摘 要:運(yùn)動不僅可以有效防治糖尿病、心血管疾病、腫瘤等慢性非傳染性疾病,同時對于精神疾病和神經(jīng)退行性病變也有較好的早期干預(yù)效果.因此,運(yùn)動成了公認(rèn)的無創(chuàng)性腦認(rèn)知功能調(diào)節(jié)方法,不同種類的運(yùn)動均可有效降低中長期精神疾病風(fēng)險.從運(yùn)動對學(xué)習(xí)、記憶、情緒、睡眠覺醒節(jié)律等幾個方面,闡述運(yùn)動對腦認(rèn)知功能的調(diào)控作用及機(jī)制,以期能夠為選擇適當(dāng)強(qiáng)度的運(yùn)動訓(xùn)練方案,制訂“運(yùn)動處方”、提升腦認(rèn)知能力提供理論依據(jù).
關(guān)鍵詞:運(yùn)動;腦認(rèn)知功能;學(xué)習(xí)記憶;情緒;睡眠覺醒節(jié)律
中圖分類號:G804.2 文獻(xiàn)標(biāo)志碼:A文章編號:1000-2367(2025)03-0020-07
近年來,運(yùn)動對腦認(rèn)知功能的調(diào)控作用備受關(guān)注,適度運(yùn)動能夠提高認(rèn)知水平已獲得廣泛共識.據(jù)不完全統(tǒng)計,目前已發(fā)現(xiàn)有超過20種不同的內(nèi)分泌激素、細(xì)胞因子或代謝產(chǎn)物可以直接、間接地對腦內(nèi)突觸功能產(chǎn)生調(diào)控效果[1].研究表明,運(yùn)動可誘導(dǎo)特定組織釋放相應(yīng)的生物活性因子即運(yùn)動因子,分泌到血液中以較遠(yuǎn)部位發(fā)揮調(diào)節(jié)作用,促進(jìn)大腦健康和認(rèn)知功能,主要表現(xiàn)為海馬體體積和血流量的增加、樹突和樹突棘的形態(tài)變化、突觸可塑性的增加等[2].在模型動物實驗中發(fā)現(xiàn),運(yùn)動可誘導(dǎo)腦源性神經(jīng)因子(brain-derived neurotrophic factor,BDNF)表達(dá)水平升高,這對于增強(qiáng)海馬的學(xué)習(xí)記憶功能和提升突觸可塑性至關(guān)重要[3].多項研究已證實,單次適度有氧運(yùn)動可改善青春期前兒童和老年人的抑制性控制、認(rèn)知靈活性和學(xué)習(xí)記憶[4],且有氧運(yùn)動和阻力運(yùn)動均能夠增強(qiáng)和鞏固大鼠的記憶[5-6].因此,目前的研究觀點認(rèn)為,機(jī)體運(yùn)動過程可產(chǎn)生相關(guān)運(yùn)動因子調(diào)控其組織器官,進(jìn)而在整個生命周期中對腦功能產(chǎn)生積極的影響,既能夠提高認(rèn)知能力[7],也可以緩解抑郁癥等大腦相關(guān)性疾病[8],但不同運(yùn)動時間、不同強(qiáng)度和模式以及不同的運(yùn)動因子對腦功能調(diào)節(jié)的潛在機(jī)制還有待深入研究.如表1所示,本文將從學(xué)習(xí)記憶功能、負(fù)性情緒及睡眠覺醒節(jié)律3個典型的認(rèn)知過程出發(fā),對運(yùn)動改善腦認(rèn)知功能的作用機(jī)制及研究現(xiàn)狀進(jìn)行綜述,同時關(guān)注不同運(yùn)動方式、時間及強(qiáng)度對腦認(rèn)知功能的調(diào)控,以期為運(yùn)動作為臨床治療手段提供參考.
1 運(yùn)動對學(xué)習(xí)記憶功能的調(diào)節(jié)作用
高等生物具有利用新獲取的知識和過去的經(jīng)驗產(chǎn)生行為變化進(jìn)而適應(yīng)環(huán)境的能力,這種能力被稱為記憶,而獲取新信息的過程被稱為學(xué)習(xí),學(xué)習(xí)記憶在整個物種進(jìn)化過程中至關(guān)重要[9].大量動物實驗研究以及基于人體的流行病學(xué)調(diào)查均表明運(yùn)動能夠促進(jìn)學(xué)習(xí)記憶的形成.研究發(fā)現(xiàn)有氧運(yùn)動及抗阻運(yùn)動均能促進(jìn)大鼠的學(xué)習(xí)及空間記憶能力[10].除此之外,研究還發(fā)現(xiàn)12周的抗阻運(yùn)動有助于大鼠在衰老過程中記憶的維持[11].針對健康年輕人的一項研究發(fā)現(xiàn)僅10 min的急性輕度運(yùn)動即可改善記憶[12],而高強(qiáng)度的運(yùn)動對心肺健康具有更強(qiáng)的影響[13],改善學(xué)習(xí)記憶的效果也更好.還有研究發(fā)現(xiàn)12個月的有氧運(yùn)動干預(yù)能有效改善伴有阿爾茨海默氏病風(fēng)險的老年人的記憶力[14].
運(yùn)動改善學(xué)習(xí)記憶功能的機(jī)制主要包括以下幾個方面:(1)運(yùn)動對學(xué)習(xí)記憶能力的改善可能與其對大腦的結(jié)構(gòu)和功能產(chǎn)生的積極影響相關(guān).大腦的學(xué)習(xí)記憶功能與海馬密切相關(guān),而有氧運(yùn)動與海馬區(qū)的大小存在正向相關(guān)性.研究發(fā)現(xiàn),人體有氧運(yùn)動1 a后海馬體積平均增加約2% ,而進(jìn)行拉伸的人海馬體積平均降低約1.4%[15].基于模型動物的研究也發(fā)現(xiàn)運(yùn)動能夠影響海馬區(qū)的神經(jīng)發(fā)生及神經(jīng)可塑性,并且這種影響可能與運(yùn)動強(qiáng)度、運(yùn)動頻率、運(yùn)動量以及運(yùn)動方式相關(guān).首先,在運(yùn)動強(qiáng)度方面,低、中等強(qiáng)度運(yùn)動均可促進(jìn)大鼠海馬齒狀回神經(jīng)細(xì)胞增殖[16],中等強(qiáng)度運(yùn)動還能促進(jìn)小鼠海馬CA1 區(qū)神經(jīng)發(fā)生,增加CA1 區(qū)樹突復(fù)雜性[17].其次,在運(yùn)動頻率方面,研究發(fā)現(xiàn)長期運(yùn)動可以有效增加海馬神經(jīng)元數(shù)量,延緩海馬萎縮[18],其他研究也發(fā)現(xiàn)隔日低強(qiáng)度間歇訓(xùn)練對大鼠海馬齒狀回神經(jīng)發(fā)生最為有利,遞增運(yùn)動強(qiáng)度的隔周訓(xùn)練模式也可以促進(jìn)大鼠海馬齒狀回神經(jīng)發(fā)生[19],最后,在運(yùn)動量方面,有研究發(fā)現(xiàn),適度運(yùn)動可減緩應(yīng)激引起的海馬神經(jīng)元損傷,抑制神經(jīng)元凋亡,而過度運(yùn)動后海馬神經(jīng)元排列散亂、神經(jīng)細(xì)胞結(jié)構(gòu)松散,海馬神經(jīng)元受到損傷[20];(2)營養(yǎng)因子也在介導(dǎo)運(yùn)動改善學(xué)習(xí)記憶中發(fā)揮重要作用,低強(qiáng)度運(yùn)動訓(xùn)練通過增加神經(jīng)營養(yǎng)因素影響學(xué)習(xí)記憶,也是對抗神經(jīng)系統(tǒng)疾病的重要因素.如腦源性神經(jīng)因子(BDNF),BDNF是一種活動依賴性蛋白質(zhì),在海馬體和皮層中高度表達(dá)[21],可通過調(diào)節(jié)參與學(xué)習(xí)和記憶關(guān)鍵受體—N-甲基-D-天冬氨酸(N-methyl-D-aspartate,NMDA)的活性來調(diào)節(jié)突觸的可塑性[22].研究人員發(fā)現(xiàn),BDNF在血清中含量的提升能夠引起記憶相關(guān)腦區(qū)的激活,進(jìn)而增強(qiáng)記憶[23].運(yùn)動過程中肌肉收縮能促進(jìn)骨骼肌中運(yùn)動因子BDNF的產(chǎn)生,以旁分泌方式調(diào)控骨骼肌發(fā)育,調(diào)節(jié)記憶相關(guān)BDNF的產(chǎn)生和分泌,改變膜受體表達(dá),進(jìn)而改變突觸的可塑性,促進(jìn)記憶.嚙齒動物研究的結(jié)果也證實BDNF的確介導(dǎo)了運(yùn)動對神經(jīng)可塑性和記憶力的有益影響[24].其他的營養(yǎng)因子如胰島素樣生長因子(insulin-like growth factor 1,IGF-1)也參與了運(yùn)動對學(xué)習(xí)記憶功能的調(diào)控[25];(3)此外,研究也發(fā)現(xiàn)運(yùn)動改善學(xué)習(xí)記憶功能可能還與神經(jīng)炎癥及腦血流量等相關(guān).例如有研究發(fā)現(xiàn)運(yùn)動能夠上調(diào)小鼠血漿中抗炎因子簇集素的水平,而注射了運(yùn)動小鼠血漿的年輕小鼠的學(xué)習(xí)記憶能力均有所增強(qiáng),與模型動物的研究結(jié)果相一致,研究者還發(fā)現(xiàn)輕度認(rèn)知功能損害患者在進(jìn)行6月的身體鍛煉干預(yù)后,其血漿中簇集素含量水平有所上升,并且認(rèn)知能力和記憶力也得到一定改善[26].綜合以上多項研究,不難發(fā)現(xiàn)恰當(dāng)?shù)倪\(yùn)動能夠促進(jìn)學(xué)習(xí)、記憶功能,但是還應(yīng)該注意的是運(yùn)動的效果除了受運(yùn)動自身的影響,還受個人健康狀況與年齡等的影響.
2 運(yùn)動對負(fù)性情緒的調(diào)節(jié)作用
近年來,多項研究表明運(yùn)動對預(yù)防、治療抑郁等情緒障礙類疾病具有良好效果.很多基于模型動物的研究證實了慢性運(yùn)動產(chǎn)生的抗抑郁和抗焦慮效果與藥物干預(yù)相似甚至更高[27].美國精神病學(xué)協(xié)會開展的一項前瞻性研究Meta分析報告稱,與體育活動水平較低的人相比,體育活動水平較高的人患抑郁癥的概率降低17%[28].實際上,有研究者發(fā)現(xiàn)30 min的運(yùn)動療法即可改善抑郁癥患者的情緒,減少焦慮和抑郁癥狀[29].
目前多項基于運(yùn)動療法治療抑郁或抑郁癥狀的臨床研究表明,不同類型與不同強(qiáng)度的有氧運(yùn)動與無氧運(yùn)動都具有抗抑郁作用.在運(yùn)動調(diào)節(jié)嚙齒類動物的情緒相關(guān)實驗中表明,6周的自主跑輪運(yùn)動和強(qiáng)迫游泳的有氧運(yùn)動可有效改善AD模型小鼠的空間記憶以及焦慮抑郁情緒[30].一項近13萬人的系統(tǒng)性評估研究顯示運(yùn)動能有效改善普通人群、抑郁癥患者及慢性疾病患者的抑郁和焦慮癥狀,研究還發(fā)現(xiàn)包括有氧、抗阻在內(nèi)的所有運(yùn)動方式均能改善抑郁和焦慮癥狀,且中高等強(qiáng)度運(yùn)動的改善效果優(yōu)于低強(qiáng)度的運(yùn)動[31].有氧運(yùn)動還被證實對抑郁病人的癥狀嚴(yán)重程度以及認(rèn)知表現(xiàn)具有改善作用,IMBODEN等[32]發(fā)現(xiàn)有氧運(yùn)動具有與伸展運(yùn)動程度相當(dāng)?shù)目挂钟粜Ч?,并且對工作記憶也具有改善作?而對于不同的人群而言,其適合的運(yùn)動強(qiáng)度應(yīng)根據(jù)其自身情況及是否可以長期堅持加以考慮.目前運(yùn)動頻率對抑郁癥影響的相關(guān)研究不夠完整,大多數(shù)試驗調(diào)整為每周3~5次的鍛煉方案,運(yùn)動計劃的持續(xù)時間從4~24周不等,大多數(shù)實驗選擇12周[32],根據(jù)現(xiàn)有研究來看,高頻率運(yùn)動對預(yù)防和治療抑郁癥的效果較佳.
運(yùn)動調(diào)節(jié)抑郁的生物學(xué)機(jī)制主要包括以下幾方面:(1)運(yùn)動通過調(diào)控海馬神經(jīng)細(xì)胞凋亡與神經(jīng)發(fā)生干預(yù)抑郁癥.研究發(fā)現(xiàn),有氧運(yùn)動干預(yù)后可增加海馬體體積以及前額葉皮層(prefrontal cortex,PFC)和前扣帶皮層(anterior cingulate cortex,ACC)的灰質(zhì)體積,進(jìn)而改善中樞神經(jīng)系統(tǒng)組織的形態(tài)結(jié)構(gòu),提高BDNF、VEGF和IGF-1等神經(jīng)營養(yǎng)因子的水平,從而增強(qiáng)神經(jīng)元可塑性,提高患者的學(xué)習(xí)、記憶能力與情緒調(diào)控能力[33-35];(2)運(yùn)動通過調(diào)控神經(jīng)遞質(zhì)的表達(dá)改善抑郁癥.目前認(rèn)為抑郁癥的主要病因是5-羥色胺(5-HT)和去甲腎上腺素(NE)等神經(jīng)遞質(zhì)功能失調(diào)[36].研究表明,規(guī)律性運(yùn)動能夠防止全腦、海馬及前額皮質(zhì)內(nèi)單胺類神經(jīng)遞質(zhì)NE、多巴胺(DA)、5-HT及其代謝產(chǎn)物5-羥吲哚乙酸的含量下降,提高成年海馬細(xì)胞的增殖和存活率,進(jìn)而防止抑郁樣行為的發(fā)生[35];(3)調(diào)節(jié)炎癥通路干預(yù)抑郁癥.運(yùn)動通過調(diào)節(jié)運(yùn)動因子中免疫細(xì)胞分泌的細(xì)胞因子,包括增加抗炎細(xì)胞因子 IL-10 的產(chǎn)生,減少促炎細(xì)胞因子IL-6表達(dá)水平,以及調(diào)控犬尿氨酸代謝過程中的犬尿氨酸3-單加氧酶的表達(dá),降低神經(jīng)炎性反應(yīng),減少神經(jīng)毒性作用和認(rèn)知功能損傷,進(jìn)而改善抑郁癥[37];(4)適當(dāng)運(yùn)動可有效降低氧化性應(yīng)激和炎癥,減少內(nèi)皮損傷,提高抗氧化水平,并促進(jìn)超氧化物歧化酶、谷胱甘肽過氧化物酶和谷胱甘肽還原酶的表達(dá)[38];(5)運(yùn)動還可以通過誘導(dǎo)運(yùn)動因子發(fā)揮抗抑郁的效應(yīng).運(yùn)動因子是指急性或者慢性運(yùn)動誘發(fā)釋放的信號分子,可通過自分泌、旁分泌、內(nèi)分泌發(fā)揮運(yùn)動保護(hù)效應(yīng),常見的運(yùn)動因子包括脂肪細(xì)胞分泌的脂因子,肌肉細(xì)胞分泌的肌因子等[39].其中,瘦素是由脂肪細(xì)胞分泌的脂因子,可作用于中樞神經(jīng)系統(tǒng)內(nèi)的受體,調(diào)節(jié)下丘腦-垂體-腎上腺軸功能,促進(jìn)海馬神經(jīng)發(fā)生和平衡線粒體代謝保護(hù)神經(jīng)分泌系統(tǒng),進(jìn)而介導(dǎo)運(yùn)動的抗抑郁作用[40].
除了以上各信號分子介導(dǎo)的機(jī)制外,研究者還發(fā)現(xiàn)了運(yùn)動調(diào)節(jié)抑郁情緒的神經(jīng)傳導(dǎo)機(jī)制,主要涉及右側(cè)眶額葉皮層-杏仁核的功能鏈接.杏仁核是與紋狀體、額葉和顳葉結(jié)構(gòu)相關(guān)的菱形大腦區(qū)域[41],在對負(fù)面情緒刺激的情緒處理反應(yīng)中起主要作用[42].臨床研究發(fā)現(xiàn),情緒障礙患者杏仁核灰質(zhì)體積受損,杏仁核功能活動異常[43].而中等強(qiáng)度運(yùn)動和高強(qiáng)度間歇運(yùn)動可改善受試者的情緒,這其中涉及運(yùn)動調(diào)節(jié)杏仁核反應(yīng)性及其與右側(cè)眶額葉皮層和島葉的功能連接[44].研究發(fā)現(xiàn),高強(qiáng)度運(yùn)動干預(yù)后杏仁核和右前葉之間的功能連接升高,而低強(qiáng)度運(yùn)動干預(yù)后功能連接降低[45].
3 運(yùn)動對睡眠覺醒節(jié)律的調(diào)節(jié)作用
生物鐘是生物體內(nèi)一種普遍存在的分子振蕩器,控制和調(diào)節(jié)大量行為和生理過程[46].哺乳動物的大多數(shù)生理過程和行為都存在晝夜節(jié)律的變化特征,以適應(yīng)地球自轉(zhuǎn)產(chǎn)生的24 h光暗循環(huán)周期.睡眠覺醒節(jié)律是晝夜節(jié)律運(yùn)行最為典型的生理性輸出表現(xiàn),與運(yùn)動之間具有非常復(fù)雜的相互影響.運(yùn)動作為睡眠障礙患者的自助療法之一,對睡眠的有益調(diào)節(jié)作用得到了多方證實.
不同的運(yùn)動強(qiáng)度可能會產(chǎn)生不同的睡眠調(diào)節(jié)效果.研究表明,長時間的高強(qiáng)度運(yùn)動會因光線暴露的時間延長,抑制褪黑素的分泌,從而影響褪黑素的生物節(jié)律,進(jìn)而影響睡眠覺醒周期及時長[47].在探究有氧運(yùn)動對睡眠的影響時,美國運(yùn)動醫(yī)學(xué)學(xué)會和美國心臟協(xié)會建議選擇30 min的適度運(yùn)動[48],這對縮短入睡潛伏期、總睡眠時間和睡眠效率都具有有益影響.另外,運(yùn)動強(qiáng)度的增加可能會使睡眠需求增加,從而提高睡眠效率.但一些研究也表明,運(yùn)動強(qiáng)度對睡眠無顯著影響甚至呈負(fù)面影響.在美國學(xué)齡前兒童睡眠問卷評估顯示,體育鍛煉強(qiáng)度與睡眠問題無關(guān).STAVROU等[49]還發(fā)現(xiàn),過高強(qiáng)度的訓(xùn)練會干擾入睡,出現(xiàn)入睡困難、睡眠不安等癥狀.
運(yùn)動改善睡眠/覺醒節(jié)律主要通過以下機(jī)制:(1)運(yùn)動可通過調(diào)節(jié)情緒改善睡眠.已有研究表明,運(yùn)動時分泌的5-HT和DA利于緩解壓力和負(fù)面情緒,心理壓力和負(fù)面情緒的減少有助于改善睡眠質(zhì)量[50].且有研究表明,有氧運(yùn)動結(jié)合抗阻運(yùn)動可以抑制過度喚醒,減少睡眠潛伏期和增加慢波睡眠來改善睡眠質(zhì)量;(2)運(yùn)動可調(diào)節(jié)褪黑素的分泌從而調(diào)節(jié)睡眠覺醒節(jié)律.褪黑素由松果體分泌,是下丘腦視交叉上核感受光照明暗交替變化后分泌的晝夜節(jié)律體液標(biāo)志物分子.褪黑素可通過激活MT1受體和MT2受體來調(diào)節(jié)睡眠,夜晚運(yùn)動或者長時間的高強(qiáng)度體育活動會因光線暴露的時間延長,抑制褪黑素的分泌[47],進(jìn)而影響睡眠/覺醒節(jié)律;(3)運(yùn)動可以造成晝夜節(jié)律的相移,從而影響睡眠/覺醒節(jié)律,其影響效果與運(yùn)動實施時間具有顯著關(guān)系[51].針對人類和嚙齒動物的研究表明,骨骼肌強(qiáng)度和氧化能力在24 h范圍內(nèi)表現(xiàn)出顯著差異[52],因此,在一天中的不同時間運(yùn)動,對機(jī)體的影響明顯不同.研究表明,小鼠晚間活動期的運(yùn)動與早上活躍期的運(yùn)動相比,減少了高脂肪飲食期間體質(zhì)量的積累[53].基于人類研究表明:晝夜節(jié)律較為正常者,在晨練時出現(xiàn)晝夜節(jié)律相位提前(0.49±0.25) h,但在晚上運(yùn)動時相位延遲(-0.41±0.29) h;相比之下,晝夜節(jié)律紊亂者于早晨或晚上運(yùn)動益于調(diào)節(jié)相位變化[54].
運(yùn)動持續(xù)時間和強(qiáng)度也可能會影響晝夜節(jié)律相移.有研究報道,3 h低強(qiáng)度運(yùn)動和1 h高強(qiáng)度運(yùn)動會引起幅度和方向相似的相移[54];深夜劇烈的有氧運(yùn)動不會損害訓(xùn)練有素運(yùn)動員的睡眠[55],但可能會對未經(jīng)訓(xùn)練的人的睡眠產(chǎn)生負(fù)面影響[56].目前,已有研究表明適度的有氧運(yùn)動可能是一種潛在的抑郁癥患者失眠的輔助治療手段[57],但對于不同的運(yùn)動強(qiáng)度對人體睡眠/覺醒節(jié)律的影響以及哪種運(yùn)動強(qiáng)度最為有利還需進(jìn)一步探究.因此,基于時間類型的個性化運(yùn)動時間處方可以緩解年輕人的晝夜節(jié)律失調(diào).
4 展 望
越來越多的實驗及臨床證據(jù)提示運(yùn)動能夠改善腦認(rèn)知功能.盡管如此,運(yùn)動療法尚未在臨床上被廣泛采用,個性化運(yùn)動干預(yù)方案或稱“運(yùn)動處方”的確定是限制其臨床應(yīng)用的主要瓶頸之一.近日發(fā)布的《運(yùn)動處方中國專家共識(2023)》明確了運(yùn)動處方的內(nèi)容包括運(yùn)動頻率、強(qiáng)度、方式、時間、總量、運(yùn)動進(jìn)階6方面的基本內(nèi)容,規(guī)定運(yùn)動強(qiáng)度應(yīng)設(shè)定出安全有效范圍;運(yùn)動時間應(yīng)設(shè)定出最低有效推薦量;運(yùn)動頻率與運(yùn)動總量以周為最小計量單位.該專家共識的發(fā)布將為針對腦認(rèn)知功能改善的運(yùn)動干預(yù)方案的確定提供指導(dǎo).考慮到不同年齡組和人群在生理過程中的差異,運(yùn)動對腦認(rèn)知功能的調(diào)控作用研究應(yīng)考慮不同年齡變化和個體差異等重要因素.應(yīng)根據(jù)應(yīng)用目的,制訂針對應(yīng)用對象的精準(zhǔn)的、個性化運(yùn)動方案.因此,需開展大規(guī)模的臨床前人群流行病學(xué)調(diào)查,研究確定針對特定人群的運(yùn)動干預(yù)方案.此外,運(yùn)動改善腦認(rèn)知功能的機(jī)制尚未研究清楚,目前已知的作用機(jī)制包括調(diào)控腦結(jié)構(gòu)、腦血流量、突觸可塑性、神經(jīng)連接及營養(yǎng)因子等.運(yùn)動可影響身體的多個器官,并非通過單一機(jī)制介導(dǎo)對大腦及其功能的調(diào)控.最近的研究也發(fā)現(xiàn)外周器官在運(yùn)動改善認(rèn)知功能中發(fā)揮著重要作用,比如骨骼肌、肝臟、脂肪組織及腸道等.機(jī)制研究仍是未來運(yùn)動走向臨床應(yīng)用的關(guān)鍵,這不僅有助于運(yùn)動方案的最終確定,也有助于發(fā)展基于運(yùn)動的復(fù)合干預(yù)方案.值得注意的是,運(yùn)動機(jī)體的多種器官組織,如肌肉骨骼系統(tǒng)、泌尿系統(tǒng)、呼吸系統(tǒng)、心腦血管系統(tǒng)、神經(jīng)系統(tǒng)、代謝系統(tǒng)等均有調(diào)控作用,實際應(yīng)用中,應(yīng)從全局出發(fā),綜合考慮后確定最終方案.
作者貢獻(xiàn):文青和苗玉萌為共同第一作者.
參 考 文 獻(xiàn)
[1] VINTS W A J,LEVIN O,F(xiàn)UJIYAMA H,et al.Exerkines and long-term synaptic potentiation:mechanisms of exercise-induced neuroplasticity[J].Frontiers in Neuroendocrinology,2022,66:100993.
[2]COTMAN C W,BERCHTOLD N C,CHRISTIE L A.Exercise builds brain health:key roles of growth factor cascades and inflammation[J].Trends in Neurosciences,2007,30(9):464-472.
[3]WRANN C D,WHITE J P,SALOGIANNNIS J,et al.Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway[J].Cell Metabolism,2013,18(5):649-659.
[4]LUDYGA S,GERBER M,BRAND S,et al.Acute effects of moderate aerobic exercise on specific aspects of executive function in different age and fitness groups:a meta-analysis[J].Psychophysiology,2016,53(11):1611-1626.
[5]SIETTE J,REICHELT A C,WESTBROOK R F.A bout of voluntary running enhances context conditioned fear,its extinction,and its reconsolidation[J].Learning amp; Memory,2014,21(2):73-81.
[6]FERNANDES J,SOARES J C,DO AMARAL BALIEGO L G,et al.A single bout of resistance exercise improves memory consolidation and increases the expression of synaptic proteins in the hippocampus[J].Hippocampus,2016,26(8):1096-1103.
[7]GOMEZ-PINILLA F,HILLMAN C.The influence of exercise on cognitive abilities[J].Comprehensive Physiology,2013,3(1):403-428.
[8]ABE K.Total daily physical activity and the risk of AD and cognitive decline in older adults[J].Neurology,2012,79(10):1071.
[9]CASSILHAS R C,TUFIK S,DE MELLO M T.Physical exercise,neuroplasticity,spatial learning and memory[J].Cellular and Molecular Life Sciences:CMLS,2016,73(5):975-983.
[10]CASSILHAS R C,LEE K S,F(xiàn)ERNANDES J,et al.Spatial memory is improved by aerobic and resistance exercise through divergent molecular mechanisms[J].Neuroscience,2012,202:309-317.
[11]SERRA F T,CARDOSO F D S,PETRACONI N,et al.Resistance exercise improves learning and memory and modulates hippocampal metabolomic profile in aged rats[J].Neuroscience Letters,2022,766:136322.
[12]SUWABE K,BYUN K,HYODO K,et al.Rapid stimulation of human dentate gyrus function with acute mild exercise[J].Proceedings of the National Academy of Sciences of the United States of America,2018,115(41):10487-10492.
[13]BHERER L,ERICKSON K I,LIU-AMBROSE T.A review of the effects of physical activity and exercise on cognitive and brain functions in older adults[J].Journal of Aging Research,2013,2013:657508.
[14]THOMAS B P,TARUMI T,SHENG M,et al.Brain perfusion change in patients with mild cognitive impairment after 12 months of aerobic exercise training[J].Journal of Alzheimer's Disease:JAD,2020,75(2):617-631.
[15]ERICKSON K I,VOSS M W,PRAKASH R S,et al.Exercise training increases size of hippocampus and improves memory[J].Proceedings of the National Academy of Sciences of the United States of America,2011,108(7):3017-3022.
[16]KIM S H,KIM H B,JANG M H,et al.Treadmill exercise increases cell proliferation without altering of apoptosis in dentate gyrus of Sprague-Dawley rats[J].Life Sciences,2002,71(11):1331-1340.
[17]TSAI S F,KU N W,WANG T F,et al.Long-term moderate exercise rescues age-related decline in hippocampal neuronal complexity and memory[J].Gerontology,2018,64(6):551-561.
[18]JIANG L,MA J,ZHANG Y,et al.Effect of running exercise on the number of the neurons in the hippocampus of young transgenic APP/PS1 mice[J].Brain Research,2018,1692:56-65.
[19]婁淑杰,刁瑋,陳佩杰.運(yùn)動頻率和遞增強(qiáng)度運(yùn)動對大鼠海馬神經(jīng)發(fā)生的影響[J].體育科學(xué),2010,30(1):66-69.
LOU S J,DIAO W,CHEN P J.Effect of exercise frequency and increasing intensity exercise on hippocampal neurogenesis in rats[J].China Sport Science,2010,30(1):66-69.
[20]王富鴻,李雪,鄧文騫,等.過度負(fù)荷運(yùn)動對大鼠空間學(xué)習(xí)記憶能力及海馬生長相關(guān)蛋白的影響[J].武漢體育學(xué)院學(xué)報,2015,49(2):72-77.
WANG F H,LI X,DENG W Q,et al.Effect of overload exercise on spatial learning and memory abilities and GAP-43 expression in rats'hippocampal[J].Journal of Wuhan Institute of Physical Education,2015,49(2):72-77.
[21]LIPSKY R H,MARINI A M.Brain-derived neurotrophic factor in neuronal survival and behavior-related plasticity[J].Annals of the New York Academy of Sciences,2007,1122:130-143.
[22]BRAMHAM C R,MESSAOUDI E.BDNF function in adult synaptic plasticity:the synaptic consolidation hypothesis[J].Progress in Neurobiology,2005,76(2):99-125.
[23]CASTRéN E,MONTEGGIA L M.Brain-derived neurotrophic factor signaling in depression and antidepressant action[J].Biological Psychiatry,2021,90(2):128-136.
[24]KUHNE L A,KSIEZARCZYK A M,BRAUMANN K M,et al.The effects of acute cardiovascular exercise on memory and its associations with exercise-induced increases in neurotrophic factors[J].Frontiers in Aging Neuroscience,2021,13:750401.
[25]CETINKAYA C,SISMAN A R,KIRAY M,et al.Positive effects of aerobic exercise on learning and memory functioning,which correlate with hippocampal IGF-1 increase in adolescent rats[J].Neuroscience Letters,2013,549:177-181.
[26]DE MIGUEL Z,KHOURY N,BETLEY M J,et al.Exercise plasma boosts memory and dampens brain inflammation via clusterin[J].Nature,2021,600:494-499.
[27]DUMAN C H,SCHLESINGER L,RUSSELL D S,et al.Voluntary exercise produces antidepressant and anxiolytic behavioral effects in mice[J].Brain Research,2008,1199:148-158.
[28]PEARCE M,GARCIA L,ABBAS A,et al.Association between physical activity and risk of depression:a systematic review and meta-analysis[J].JAMA Psychiatry,2022,79(6):550-559.
[29]張振東,李松璞,張文婧,等.青少年感知的體育教師自主性支持與學(xué)校幸福感的關(guān)系探究:堅毅品質(zhì)的中介作用[J].河南師范大學(xué)學(xué)報(自然科學(xué)版),2022,50(4):129-135.
ZHANG Z D,LI S P,ZHANG W J,et al.The relationship between teenage perceived physical education teachers' autonomy support and school happiness:the mediating role of grit[J].Journal of Henan Normal University(Natural Science Edition),2022,50(4):129-135.
[30]張楠,王莉智,楊桂姣,等.自主跑輪運(yùn)動對阿爾茲海默病模型小鼠認(rèn)知、情緒以及杏仁核炎性因子表達(dá)的影響[J].神經(jīng)解剖學(xué)雜志,2017,33(6):741-747.
ZHANG N,WANG L Z,YANG G J,et al.Effects of voluntary wheel running on the cognition,emotion and the expression of inflammatory response protein in amygdala of AD mice[J].Chinese Journal of Neuroanatomy,2017,33(6):741-747.
[31]SINGH B,OLDS T,CURTIS R,et al.Effectiveness of physical activity interventions for improving depression,anxiety and distress:an overview of systematic reviews[J].British Journal of Sports Medicine,2023,57(18):1203-1209.
[32]IMBODEN C,GERBER M,BECK J,et al.Aerobic exercise or stretching as add-on to inpatient treatment of depression:similar antidepressant effects on depressive symptoms and larger effects on working memory for aerobic exercise alone[J].Journal of Affective Disorders,2020,276:866-876.
[33]REDWINE L S,WILSON K,PUNG M A,et al.A randomized study examining the effects of mild-to-moderate group exercises on cardiovascular,physical,and psychological well-being in patients with heart failure[J].Journal of Cardiopulmonary Rehabilitation and Prevention,2019,39(6):403-408.
[34]SCHUCH F B,VASCONCELOS-MORENO M P,BOROWSKY C,et al.Exercise and severe depression:preliminary results of an add-on study[J].Journal of Affective Disorders,2011,133(3):615-618.
[35]KIUCHI T,LEE H,MIKAMI T.Regular exercise cures depression-like behavior via VEGF-Flk-1 signaling in chronically stressed mice[J].Neuroscience,2012,207:208-217.
[36]馬坤,劉金美,付翠元,等.運(yùn)動對抑郁癥的干預(yù)作用及機(jī)制研究進(jìn)展[J].中國體育科技,2020,56(11):13-24.
MA K,LIU J M,F(xiàn)U C Y,et al.Research progress on the intervention effect and mechanism of exercise on depression[J].China Sport Science and Technology,2020,56(11):13-24.
[37]LIU I T,LEE W J,LIN S Y,et al.Therapeutic effects of exercise training on elderly patients with dementia:a randomized controlled trial[J].Archives of Physical Medicine and Rehabilitation,2020,101(5):762-769.
[38]EUTENEUER F,DANNEHL K,DEL REY A,et al.Immunological effects of behavioral activation with exercise in major depression:an exploratory randomized controlled trial[J].Translational Psychiatry,2017,7(5):e1132.
[39]CHOW L S,GERSZTEN R E,TAYLOR J M,et al.Exerkines in health,resilience and disease[J].Nature Reviews Endocrinology,2022,18:273-289.
[40]薛香莉,劉微娜,漆正堂,等.脂肪細(xì)胞因子與運(yùn)動的抗抑郁作用[J].體育科學(xué),2016,36(11):66-74.
XUE X L,LIU W N,QI Z T,et al.Adipocytokines and the antidepressant effects of exercise[J].Sports Science,2016,36(11):66-74.
[41]SWANSON L W,PETROVICH G D.What is the amygdala?[J].Trends in Neurosciences,1998,21(8):323-331.
[42]LEDOUX J.The emotional brain,fear,and the amygdala[J].Cellular and Molecular Neurobiology,2003,23(4):727-738.
[43]MILHAM M P,NUGENT A C,DREVETS W C,et al.Selective reduction in amygdala volume in pediatric anxiety disorders:a voxel-based morphometry investigation[J].Biological Psychiatry,2005,57(9):961-966.
[44]CHEN Y C,CHEN C Y,MARTíNEZ R M,et al.Habitual physical activity mediates the acute exercise-induced modulation of anxiety-related amygdala functional connectivity[J].Scientific Reports,2019,9:19787.
[45]CHO H B,BUELER C E,DIMUZIO J,et al.Negative mood states correlate with laterobasal amygdala in collegiate football players[J].BioMed Research International,2018,2018:8142631.
[46]CUSUMANO P,DAMULEWICZ M,CARBOGNIN E,et al.The RNA helicase BELLE is involved in circadian rhythmicity and in transposons regulation in Drosophila melanogaster[J].Frontiers in Physiology,2019,10:133.
[47]董毅.生物節(jié)律與運(yùn)動[J].中國體育科技,2019,55(4):22-30.
DONG Y.Biorhythm and exercise[J].China Sport Science and Technology,2019,55(4):22-30.
[48]BRUPBACHER G,ZANDER-SCHELLENBERG T,STRAUS D,et al.The acute effects of aerobic exercise on sleep in patients with unipolar depression:a randomized controlled trial[J].Sleep,2021,44(11):177.
[49]STAVROU V,VAVOUGIOS GD,BARDAKA F,et al.The effect of exercise training on the quality of sleep in nationallevel adolescent finswimmers[J].Sports Med Open,2019,5(1):34.
[50]LUCA M,LUCA A.Oxidative stress-related endothelial damage in vascular depression and vascular cognitive impairment:beneficial effects of aerobic physical exercise[J].Oxidative Medicine and Cellular Longevity,2019,2019(1):8067045.
[51]HASKELL W L,LEE I M,PATE R R,et al.Physical activity and public health:updated recommendation for adults from the American College of Sports Medicine and the American Heart Association[J].Medicine and Science in Sports and Exercise,2007,39(8):1423-1434.
[52]BLANCO-CENTURION C A,SHIROMANI P J.Beneficial effects of regular exercise on sleep in old F344 rats[J].Neurobiology of Aging,2006,27(12):1859-1869.
[53]VAN MOORSEL D,HANSEN J,HAVEKES B,et al.Demonstration of a day-night rhythm in human skeletal muscle oxidative capacity[J].Molecular Metabolism,2016,5(8):635-645.
[54]THOMAS J M,KERN P A,BUSH H M,et al.Circadian rhythm phase shifts caused by timed exercise vary with chronotype[J].JCI Insight,2020,5(3):134270.
[55]YOUNGSTEDT S D,KRIPKE D F,ELLIOTT J A.Is sleep disturbed by vigorous late-night exercise?[J].Medicine and Science in Sports and Exercise,1999,31(6):864-869.
[56]FAIRBROTHER K,CARTNER B,TRIPLETT N T,et al.The effects of aerobic exercise timing on sleep architecture[J].Medicine amp; Science in Sports Exercise,2011,43(5):879.
[57]DICKINSON J M,D'LUGOS A C,NAYMIK M A,et al.Transcriptome response of human skeletal muscle to divergent exercise stimuli[J].Journal of Applied Physiology,2018,124(6):1529-1540.
The regulatory role of motor activity on cognitive function
Wen Qing1, Miao Yumeng1,2, Song Lun1,2
(1. Institute of Military Cognition and Brain Science, Academy of Military Sciences, Beijing 100850, China;
2. College of Life Sciences, Henan Normal University, Xinxiang 453007, China)
Abstract: Exercise has been widely proved to not only prevent and treat chronic noncommunicable diseases such as diabetes, cardiovascular disease and tumor, but also be a good early intervention strategy for mental and neurodegenerative disease. Therefore, exercise is recognized as a non-invasive method for regulating brain cognitive function, and different kinds of exercise can effectively reduce the risk of medium and long-term mental diseases. This paper mainly discusses the regulation effect and mechanism of exercise on brain cognitive function, including learning, memory, emotion, sleep and wake rhythm, so as to provide theoretical basis for selecting appropriate intensity exercise training program, formulating \"exercise prescription\" and improving brain cognitive ability.
Keywords: exercise; cognitive function; learning and memory; emotion; sleep-wake rhythm
[責(zé)任編校 劉洋 趙曉華]