatial and temporal distribution of nitrogen in the Liaohe River Basin and its responses to land use and rainfall[J].Environmental Science,2024,45(4):2373-2384.
[13]劉文強(qiáng),郁達(dá)偉,李昆等.降雨特征對(duì)河流斷面不同水期的水質(zhì)影響分析:以贛江南昌段為例[J].環(huán)境工程,2023,41(8):91-99.
LIU W Q,YU D W,LI K et al.Effects of rainfall characteristics on River Water quality in different water periods:a case study of Nanchang section in the Ganjiang River[J].Environmental Engineering,2023,41(8):91-99.
[14]LIU M X,YANG Y Y,YUN X Y,et al.Distribution and ecological assessment of heavy metals in surface sediments of the East Lake,China[J].Ecotoxicology,2014,23(1):92-101.
[15]DING L,CHEN K L,CHENG S G,et al.Water ecological carrying capacity of urban lakes in the context of rapid urbanization:a case study of East Lake in Wuhan[J].Physics And Chemistry Earth,Parts A/B/C,2015,89/90:104-113.
[16]謝平,陳雋,劉佳睿.非經(jīng)典生物操縱驅(qū)動(dòng)從水華向非水華的穩(wěn)態(tài)轉(zhuǎn)化:來自武漢東湖的全湖驗(yàn)證實(shí)驗(yàn)[J].湖泊科學(xué),2023,35(1):1-11.
XIE P,CHEN J,LIU J R.A regime shift from cyanobacterial steady state to non-cyanobacterial one by using non-traditional biomanipulation:a whole lake testing experiment in Lake Donghu,Wuhan[J].Journal of Lake Sciences,2023,35(1):1-11.
[17]萬楊,周小峰,葉小凡,等.浙江省溫嶺湖漫水庫沉積物中營養(yǎng)鹽分布及風(fēng)險(xiǎn)評(píng)價(jià)[J].環(huán)境化學(xué),2023,42(12):4392-4403.
WANG Y,ZHOU X F,YE X F,et al.Distribution and risk assessment of nutrients in sediments of Human Reservoir in Wenling City,Zhejiang Province[J].Environmental Chemistry,2023,42(12):4392-4403.
[18]羅明科.長江中游湖泊柱狀沉積物的垂直污染特征[D].湘潭:湘潭大學(xué),2016.
LUO M K.Vertical pollution characteristics of columnar sediments in lakes in the middle reaches of the Yangtze River[D].Xiangtan:Xiangtan University,2016.
[19]桂梓玲,彭軍,岳克棟,等.大型城市淺水湖泊水環(huán)境綜合治理:以武漢東湖為例[J].人民長江,2023,54(12):24-33.
GUAN Z L,PENG J,YUE K D,et al.Analysis on the experience in comprehensive water environment treatment of the large shallow urban lake:Taking East Lake in Wuhan as an example[J].Yangtze River,2023,54(12):24-33..
[20]霍雯蓉,許峰,王文薈,等.武漢城區(qū)湖泊水質(zhì)時(shí)空差異及其與污染源的空間關(guān)聯(lián)分析[J].安全與環(huán)境工程,2022,29(2):132-140.
HUO W R,XU F,WANG W H,et al.Analysis of spatial and temporal differences of lake water quality and its spatial correlation with pollution sources in Wuhan city[J].Safety and Environmental Engineering,2022,29(2):132-140.
[21]郭雪蕊.基于水動(dòng)力學(xué)的武漢市東湖水質(zhì)模擬[D].西安:西安理工大學(xué),2018.
GUO X R.Water quality simulation of east lake in Wuhan based on hydrodynamics[D].Xi'an:Xi'an University of Technology,2018.
[22]辛苑,盧鐵東,申佩弘,等.強(qiáng)降雨對(duì)沙河水庫的水質(zhì)及其藻類群落結(jié)構(gòu)的影響[J].環(huán)境科學(xué)學(xué)報(bào),2022,42(3):6-19.
XIN Y,LU T D,SHEN P H,et al.Effects of heavy rainfall on water quality and algal community structure in Shahe Reservoir[J].Acta Scientiae Circumstantiae,2022,42(3):6-19.
[23]張彥,鄒磊,梁志杰,等.暴雨前后河南北部河流水質(zhì)分異特征及其污染源解析[J].環(huán)境科學(xué),2022,43(5):2537-2547.
ZHANG Y,ZOU L,LIANG Z J,et al.Differential characteristics and source identification of water quality of the rivers in northern Henan before and after rainstorm[J].Environmental Science,2022,43(5):2537-2547.
[24]李飛鵬,陳蒙蒙,賈玉寶,等.氣象因素對(duì)封閉淺水湖泊浮游藻類生長和分布影響[J].水生態(tài)學(xué)雜志,2019,40(5):55-62.
LI F P,CHEN M M,JIA Y B,et al.Effects of meteorological factors on growth and distribution of phytoplankton in an enclosed shallow lake[J].Journal of Hydroecology,2019,40(5):55-62.
[25]陳焰,夏瑞,曾思棟,等.城市河流水體污染變化特征及其對(duì)降雨的響應(yīng)關(guān)系:以新鳳河流域?yàn)槔跩].中國農(nóng)村水利水電,2022(11):153-158.
CHEN Y,XIA R,ZENG S D,et al.Variation characteristics of water pollution and its response to rainfall in urban rivers:a case study of Xinfeng River Basin[J].China Rural Water and Hydropower,2022(11):153-158.
Response of water quality of urban eutrophic lakes to rainfall:
a case study of Wuhan East LakeHu Shenghua1, Li Xin2, Li Xiaohui2, Sun Zitong3, Zhou Han'e3, Xiong Xiong2, Wu Chenxi2
(1. Wuhan Bridge Engineering Co., Ltd., Wuhan 430071, China; 2. Institute of Hydrobiology, Chinese Academy of Sciences,
Wuhan 430072, China; 3. Wuhan Hangfa Ruihua Ecological Technology Co., Ltd., Wuhan 430063, China)
Abstract: Rainfall is an important way for lake nutrient input. In order to find out the characteristics of water quality changes of urban lakes before and after rainfall, Wuhan East Lake, a typical urban eutrophic lake, was selected as the research object. 27 sampling points were set up in the whole lake. Surface sediment samples were collected, and 11 water quality indicators were monitored before and after rainfalls from September to October 2021. The status of nitrogen and phosphorus pollution in surface sediments and the characteristics of water quality changes in Wuhan East Lake before and after rainfall were identified. The causes of the differences in water quality before and after rainfall were analyzed by linear regression and principal component analysis. The results showed that the average contents of total nitrogen and total phosphorus in the surface sediments of Wuhan East Lake were 4 065 mg/kg and 683 mg/kg, respectively, which were generally at a severe pollution level. Compared with before rain, the turbidity, total phosphorus, dissolved total phosphorus and active phosphate in the surface water increased significantly after rain(P<0.05), and dissolved oxygen, pH and nitrate nitrogen decreased significantly(P<0.05), but there was no significant difference in total nitrogen and dissolved total nitrogen(P>0.05). The increase of phosphorus in surface water after rainfall might be caused by non-point source pollutants carried by surface runoff and the release of endogenous phosphorus in sediments caused by runoff. The reason for no significant change in total nitrogen content after rain might be denitrification. At the same time, the organic pollutants carried by rainfall runoff aggravated the consumption of dissolved oxygen by microorganisms, and organic matter was decomposed into organic acids, which was also one of the important reasons for the decrease of pH. In addition, rainfall could cause the decrease of light intensity, and the decrease of dissolved oxygen and pH might be related to the inhibition of photosynthesis of phytoplankton.
Keywords: urban lake; East Lake; surface sediments; rainfall; water quality differences
[責(zé)任編校 劉洋 趙曉華]
河南師范大學(xué)學(xué)報(bào)(自然科學(xué)版)2025年3期