• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Evaluation of the effect of sodium silicate addition to mine backfill, Gelfill-Part 2:Effects of mixing time and curing temperature

    2015-10-09 07:09:57KermniHssniAflkiBenzzouNokken
    關(guān)鍵詞:控制參數(shù)危險源液位

    M.Kermni,F.P.Hssni,*,E.Aflki,M.Benzzou,M.Nokken

    aMining Engineering Department,McGill University,Montreal,Quebec,Canada

    bAmirkabir University of Technology,Tehran,Iran

    cUniversité du Québec en Abitibi Témiscamingue,Quebec,Canada

    dDepartment of Building,Civil&Environmental Engineering,Concordia University,Montreal,Quebec,Canada

    Evaluation of the effect of sodium silicate addition to mine backfill, Gelfill-Part 2:Effects of mixing time and curing temperature

    M.Kermania,F.P.Hassania,*,E.Aflakib,M.Benzaazouac,M.Nokkend

    aMining Engineering Department,McGill University,Montreal,Quebec,Canada

    bAmirkabir University of Technology,Tehran,Iran

    cUniversité du Québec en Abitibi Témiscamingue,Quebec,Canada

    dDepartment of Building,Civil&Environmental Engineering,Concordia University,Montreal,Quebec,Canada

    A R T I C L E I N F O

    Article history:

    in revised form

    28 September 2015

    Accepted 29 September 2015

    Available online xxx

    Gelfill

    Cemented hydraulic fill(CHF)

    Sodium silicate

    Mercury intrusion porosimetry(MIP)

    Drainage

    A B S T R A C T

    The effects of mixing time and curing temperature on the uniaxial compressive strength(UCS)and microstructure of cemented hydraulic fill(CHF)and sodium silicate-fortified backfill(Gelfill)were investigated in the laboratory.A series of CHF and Gelfill samples was mixed for time periods ranging from 5 min to 60 min and cured at temperatures ranging from 5°C to 50°C for 7 d,14 d or 28 d. Increasing the mixing time negatively influenced the UCS of Gelfill samples,but did not have a detectable effect on CHF samples.The curing temperature had a strong positive impact on the UCSs of both Gelfill and CHF.An elevated temperature caused rapid UCS development over the first 14 d of curing.Mercury intrusion porosimetry(MIP)indicated that the pore size distribution and total porosity of Gelfill were altered by curing temperature.

    ?2015 Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.Production and hosting by

    Elsevier B.V.All rights reserved.

    1.Introduction

    Mine backfill consists of tailings,binder and water.Gelfill is a new mine backfill material,in which the binder component includes an alkali activator,i.e.sodium silicate.Although sodium silicate has been used in concrete manufacturing,its use in mine backfill is relatively new.Until very recently,there have been only a few publications regarding Gelfill(Kermani and Hassani,2012;Kermani et al.,2014).This paper presents the second part of a comprehensive study of Gelfill.The first paper(Kermani et al., 2015),published in this journal,investigated the effects of sodium silicate concentration and binder dosage on the mechanical and microstructural properties of Gelfill and cemented hydraulic fill(CHF).It showed that Gelfill samples had higher mechanical strength than CHF samples.However,elevated sodium silicate concentrations(0.5 wt%,wt%is the percentage by total dry weight)detrimentally affected the mechanical strength of Gelfill.Pore structures and pore size distributions differed between Gelfill and CHF samples,which could have contributed to the enhanced mechanical properties of Gelfill.Finally,the addition of sodium silicate to CHF reduced the volume of water released from fill materials during curing.This paper expands upon the previous findings by investigating the effects of mixing time and curing temperature on the uniaxial compressive strength(UCS)and microstructure of Gelfill and CHF.

    Mixing time and curing temperature are critical to mine backfill placing.Backfill materials must be mixed to produce a homogeneous cemented fill.Insufficient mixing leads to inconsistent distribution of cement and water,and reduces backfill strength. However,mixing consumes large amounts of energy and extended mixing is costly.Furthermore,overmixing inhibits gel formation during the hydration of cementitious materials.Therefore,it is essential to determine an optimal mixing time to reduce energy requirementsand ensurebackfill homogeneity.Curing temperature plays a key role in determining the mechanical characteristics of cemented materials.However,investigations on the influence of curing temperature on cemented backfill are very limited.Fall et al.(2010)conducted the uniaxial compression tests on paste backfill specimens cured at 0°C,20°C,35°C and 50°C.The strength development rate decreases with curing temperature due to the increasing hydration rate of the binders.Therefore,samples cured at lower temperatures had lower UCS.Moreover,the mode of strength development differed among binder types(Fall et al., 2010).

    The objective of this research was to investigate the effects of various mixing times and curing temperatures on the mechanical strength of CHF and Gelfill.

    2.Materials

    2.1.Tailings

    Tailings are waste products from ore processing plants,and primarily consist of fine ground host rock.When used as a component of mine backfill,the physicochemical properties of tailings significantly affect the mechanical performance of the backfill(Benzaazoua et al.,2004;Kesimal et al.,2004).In this research,the classified tailings from one of Vale's mines in Sudbury, Ontario,Canada,generally consist of quartz,albite and small quantities of calcite,muscovite,pyrrhotite,chalcopyrite,anorthite, and chlorite.The particle size distribution determined using laser diffraction(ASTM,1996)indicates that the Vale mine tailings are coarser than the average particle size of 11 mine tailings samples from the provinces of Quebec and Ontario(Ouellet et al.,2008)(Fig.1,Table 1).

    2.2.Binder

    Binders are mainly used to increase the mechanical stability of fill materials.They are the most expensive component of mine backfill,representing up to 75%of backfill costs(Hassani and Archibald,1998).Normal Portland cement(NPC),fly ash and blast furnace slag(BFS)are commonly used for mine backfill.In this research,a combination of 10%type 10 NPC and 90%BFS,both provided byLafarge Canadawas used since its binder formulation is generally used in Vale mines in Ontario.The densities of the NPC and BFS were 3.07 g/cm3and 2.89 g/cm3,respectively.The Blaine specific surface areas of the NPC and BFS were 3710 cm2/g and 5998 cm2/g,respectively.The chemical compositions of the NPC and BFS are shown in Table 2.

    For this application,BFS has generally been associated with three main limitations:(i)low hydration rate,(ii)low early strength,and(iii)relatively slow strength development.In order to overcome these limitations,BFS must be activated.Many studies have shown that BFS can be successfully activated by alkali activators such as sodium silicate(Anderson and Gram,1998;Bakhareva et al.,1999).

    Fig.1.Particle size distributions of the Vale mine tailings and 11 mine tailings samples from Ontario and Quebec.

    Table 1 Physical properties of the tailings.

    Table 2 Chemical compositions of the NPC and BFS provided by Lafarge Canada.

    2.3.Sodium silicate

    In addition to acting as an alkali activator of BFS and fly ash, sodium silicate has been used in glues,cements,paints,and detergents,and as a hardening agent for natural and artificial stones(Shi et al.,2006).It is manufactured from Na2CO3and SiO2by smelting silica with sodium carbonate at approximately 1100-1200°C.The general formula for sodium silicate is Na2O·nSiO2, with n ranging from 1.6 to 3.85 for most commercially available sodium silicate materials.Sodium silicate is the most effective alkali activator for most pozzolans,including BFS and fly ash(Anderson and Gram,1998;Bakhareva et al.,1999;Brough and Atkinson, 2002;Hilbig and Buchwald,2006;Chen and Brouwers,2007). Type N?sodium silicate,provided by the PQ National Silicate Company,was chosen because it is the most efficient activator for ground BFS(Table 3).

    Table 3 The properties of sodium silicate(PQ National Silicate Company).

    2.4.Sample preparation and curing

    To investigate the effect of mixing time and curing temperature on CHF and Gelfill,198 CHF and Gelfill samples were prepared(Table 4).In both types of fill,the pulp density was kept constant at 70%,as is practiced in Vale mines in Sudbury.Also,the binder consisted of 5 wt%tailings.The binder for the Gelfill samples was a combination of NPC,BFS,and 0.3 wt%sodium silicate.CHF and Gelfill were mixed according to ASTM C305-14(ASTM,2014)in small batches in a 5-L stainless steel bowl for six mixing times(5 min,10 min,15 min,20 min,30 min and 60 min)using a mixerwith a stainless steel wire whip blade(Table 4).Mixtures were cast in cylindrical,polyvinyl molds 10 cm deep and 5 cm in diameter. The bottoms of the molds were perforated by 25 uniformly distributed holes to simulate drainage that occurs in the mines;a geotextile filter prevented the loss of fine particles.Specimens were cured in a curing chamber at constant(90±2)%relative humidity. In order to investigate the effect of curing temperature on CHF and Gelfill,samples were prepared according to the above-mentioned mixing design and cured at curing temperatures ranging from 5°C to 50°C(Table 4).

    氣瓶充裝站中涉及的控制參數(shù)和預(yù)警信息主要包括場所液位、溫度、壓力、濃度、現(xiàn)場視頻及事故預(yù)警信息等。根據(jù)《危險化學(xué)品重大危險源監(jiān)督管理暫行規(guī)定》(國家安全生產(chǎn)監(jiān)督管理總局令第40號)和《國家安全監(jiān)管總局關(guān)于印發(fā)遏制危險化學(xué)品和煙花爆竹重特大事故工作意見的通知》(安監(jiān)總管三〔2016〕62號)等文件要求,應(yīng)對重點監(jiān)管的危險化學(xué)品及重大危險源配備重點控制參數(shù)(溫度、壓力、液位、流量、組分等信息)不間斷采集和監(jiān)測系統(tǒng),配備可燃氣體和有毒氣體泄漏檢測報警裝置以及火災(zāi)自動檢測及報警系統(tǒng),并具備信息遠傳、連續(xù)記錄、事故預(yù)警、信息存儲等功能。

    Table 4 Binder mixtures characteristics of backfill samples.

    3.Experimental setup

    3.1.Uniaxial compression tests

    The UCS of triplicate samples was measured after 7 d,14 d,and 28 d of curing with a“Wykeham Farrance 100 kN”pressure machine equipped with a 50 kN load cell(ASTM,2006).A linear variable displacement transducer sensor was used to measure the vertical deformation rate(strain).A data acquisition board and computerrecordedanddisplayedthedata.Sampleswere removed from the humidity room just prior to the uniaxial compression test.

    3.2.Mercury intrusion porosimetry

    Mercury intrusion porosimetry(MIP)is a common technique to investigate the microstructure(pore size distribution and pore structure)of cemented materials(Aligizaki,2006;Ouellet et al., 2007).Evaluating microstructure is the key to understanding the mechanical properties and durability of cemented mine backfill(Belem et al.,2001).The MIP technique is based on the theoretical foundation of Washburn(1921),which states that a nonwetting liquid will only penetrate into pores under pressure,and that this penetration directly depends on the amount of applied pressure. Washburn developed a relationship between applied pressure and pore size as follows:

    where r is the radius of the pore,γis the surface tension of the liquid(approximately 0.48 N/m for mercury),φis the wetting angle or contact angle between the liquid and solid material(approximately 140°for mercury),and P is the absolute applied pressure.

    Six CHF and six Gelfill samples cured for 28 d and used for uniaxial compression test were subsequently subjected to MIP using a 9320-PoreSizer porosimeter(Micromeritics).Small particles(5-7 mm)were carefully removed from the center of samples,and then dried in a vacuum desiccator prior to porosimetry.

    4.Results and discussion

    4.1.Effect of mixing time on the Gelfill and CHF strengths

    With increasing mixing time,the UCS of Gelfill samples decreased,whereas the UCS of CHF samples did not change(Fig.2).The UCS of Gelfill was almost 30%greater than that of CHF for the samples mixed for 5 min.However,the difference between Gelfill and CHF UCSs decreased with increasing mixing time.

    Fig.2.Effects of mixing time on the UCSs of(a)Gelfill and(b)CHF samples after three curing periods.

    In order to explain the effect of mixing time,the initial and final setting times of the binder paste were determined by using a Vicat apparatus according to ASTM C191-13(ASTM,2013).The volume of distilled water required to reach the normal consistency of CHF was added to the binder.Consequently,five sodium silicateconcentrations(0 wt%,2 wt%,6 wt%,10 wt%and 15 wt%)were added to the Gelfill.The initial and final setting times of the NPC/ BFS paste decreased dramatically by the addition of sodium silicate(Fig.3),in agreement with the findings of Chang(2002).

    Fig.3.Effects of sodium silicate concentration on the initial and final setting times of binder made with NPC and BFS at a ratio of 10:90.

    Fig.4.Effects of curing temperature on the UCS evolution of(a)CHF and(b)Gelfill.

    Fig.5.Incremental pore size distributions of(a)CHF samples and(b)Gelfill samples cured for 28 d.

    4.2.Effect of curing temperature on the Gelfill and CHF strengths

    In order to investigate the effect of curing temperature on the mechanical properties of CHF and Gelfill,Gelfill and CHF samples were prepared and cured at five curing temperatures(5°C,15°C, 25°C,35°C and 50°C).The CHF and Gelfill samples cured at 35°C and 50°C rapidly developed strength for the first 14 d of curing, and then plateaued(Fig.4).This might be due to the formation ofa solid C-S-H gel and ettringite layer around the binder particles, which could prevent moisture from reaching the inner parts of the binder.Therefore,the hydration would not be continuous.

    Table 5 Summary of results of MIP tests conducted on CHF and Gelfill samples cured at 5°C, 25°C and 50°C.

    The MIP results revealed that the pore size did not exceed 15μm(Fig.5,Table 5),which confirms the above hypothesis.After 14 d of curing,the UCS of the CHF and Gelfill samples cured at 25°C increased more rapidly than samples cured at 35°C and 50°C. Therefore,after 28 d the UCS of Gelfill samples cured at 25°C was 35%-90%higher than that of the other samples.The UCS values of samples cured at 50°C did not increase after 14 d,which could be explained by the driving out of moisture and hence cessation of hydration of BFS and NPC in the CHF and Gelfill.Moreover,the very low UCS values of samples cured at 5°C could be due to the low hydration rates of NPC and BFS at low temperature.This effect was clearly explained by Fall et al.(2010).Curing temperature altered the pore size distribution and pore structure of the CHF and Gelfill samples.Increasing the porosity decreased the UCS.The low UCS values for the samples cured at 5°C could be explained by the higher threshold and critical diameters.In fact,the pore size distribution of samples cured at 5°C was dominated by larger pores than those found in other samples.It can be concluded that the combination of lower total porosities and better pore size distribution contribute to the higher UCS values obtained from thee samples cured at 25°C.

    5.Conclusions

    An extended mixing time had a detrimental effect on the UCS of Gelfill,but no effect on CHF.Moreover,measuring the initial and final setting times of BFS and NPC paste showed that the addition of sodium silicate could strongly reduce the initial and final setting times.These results reveal that the addition of sodium silicate would be more effective if added at the close to the discharge rather than on the surface.Curing temperature strongly influenced the UCS of Gelfill samples.The results confirm that an elevated curing temperature could prevent the hydration of binders in CHF and Gelfill.Finally,a low curing temperature could cause low UCSs in CHF and Gelfill.In general and at the laboratory, the MIP conducted on the Gelfill samples cured in various curing temperatures showed that the curing temperature influenced the pore structures and pore size distributions,which could mainly contribute to the different mechanical properties of Gelfill samples.Use of Gelfill as mine backfill could contribute to reducing nonproductive time during the mining cycle and increase the mine production efficiency.Gelfill has the potential to improve the stability of underground mines and improve hydraulic fill economics.

    Conflict of interest

    The authors wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

    Acknowledgments

    The authors acknowledge the financial support given by Natural Sciences and Engineering Research Council of Canada(NSERC)and Vale.The authors are also grateful for the help and support of National Silicate Inc.,and the help and contributions of other graduate and undergraduate students at McGill and Concordia Universities.

    References

    Aligizaki KK.Pore structure of cemented-based materials.New York,USA:Taylor& Francis;2006.

    American Society for Testing and Materials(ASTM).ASTM C136-96 standard test method for sieve analysis of fine and coarse aggregates.West Conshohocken, PA,USA:ASTM International;1996.

    ASTM.ASTM D2166-06 standard test method for unconfined compressive strength of cohesive soil.West Conshohocken,PA,USA:ASTM International;2006.

    ASTM.ASTM C191-13 standard test methods for time of setting of hydraulic cement by Vicat needle.West Conshohocken,PA,USA:ASTM International;2013.

    ASTM.ASTM C305-14 standard practice for mechanical mixing of hydraulic cement pastes and mortars of plastic consistency.West Conshohocken,PA,USA:ASTM International;2014.

    Anderson R,Gram H.Alkali-activated slag.Stockholm,Sweden:Swedish Cement and Concrete Research Institute;1998.

    Bakhareva T,Sanjayana JG,Cheng YB.Effect of elevated temperature curing on properties of alkali-activated slag concrete.Cement and Concrete Research 1999;29(10):1619-25.

    Belem T,Bussière B,Benzaazoua M.The effect of microstructural evolution on the physical properties of paste backfill.In:Tailings and mine waste'01.Rotterdam, Netherland:A.A.Balkema;2001.p.365-74.

    Benzaazoua M,Fall M,Belem T.A contribution to understanding the hardening process of cemented paste backfill.Minerals Engineering 2004;17(2):141-52.

    Brough AR,Atkinson A.Sodium silicate-based,alkali-activated slag mortars:part I. Strength,hydrationandmicrostructure.Cement andConcrete Research 2002;32(6):865-79.

    Chang JJ.A study on the setting characteristics of sodium silicate-activated slag pastes.Cement and Concrete 2002;33(7):1005-11.

    Chen W,Brouwers HJH.The hydration of slag,part 1:reaction models for alkaliactivated slag.Journal of Materials Science 2007;42:428-43.

    Fall M,Célestin JC,Pokharel M,Touré M.A contribution to understanding the effects of curing temperature on the mechanical properties of mine cemented tailings backfill.Engineering Geology 2010;114(3):397-413.

    Hassani F,Archibald JF.Mine backfill 1998.Montreal,Canada:Canadian Institute of Mining,Metallurgy and Petroleum;1998.

    Hilbig H,Buchwald A.The effect of activator concentration on reaction degree and structure formation of alkali-activated ground granulated blast furnace slag. Material Science 2006;41(19):6488-91.

    Kermani M,Hassani FP,Aflakib E,Benzaazouac M,Nokken M.Evaluation of the effect of sodium silicate addition to mine backfill,Gelfill-part 1.Journal of Rock Mechanics and Geotechnical Engineering 2015;7(3):266-72.

    Kermani M,Hassani F,Nokken M,Aflaki E.An investigation into the addition of sodium silicate into mine backfill,Gelfill.In:International Symposium on Mining with Backfill(Mine Fill 2014),Perth,Australia;2014.p.271-80.

    Kermani M,Hassani F.The mechanical properties of Gelfill.In:CIM Conference, Edmonton,Calgary,Canada;2012.

    Kesimal A,Yilmaz E,Ercikdi B.Evaluation of paste backfill mixtures consisting of sulphide-rich mill tailings and varying cement contents.Cement and Concrete Research 2004;34(10):1817-22.

    Ouellet S,Bussiere B,Aubertin M,Benzaazoua M.Characterization of cemented paste backfill pore structure using SEM and IA analysis.Bulletin of Engineering Geology and the Environment 2008;67(2):139-52.

    Ouellet S,Bussière B,Aubertin M,Benzaazoua M.Microstructural evolution of cemented paste backfill:mercury intrusion porosimetry test results.Cement and Concrete Research 2007;37(12):1654-65.

    Shi C,Krivenko P,Roy D.Alkali-activated cements and concretes.New York,USA:Taylor&Francis;2006.

    Washburn EW.Note on a method of determining the distribution of pore sizes in a porous material.Proceedings of National Academy of Sciences of the United States of America 1921;7(4):115-6.

    Mehrdad Kermani obtained a M.Sc.and a Ph.D.degree from McGill University,Canada.He is a research associate at the Mining Engineering Department of McGill University in Montreal.He is also a member of Professional Engineer of Ontario.He has been involved in mining and geotechnical as well as backfill research,consulting and education for more than 15 years.He is the author of more than 20 scientific papers.He is an executive committee member ofISRM2015congress andWorld Mining Congress 2014 in Montreal Canada.

    Ferri Hassani obtained his Bachelor of Mining Engineering and Ph.D.from Nottingham University,Nottingham England in 1976 and 1981,respectively.Ferri Hassani is a Webster Chair Professor of Mining Engineering at McGill University and director of Geo-mechanics labs and Earth/ Mine Energy Research Group(EMERG),England.He was awarded a Fellow of the Canadian Institute of Mining and Metallurgy for his contribution to the mining industry in Canada.He has been at McGill University since 1983 and many years in a leadership role.His focus evolved from rock mechanics and mine design,to mining and energy and waste heat recovery from mining operation mine waste disposal,minefill and mining sustainability as well as microwave assisted rock breaking system.He was one of the pioneers of Pate backfill and he is the chairman of the International Mine Backfill Council.He was Co-founder and Chairman of the Canadian Mining innovation council(CMIC).He was given Canadian Rock Mechanics Award of Rock Engineering Society of CIM in 1992 and was also awarded Boleslaw Krupinski Gold Medal from the World Mining Organization of IOC 2013.He continues to maintain a strong interdisciplinary research and consulting activities with several million dollars of research and has graduated over 150 Ph.D.and MEng.Students,as well as research assistants,post-doctoral fellows,research associates and published over 160 scientific articles and reports.His research has led to obtaining several patents in the past 15 years.

    Esmail Aflaki obtained his Bachelor of Engineering and his Masters of Engineering in Geological Engineering from McGill University in Canada in 1980 and a Ph.D.degree in Geotechnical engineering from the University of Newcastle Upon Tyne in 1996.He has worked in a leadership role in civil industry and conducted many geotechnical site investigations and consulting projects.He later joined the Amirikabir University in Tehran,Iran,as a lecturer and then assistant professor.He has published number of journal and conference articles in geotechnical engineering and is an author of two books.

    Mostafa Benzaazoua obtained his Master degree in 1990(Lorraine University-Nancy,France),with specialization in applied mineralogy and metallogeny.He pursues his training with a Professional Master(DESS)in Mineral Processing(obtained in 1991);then in 1992 he obtained his geosciences Ph.D.around applied mineralogy and geochemistry applied to mine ores and others mine byproducts for beneficiation and/or management purposes. M.Benzaazoua joined the University of Quebec(UQAT)in 1996 beneficiating of a post-doctoral fellow.He became Professor in 1997 at UQAT.He obtained a Canada Research Chair in 2003 in the field of Integrated Mine Waste Management.In 2008 he obtained an International Research Chair funded by the IDRC jointly with the CRC in collaboration with Marrakech University(Morocco).Since UQAT appointment,he worked on several government funded and industry sponsored projects dealing with mineralogy and geochemistry for mine pollution control,waste management,mine site rehabilitation,mineral processing and waste reuse.Between 2010 and 2012,He took a leave and joined the National Institute of Applied Sciences at Lyon in France as Professor in the field of Industrial environment(treatment and reuse of industrial wastes).Now he is part of the young Mine and Environment Research Institute in UQAT.Dr.Benzaazoua's background is in geosciences with a specialization in applied mineralogy,geochemistry and mineral processing.He develops strong skills in mining environment,waste management,waste treatment and reuse;especially through the use of cemented mine backfill technology.

    Michelle Nokken obtained her Bachelor of Applied Science and Doctorate in Civil Engineering at the University of Toronto.She is an Associate Professor in the Department of Building,Civil&Environmental Engineering at Concordia University,Montreal,QC.Dr.Nokken's research interests are durability of concrete,use of alternate cementing materials and non-destructive testing.Dr.Nokken is a member of ASCE,CSCE,ASTM.She is a Fellow of the American Concrete Institute.

    11 August 2015

    *Corresponding author.Tel.:+1 514 398 8060.

    E-mail addresses:ferri.hassani@mcgill.ca,ferrihassani@hotmail.com(F.P.Hassani).

    Peer review under responsibility of Institute of Rock and Soil Mechanics, Chinese Academy of Sciences.

    1674-7755?2015 Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.Production and hosting by Elsevier B.V.All rights reserved.

    http://dx.doi.org/10.1016/j.jrmge.2015.09.004

    猜你喜歡
    控制參數(shù)危險源液位
    對某企業(yè)重大危險源核查引發(fā)的思考
    高超聲速飛行器滑??刂茀?shù)整定方法設(shè)計*
    飛控與探測(2022年6期)2022-03-20 02:16:14
    Birkhoff系統(tǒng)穩(wěn)定性的動力學(xué)控制1)
    橋式起重機使用環(huán)節(jié)重大危險源辨識研究
    基于STM32燃氣熱水鍋爐液位控制系統(tǒng)設(shè)計與實現(xiàn)
    石油儲罐液位開關(guān)的應(yīng)用分析
    鐵路工程施工危險源辨識的研究
    江西建材(2018年1期)2018-04-04 05:26:30
    基于PI與準PR調(diào)節(jié)的并網(wǎng)逆變器控制參數(shù)設(shè)計
    黑龍江電力(2017年1期)2017-05-17 04:25:08
    寶馬530車冷卻液液位過低報警
    建筑施工危險源的辨識與管理控制探討
    河南科技(2014年5期)2014-02-27 14:08:42
    少妇人妻 视频| 人妻系列 视频| 五月伊人婷婷丁香| 寂寞人妻少妇视频99o| 伦精品一区二区三区| 欧美日韩亚洲高清精品| 九草在线视频观看| 久久国内精品自在自线图片| 最近手机中文字幕大全| 国产精品嫩草影院av在线观看| 国产精品欧美亚洲77777| 看非洲黑人一级黄片| 十分钟在线观看高清视频www| 国产精品免费大片| 久久影院123| 热re99久久国产66热| 我要看黄色一级片免费的| 侵犯人妻中文字幕一二三四区| 亚洲,一卡二卡三卡| 成年女人毛片免费观看观看9 | 哪个播放器可以免费观看大片| 男人操女人黄网站| 在线观看三级黄色| 成人影院久久| 欧美少妇被猛烈插入视频| 极品人妻少妇av视频| 一本色道久久久久久精品综合| 亚洲熟女精品中文字幕| 成人国产麻豆网| 人人妻人人澡人人看| 日本vs欧美在线观看视频| √禁漫天堂资源中文www| 高清不卡的av网站| www.自偷自拍.com| 99精国产麻豆久久婷婷| 国产麻豆69| av在线播放精品| 黄色视频在线播放观看不卡| 蜜桃在线观看..| 天天躁夜夜躁狠狠久久av| 大码成人一级视频| 国产精品99久久99久久久不卡 | 一级毛片黄色毛片免费观看视频| 性少妇av在线| 一级毛片我不卡| 亚洲av在线观看美女高潮| 九草在线视频观看| 女人精品久久久久毛片| 老司机亚洲免费影院| 久久久国产欧美日韩av| 纵有疾风起免费观看全集完整版| 欧美少妇被猛烈插入视频| 一二三四在线观看免费中文在| 日韩视频在线欧美| 91午夜精品亚洲一区二区三区| 亚洲欧洲日产国产| 黄色视频在线播放观看不卡| 高清视频免费观看一区二区| 最黄视频免费看| xxxhd国产人妻xxx| 美女视频免费永久观看网站| 久久久久久久久久久免费av| 国产精品亚洲av一区麻豆 | 日日啪夜夜爽| 老司机影院毛片| 成人国产麻豆网| 久久午夜福利片| 久久精品国产鲁丝片午夜精品| 黑丝袜美女国产一区| 精品一区二区免费观看| 国产免费一区二区三区四区乱码| 波多野结衣av一区二区av| 丝袜美腿诱惑在线| 欧美日韩成人在线一区二区| 欧美日韩成人在线一区二区| 777米奇影视久久| 精品少妇内射三级| 天天影视国产精品| 男女啪啪激烈高潮av片| 亚洲欧美成人综合另类久久久| 免费女性裸体啪啪无遮挡网站| 99久国产av精品国产电影| 亚洲精品国产av成人精品| 亚洲精品中文字幕在线视频| 成年女人在线观看亚洲视频| 人人妻人人澡人人爽人人夜夜| 男女下面插进去视频免费观看| 午夜日本视频在线| 日日撸夜夜添| 日韩成人av中文字幕在线观看| 性色av一级| 免费少妇av软件| 一级毛片黄色毛片免费观看视频| 亚洲精品自拍成人| 中文字幕人妻熟女乱码| 又粗又硬又长又爽又黄的视频| 久久 成人 亚洲| 在线亚洲精品国产二区图片欧美| 久久av网站| 日产精品乱码卡一卡2卡三| 七月丁香在线播放| 亚洲av电影在线观看一区二区三区| 亚洲一区中文字幕在线| 免费黄色在线免费观看| 日本91视频免费播放| 国产日韩欧美在线精品| av有码第一页| 人成视频在线观看免费观看| freevideosex欧美| 亚洲av.av天堂| 免费播放大片免费观看视频在线观看| 一本色道久久久久久精品综合| 校园人妻丝袜中文字幕| 在现免费观看毛片| 如何舔出高潮| 亚洲精品美女久久久久99蜜臀 | 久久久久国产网址| 日本wwww免费看| 最近手机中文字幕大全| 青春草视频在线免费观看| 亚洲成色77777| 国产伦理片在线播放av一区| 精品国产一区二区久久| 成人国产av品久久久| 综合色丁香网| 一边摸一边做爽爽视频免费| 国产免费视频播放在线视频| 超碰成人久久| 狠狠精品人妻久久久久久综合| 免费看不卡的av| 天堂中文最新版在线下载| 国产欧美日韩综合在线一区二区| 国产日韩一区二区三区精品不卡| 国产成人免费无遮挡视频| 国产片特级美女逼逼视频| 欧美 日韩 精品 国产| 国产精品国产av在线观看| 永久网站在线| 亚洲综合色惰| 看免费av毛片| 一区二区三区激情视频| 涩涩av久久男人的天堂| 1024香蕉在线观看| 免费大片黄手机在线观看| 欧美激情高清一区二区三区 | 久久精品国产亚洲av涩爱| 中文字幕亚洲精品专区| 日本黄色日本黄色录像| freevideosex欧美| 最新中文字幕久久久久| 亚洲伊人久久精品综合| 久久久精品国产亚洲av高清涩受| 免费高清在线观看视频在线观看| 亚洲欧美精品自产自拍| 欧美日韩精品成人综合77777| 一级毛片电影观看| 高清欧美精品videossex| 精品少妇一区二区三区视频日本电影 | 中文字幕最新亚洲高清| 久久久久久人人人人人| 男女免费视频国产| av在线播放精品| 日本91视频免费播放| 国产精品 国内视频| 久久99热这里只频精品6学生| av在线app专区| 亚洲av欧美aⅴ国产| 久久热在线av| 国产亚洲av片在线观看秒播厂| 男的添女的下面高潮视频| 亚洲情色 制服丝袜| 自线自在国产av| 成年美女黄网站色视频大全免费| 我的亚洲天堂| 国产日韩欧美在线精品| 日韩伦理黄色片| 精品国产国语对白av| 青春草视频在线免费观看| 91aial.com中文字幕在线观看| 咕卡用的链子| 少妇被粗大的猛进出69影院| 精品久久久久久电影网| 精品少妇一区二区三区视频日本电影 | 免费看不卡的av| 久久精品久久久久久噜噜老黄| 老司机亚洲免费影院| 午夜福利,免费看| 国产精品秋霞免费鲁丝片| 在线 av 中文字幕| 免费大片黄手机在线观看| 久久久久国产一级毛片高清牌| 九色亚洲精品在线播放| 在线天堂最新版资源| 丰满乱子伦码专区| 一个人免费看片子| 国产一区二区三区av在线| 丰满少妇做爰视频| 亚洲,欧美,日韩| 亚洲伊人久久精品综合| 蜜桃国产av成人99| 交换朋友夫妻互换小说| 亚洲国产欧美网| 秋霞伦理黄片| 美女国产视频在线观看| 妹子高潮喷水视频| 久久人妻熟女aⅴ| 成人漫画全彩无遮挡| 国产深夜福利视频在线观看| 中文欧美无线码| 我要看黄色一级片免费的| 午夜福利,免费看| 国产精品亚洲av一区麻豆 | 亚洲久久久国产精品| 少妇人妻久久综合中文| 亚洲成人一二三区av| 久久人妻熟女aⅴ| 我的亚洲天堂| 午夜免费男女啪啪视频观看| 免费不卡的大黄色大毛片视频在线观看| 国产乱来视频区| 大陆偷拍与自拍| 精品第一国产精品| 日韩视频在线欧美| 女人精品久久久久毛片| 在线观看www视频免费| 天堂中文最新版在线下载| 日韩成人av中文字幕在线观看| 国产又爽黄色视频| 精品一区二区三区四区五区乱码 | 国产高清国产精品国产三级| 美女中出高潮动态图| 国产欧美日韩综合在线一区二区| 9热在线视频观看99| 九草在线视频观看| 国产精品欧美亚洲77777| 老熟女久久久| 日本色播在线视频| 亚洲精品成人av观看孕妇| 精品国产露脸久久av麻豆| 中国国产av一级| 天天躁狠狠躁夜夜躁狠狠躁| 又大又黄又爽视频免费| 久久久精品区二区三区| 电影成人av| 亚洲婷婷狠狠爱综合网| 国产亚洲av片在线观看秒播厂| 肉色欧美久久久久久久蜜桃| 香蕉国产在线看| 天美传媒精品一区二区| 两个人免费观看高清视频| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品第二区| 精品酒店卫生间| 日韩不卡一区二区三区视频在线| av在线播放精品| 亚洲五月色婷婷综合| 成人午夜精彩视频在线观看| 交换朋友夫妻互换小说| av免费观看日本| 看免费av毛片| 亚洲精品第二区| 人体艺术视频欧美日本| 99久久综合免费| 精品人妻在线不人妻| 七月丁香在线播放| av线在线观看网站| 观看av在线不卡| 免费黄色在线免费观看| 午夜福利在线观看免费完整高清在| 国产综合精华液| 精品一品国产午夜福利视频| 极品人妻少妇av视频| 婷婷色av中文字幕| 大香蕉久久成人网| 亚洲精品日本国产第一区| 大香蕉久久网| 天美传媒精品一区二区| 亚洲精品一二三| 高清av免费在线| av线在线观看网站| 看非洲黑人一级黄片| 人妻系列 视频| 久久精品人人爽人人爽视色| 精品一区二区免费观看| 亚洲三级黄色毛片| www.av在线官网国产| 69精品国产乱码久久久| 高清欧美精品videossex| 考比视频在线观看| 国产黄频视频在线观看| 人人澡人人妻人| 十八禁高潮呻吟视频| 精品人妻偷拍中文字幕| 亚洲,一卡二卡三卡| 欧美av亚洲av综合av国产av | 午夜福利在线观看免费完整高清在| 国产男人的电影天堂91| 另类精品久久| 中文字幕另类日韩欧美亚洲嫩草| 欧美日韩亚洲国产一区二区在线观看 | 亚洲成人一二三区av| 久久国产精品大桥未久av| 亚洲伊人久久精品综合| 一二三四在线观看免费中文在| 伦理电影大哥的女人| 精品久久久久久电影网| 一边摸一边做爽爽视频免费| 十八禁网站网址无遮挡| 99热国产这里只有精品6| 亚洲欧美清纯卡通| 国产日韩欧美亚洲二区| 国产精品av久久久久免费| av免费观看日本| 亚洲色图综合在线观看| 1024香蕉在线观看| 伦理电影免费视频| 免费看不卡的av| www.精华液| av在线老鸭窝| 一本色道久久久久久精品综合| 老熟女久久久| 国产精品秋霞免费鲁丝片| 丝袜在线中文字幕| 国产精品无大码| 亚洲欧美日韩另类电影网站| a级毛片在线看网站| 女性被躁到高潮视频| 最近中文字幕2019免费版| 一二三四中文在线观看免费高清| 人妻一区二区av| 久久久久人妻精品一区果冻| 亚洲视频免费观看视频| 国产日韩一区二区三区精品不卡| 国产毛片在线视频| 日韩成人av中文字幕在线观看| 亚洲,欧美精品.| 伦理电影免费视频| a级片在线免费高清观看视频| 国产激情久久老熟女| tube8黄色片| 性少妇av在线| 午夜福利视频在线观看免费| 日韩中文字幕视频在线看片| av在线老鸭窝| 777米奇影视久久| 亚洲国产毛片av蜜桃av| 欧美精品国产亚洲| 在线观看免费视频网站a站| 成年女人毛片免费观看观看9 | 国产在视频线精品| 香蕉丝袜av| 精品卡一卡二卡四卡免费| 免费大片黄手机在线观看| 久久精品久久精品一区二区三区| 久久鲁丝午夜福利片| 黄色怎么调成土黄色| 尾随美女入室| 久久99热这里只频精品6学生| 99re6热这里在线精品视频| 两个人看的免费小视频| 精品少妇黑人巨大在线播放| 日日摸夜夜添夜夜爱| 捣出白浆h1v1| 午夜免费鲁丝| 九草在线视频观看| 久久午夜福利片| 黑丝袜美女国产一区| videossex国产| 亚洲经典国产精华液单| 午夜福利影视在线免费观看| 亚洲第一区二区三区不卡| 我要看黄色一级片免费的| 免费女性裸体啪啪无遮挡网站| 99久久精品国产国产毛片| 丝袜美腿诱惑在线| av不卡在线播放| 尾随美女入室| 午夜免费鲁丝| 欧美人与善性xxx| 国产精品三级大全| 欧美老熟妇乱子伦牲交| 国产综合精华液| 精品少妇黑人巨大在线播放| 国产成人免费无遮挡视频| 国产白丝娇喘喷水9色精品| 黄色毛片三级朝国网站| 亚洲人成77777在线视频| 久久精品国产综合久久久| 午夜福利在线免费观看网站| 我要看黄色一级片免费的| 国产成人精品久久久久久| 欧美 亚洲 国产 日韩一| 中文字幕人妻丝袜制服| 人妻少妇偷人精品九色| 免费人妻精品一区二区三区视频| 成人二区视频| 看非洲黑人一级黄片| 丝瓜视频免费看黄片| 日本wwww免费看| 国产亚洲av片在线观看秒播厂| 可以免费在线观看a视频的电影网站 | 久久精品久久久久久久性| 午夜激情av网站| 伊人久久国产一区二区| 精品福利永久在线观看| 天堂8中文在线网| 国产色婷婷99| 国产欧美日韩综合在线一区二区| 韩国av在线不卡| 日本免费在线观看一区| 校园人妻丝袜中文字幕| 国产av一区二区精品久久| 亚洲国产av新网站| 热re99久久精品国产66热6| 看十八女毛片水多多多| 大片电影免费在线观看免费| 久久久久久人妻| av片东京热男人的天堂| 久久国产精品男人的天堂亚洲| 午夜久久久在线观看| 国产av一区二区精品久久| 大片免费播放器 马上看| 一区福利在线观看| 亚洲精品国产色婷婷电影| 另类亚洲欧美激情| 综合色丁香网| 久久久久久久久久人人人人人人| 2021少妇久久久久久久久久久| 欧美精品一区二区大全| 日韩一区二区三区影片| 久久精品久久久久久噜噜老黄| 亚洲少妇的诱惑av| 中文精品一卡2卡3卡4更新| 久久婷婷青草| 亚洲精品国产色婷婷电影| 久久亚洲国产成人精品v| 人人妻人人添人人爽欧美一区卜| 久久女婷五月综合色啪小说| 超碰成人久久| 最新的欧美精品一区二区| 国产精品99久久99久久久不卡 | 亚洲精品乱久久久久久| 亚洲人成网站在线观看播放| 亚洲色图综合在线观看| 欧美激情高清一区二区三区 | 热99久久久久精品小说推荐| 黄片播放在线免费| 成人亚洲精品一区在线观看| 成年人午夜在线观看视频| 日韩av不卡免费在线播放| 日韩中文字幕欧美一区二区 | 街头女战士在线观看网站| 国产精品久久久久久久久免| 女人精品久久久久毛片| 赤兔流量卡办理| 校园人妻丝袜中文字幕| 叶爱在线成人免费视频播放| 国产精品免费视频内射| 超色免费av| 建设人人有责人人尽责人人享有的| 成人毛片a级毛片在线播放| 久久久久网色| 日韩在线高清观看一区二区三区| 在线免费观看不下载黄p国产| 国产成人精品久久久久久| 亚洲婷婷狠狠爱综合网| 亚洲精华国产精华液的使用体验| 69精品国产乱码久久久| 欧美精品亚洲一区二区| videosex国产| 国精品久久久久久国模美| 熟女电影av网| 一级a爱视频在线免费观看| 91aial.com中文字幕在线观看| 亚洲图色成人| 2018国产大陆天天弄谢| 亚洲男人天堂网一区| 国产成人免费无遮挡视频| videosex国产| 嫩草影院入口| 成人亚洲欧美一区二区av| 高清不卡的av网站| 黄色一级大片看看| 久久 成人 亚洲| 精品人妻熟女毛片av久久网站| 桃花免费在线播放| 狠狠精品人妻久久久久久综合| 国产精品国产三级专区第一集| 女性被躁到高潮视频| 日韩,欧美,国产一区二区三区| 有码 亚洲区| 久久精品熟女亚洲av麻豆精品| 国产日韩一区二区三区精品不卡| 老司机影院毛片| 国产精品99久久99久久久不卡 | www.熟女人妻精品国产| 免费大片黄手机在线观看| 欧美 亚洲 国产 日韩一| 免费高清在线观看视频在线观看| 亚洲美女搞黄在线观看| 亚洲欧洲日产国产| 亚洲精品美女久久av网站| 99久久精品国产国产毛片| 亚洲精品久久久久久婷婷小说| 狠狠精品人妻久久久久久综合| 亚洲综合色网址| 伦精品一区二区三区| 一区二区三区乱码不卡18| 视频在线观看一区二区三区| 国产爽快片一区二区三区| av又黄又爽大尺度在线免费看| 国产伦理片在线播放av一区| 99九九在线精品视频| 制服丝袜香蕉在线| 亚洲国产精品成人久久小说| 久久久亚洲精品成人影院| 最近2019中文字幕mv第一页| 男的添女的下面高潮视频| 亚洲欧美精品综合一区二区三区 | 欧美日韩亚洲国产一区二区在线观看 | 少妇猛男粗大的猛烈进出视频| 亚洲一码二码三码区别大吗| 成人二区视频| 777米奇影视久久| 99国产精品免费福利视频| 午夜免费鲁丝| 欧美激情极品国产一区二区三区| 卡戴珊不雅视频在线播放| 国产精品.久久久| 成人亚洲欧美一区二区av| 亚洲国产最新在线播放| 中文字幕另类日韩欧美亚洲嫩草| 丰满少妇做爰视频| 国产熟女欧美一区二区| 精品卡一卡二卡四卡免费| 欧美最新免费一区二区三区| 你懂的网址亚洲精品在线观看| av国产久精品久网站免费入址| 久久女婷五月综合色啪小说| 国产免费一区二区三区四区乱码| 春色校园在线视频观看| 色网站视频免费| 99久国产av精品国产电影| 成年美女黄网站色视频大全免费| 日韩免费高清中文字幕av| 国产熟女欧美一区二区| 亚洲四区av| 美女国产高潮福利片在线看| 男女免费视频国产| 国产亚洲欧美精品永久| 国产免费又黄又爽又色| 亚洲精品aⅴ在线观看| 美女国产高潮福利片在线看| 日本免费在线观看一区| 色哟哟·www| 热99久久久久精品小说推荐| 免费人妻精品一区二区三区视频| 青春草国产在线视频| 免费人妻精品一区二区三区视频| 亚洲精品中文字幕在线视频| 精品国产超薄肉色丝袜足j| 尾随美女入室| av卡一久久| 午夜福利网站1000一区二区三区| 精品少妇一区二区三区视频日本电影 | 久久 成人 亚洲| 成年人免费黄色播放视频| 中文字幕av电影在线播放| 久久久久久久久久久免费av| 桃花免费在线播放| 午夜福利视频在线观看免费| 如日韩欧美国产精品一区二区三区| 国产乱人偷精品视频| 在线观看三级黄色| 日韩在线高清观看一区二区三区| 国产综合精华液| 女人久久www免费人成看片| 精品卡一卡二卡四卡免费| 欧美激情高清一区二区三区 | 97精品久久久久久久久久精品| 国产免费现黄频在线看| 王馨瑶露胸无遮挡在线观看| 丝袜美腿诱惑在线| 成年人午夜在线观看视频| 免费高清在线观看视频在线观看| 精品久久久精品久久久| 午夜福利在线观看免费完整高清在| 在线 av 中文字幕| 亚洲激情五月婷婷啪啪| 国产精品久久久久久精品古装| 边亲边吃奶的免费视频| 97人妻天天添夜夜摸| 亚洲激情五月婷婷啪啪| 啦啦啦啦在线视频资源| 亚洲av成人精品一二三区| 国产片特级美女逼逼视频| 如日韩欧美国产精品一区二区三区| 精品亚洲成a人片在线观看| 国产精品 欧美亚洲| 九草在线视频观看| a级毛片黄视频| 波多野结衣一区麻豆| 国产一区有黄有色的免费视频| 久久ye,这里只有精品| 国产探花极品一区二区| 咕卡用的链子| 日韩人妻精品一区2区三区| 亚洲精品在线美女| 搡女人真爽免费视频火全软件| 亚洲国产毛片av蜜桃av| √禁漫天堂资源中文www| 女人久久www免费人成看片| 麻豆精品久久久久久蜜桃| 777米奇影视久久| 波野结衣二区三区在线|