摘要:【目的】明確棉薊馬(Thrips tabaci )細(xì)胞色素P450(cytochrome P450, CYP450)基因和谷胱甘肽S-轉(zhuǎn)移酶(glutathione S-transferase, GST)基因的序列結(jié)構(gòu),及相關(guān)基因在棉薊馬生長發(fā)育和甲氨基阿維菌素苯甲酸鹽(簡稱為甲維鹽)脅迫下的表達(dá)情況。【方法】基于棉薊馬不同生長發(fā)育時期的轉(zhuǎn)錄組數(shù)據(jù),挖掘了CYP450基因和GST基因,設(shè)計特異性引物,采用聚合酶鏈?zhǔn)椒磻?yīng)(polymerase chain reaction, PCR)技術(shù)以棉薊馬cDNA為模板進(jìn)行擴增。利用生物信息學(xué)軟件預(yù)測CYP450、GST蛋白結(jié)構(gòu)特征。采用浸葉法測定甲維鹽對棉薊馬成蟲的室內(nèi)毒力。通過實時熒光定量PCR(quantitative real time PCR, qRT-PCR)分析CYP450基因和GST基因在棉薊馬不同發(fā)育階段和甲維鹽脅迫下的表達(dá)模式。 【結(jié)果】克隆了3個CYP450基因CYP4C101、CYP4C102、CYP6K1和2個GST基因GST1、GSTX1。理化分析結(jié)果表明CYP4C101、CYP4C102、CYP6K1、GST1和GSTX1蛋白分別包含507、528、513、215和207個氨基酸殘基,均為親水性蛋白。系統(tǒng)發(fā)育分析結(jié)果表明棉薊馬CYP4C101與褐花薊馬(Frankliniella fusca)CYP4C1同源性最高,棉薊馬的CYP4C102、CYP6K1、GST1均與西花薊馬(F. occidentalis)和褐花薊馬中的同源蛋白親緣關(guān)系最近,棉薊馬GSTX1與西花薊馬的GSTX1同源性最高。結(jié)構(gòu)域預(yù)測表明CYP4C101、CYP4C102、CYP6K1具有CYP450的保守結(jié)構(gòu)域,GST1、GSTX1具有GST的保守結(jié)構(gòu)域。室內(nèi)毒力測定結(jié)果表明甲維鹽處理48 h的亞致死濃度LC20為4.01 mg·L-1。qRT-PCR結(jié)果表明,CYP4C101、CYP4C102、CYP6K1、GST1、GSTX1基因在各個發(fā)育階段均有表達(dá),在成蟲羽化后第9天表達(dá)水平最高。同時,在甲維鹽LC20劑量脅迫24 h下,上述基因的表達(dá)量均顯著上調(diào),其中CYP4C101、CYP4C102、CYP6K1分別顯著上調(diào)至4.43倍、22.91倍、8.48倍,GST1、GSTX1分別顯著上調(diào)至9.06倍和5.26倍;經(jīng)甲維鹽LC20劑量脅迫48 h后,CYP4C102、CYP6K1表達(dá)量分別顯著上調(diào)至3.84倍、1.43倍,CYP4C101、GSTX1、GST1表達(dá)量雖上調(diào)但未達(dá)到差異顯著水平?!窘Y(jié)論】本研究在棉薊馬中克隆得到的3個CYP450基因和2個GST基因,均在棉薊馬成蟲羽化后第9天表達(dá)量最高。甲維鹽LC20 劑量脅迫下,這5個解毒基因被誘導(dǎo)表達(dá)的時間不同,但都可能參與棉薊馬對甲維鹽脅迫的響應(yīng)。研究結(jié)果可為后續(xù)CYP450、GST基因的功能研究提供線索。
關(guān)鍵詞:棉薊馬;解毒基因;甲維鹽;基因表達(dá);亞致死濃度
Expression pattern analysis of five detoxification genes in the growth and development of Thrips tabaci and under emamectin benzoate stress
Xin Miaomiao1, 2, Wang Xiaoyun2, 3, Ji Jichao2, 4, Gao Yue2, 3, Luo Junyu2, 4, Zhang Yinbao5, Liu Jun5, Zhang Wenbin5, Wang Dong5, Chen Liangliang5, Patima Wumu’erhan1*, Cui Jinjie2, 4*
(1. College of Agronomy, Xinjiang Agricultural University, Key Laboratory of Monitoring and Safe Prevention and Control of Agricultural and Forest Pests, Urumqi 830052, China; 2. Institute of Cotton Research, Chinese Academy of Agricultural Sciences/State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan 455000, China; 3. College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; 4. Institute of Western Agricultural, Chinese Academy of Agricultural Sciences, Changji, Xinjiang 831100, China; 5. Xinjiang Jinfengyuan Seed Industry, Aksu, Xinjiang 842008, China)
Abstract: [Objective] This study aims to clarify the sequence structure of cytochrome P450 (CYP450) gene and glutathione S-transferase (GST) gene of Thrips tabaci, and the expression of these genes at the different growth and development stages of T. tabaci and emamectin benzoate stress. [Methods] Based on the transcriptome data of different growth and development stages of T. tabaci, CYP450 genes and GST genes were mined, specific primers were designed, and polymerase chain reaction (PCR) was used to amplify the cDNA of these genes. Bioinformatics software was used to predict the structural characteristics of CYP450 and GST proteins. The indoor toxicity of emamectin benzoate to adult T. tabaci was determined by leaf dipping method. Quantitative real time PCR (qRT-PCR) was used to analyze the expression patterns of CYP450 and GST genes at the different development stages of T. tabaci and under the stress of emamectin benzoate. [Results] Three CYP450 genes (CYP4C101, CYP4C102, CYP6K1) and two GST genes (GST1, GSTX1) were cloned. The results of physicochemical analysis showed that CYP4C101, CYP4C102, CYP6K1, GST1, and GSTX1 were composed of 507, 528, 513, 215 and 207 amino acid residues, respectively, all of which were hydrophilic proteins. Phylogenetic analysis showed that CYP4C101 had the highest homology with CYP4C1 of Frankliniella fusca. CYP4C102, CYP6K1 and GST1 of T. tabaci had the highest relationships with the homologous proteins from F. occidentalis and F. fusca. GSTX1 had the highest homology with F. occidentalis. Domain prediction showed that CYP4C101, CYP4C102 and CYP6K1 had conserved domains of CYP450, and GST1 and GSTX1 had conserved domains of GST. The results of indoor toxicity test showed that the LC20 value of emamectin benzoate was 4.01 mg·L-1 at 48 h. The results of qRT-PCR showed that CYP4C101, CYP4C102, CYP6K1, GST1, and GSTX1 genes were expressed at all development stages, and the expression levels were the highest on the 9th day of adult emergence. The expression levels of the above-mentioned genes were significantly up-regulated under the stress of emamectin benzoate LC20 for 24 h. Among them, CYP4C101, CYP4C102, and CYP6K1 were significantly up-regulated to 4.43, 22.91 and 8.48 times, respectively, and GST1 and GSTX1 were significantly up-regulated to 9.06 and 5.26 times, respectively. At 48 h after emamectin benzoate LC20 treatment, the expression levels of CYP4C102 and CYP6K1 were significantly up-regulated by 3.84 and 1.43 times, respectively. The expression levels of CYP4C101, GSTX1, and GST1 were up-regulated but did not reach a significant difference level. [Conclusion] Three CYP450 genes and two GST genes of T. tabaci were cloned, and the expression levels of the five genes were the highest on the 9th day of adult emergence. Under the stress of emamectin benzoate LC20, although these five detoxification genes were induced to express at different times, they may be involved in the response of T. tabaci to emamectin benzoate, providing clues for subsequent functional studies of CYP450 and GST genes.
Keywords: Thrips tabaci; detoxification gene; emamectin benzoate; gene expression; sublethal dose
棉薊馬(Thrips tabaci Lindeman)又名煙薊馬,屬纓翅目(Thysanoptera)薊馬科(Thripidae)薊馬屬(Thrips)[1],是危害十字花科、百合科、錦葵科等經(jīng)濟作物的主要害蟲之一[2-6]。目前,化學(xué)防治是防控棉薊馬的主要措施[7-9],但長期、不規(guī)范使用殺蟲劑,導(dǎo)致棉薊馬對多種殺蟲劑產(chǎn)生了抗藥性[10-11]。
甲氨基阿維菌素苯甲酸鹽(emamectin benzoate)簡稱甲維鹽,屬于阿維菌素類生物農(nóng)藥,生物活性高,在農(nóng)作物上低殘留、易降解[12-13],在很多國家已被廣泛用于防治田間害蟲[14-17],但關(guān)于甲維鹽在棉薊馬上的研究集中在防治效果(防效)方面。根據(jù)前人研究,甲維鹽對棉薊馬具有較好的速效性、較長的持效期[18]以及較高的防效。綜上所述,甲維鹽作為1種藥效高、毒性低,對棉薊馬高防效的新型生物源農(nóng)藥,對治理棉薊馬具有較大的研究意義,適合在田間推廣應(yīng)用。目前國內(nèi)關(guān)于西花薊馬(Frankliniella occidentalis)對甲維鹽產(chǎn)生抗性的機理已有研究,但針對棉薊馬對甲維鹽的抗性機理還未見報道[7]。隨著甲維鹽使用頻率的增加,棉薊馬的抗藥性也會越來越強。
昆蟲抗藥性的產(chǎn)生與細(xì)胞色素P450(cytochrome P450, CYP450)基因和谷胱甘肽-S-轉(zhuǎn)移酶(glutathione S-transferase, GST)基因的高表達(dá)密不可分[19-20]。研究表明,昆蟲CYP450和GST基因在農(nóng)藥代謝中起重要作用。Huang等[21]證實CYP6EM1基因能增強煙粉虱(Bemisia tabaci)對呋蟲胺的耐藥性;Li等[22]發(fā)現(xiàn)CYP6CY7基因參與大豆蚜(Aphis glycines)體內(nèi)吡蟲啉的解毒過程;Wang等[23]發(fā)現(xiàn)通過RNA干擾(RNA interference, RNAi)技術(shù)抑制CYP6CS1基因的表達(dá),會顯著增加吡蚜酮對褐飛虱(Nilaparvata lugens)的毒性;Zhai等[24]研究表明抑制谷胱甘肽S-轉(zhuǎn)移酶基因GSTd10的表達(dá),會提高瓜實蠅(Zeugodacus cucurbitae)對β-氯氰菊酯的敏感性;GSTs1基因的過表達(dá)參與小菜蛾(Plutella xylostella)對多種殺蟲劑(包括氯蟲苯甲酰胺、氟酰脲、λ-氯氰菊酯和阿維菌素)的抗性[25]。綜上,CYP450和GST基因在昆蟲對農(nóng)藥解毒代謝過程中發(fā)揮著重要的作用,然而,二者是否可介導(dǎo)棉薊馬對甲維鹽的耐受性尚不明了。
為此,本研究首先通過浸葉法測定甲維鹽對棉薊馬的室內(nèi)毒力,統(tǒng)計48 h后棉薊馬死亡蟲數(shù),計算不同劑量甲維鹽處理下,棉薊馬的校正死亡率、亞致死濃度LC20、毒力回歸方程、相關(guān)系數(shù)和95%置信限;而后,選取了3個CYP450基因CYP4C101、CYP4C102、CYP6K1和2個GST基因GST1、GSTX1(這些基因或其所屬的基因家族分支皆被報道參與昆蟲的解毒代謝[26-30]),利用實時熒光定量聚合酶鏈?zhǔn)椒磻?yīng)(quantitative real time polymerase chain reaction, qRT-PCR)檢測這些基因在棉薊馬不同發(fā)育階段(1齡幼蟲、2齡幼蟲、蛹、成蟲羽化后1 d、3 d、5 d、7 d、9 d)的表達(dá)模式;使用甲維鹽LC20劑量處理棉薊馬羽化后第9天成蟲,檢測這5個基因在處理24 h和48 h后的表達(dá)變化情況,明確棉薊馬CYP450及GST基因?qū)拙S鹽的轉(zhuǎn)錄應(yīng)答模式,為后期深入探究CYP450與GST基因的功能和甲維鹽對棉薊馬的潛在影響及其抗藥性提供理論依據(jù)。
1 材料與方法
1.1 試驗材料
試驗所用棉薊馬由中國農(nóng)業(yè)科學(xué)院棉花研究所提供,以紫甘藍(lán)(Brassica oleracea)為寄主,在養(yǎng)蟲盒(29 cm×19 cm×13 cm)中飼養(yǎng)。養(yǎng)蟲盒置于人工氣候箱(寧波萊福PQX-280B-22H)中,飼養(yǎng)條件為溫度(20±1)℃,相對濕度(50±5)%,光周期為16 h光照/8 h黑暗。
5.7%(有效成分的質(zhì)量分?jǐn)?shù))甲氨基阿維菌素苯甲酸鹽購于山東飛翔農(nóng)業(yè)發(fā)展有限公司,TRIzol、異丙醇、氯仿、乙醇、丙酮均購自生工生物工程(上海)股份有限公司,TransScript○R" "First-
Strand cDNA Synthesis SuperMix、TransStart○R" Top Green qPCR superMix均購于北京全式金生物技術(shù)有限公司,曲拉通X-100及Wizard○R" SV Gel and PCR Clean-Up System均購于安陽科睿生物科技有限公司。
1.2 甲維鹽對棉薊馬的室內(nèi)毒力測定
采用浸葉法[31]進(jìn)行毒力測定。稱取0.1 g甲維鹽溶于100 mL蒸餾水中作為母液。取1 mL母液加入到9 mL 0.01%曲拉通水溶液中制成質(zhì)量濃度為100 mg·L-1的溶液,然后依次稀釋為50 mg·L-1、25 mg·L-1、12.5 mg·L-1、6.25 mg·L-1、3.125 mg·L-1,共6個質(zhì)量濃度的溶液,并以0.01%曲拉通水溶液作為對照。將配好的各個質(zhì)量濃度藥劑倒入100 mL的燒杯中,用打孔器將紫甘藍(lán)葉片制成直徑為2 cm的圓片放進(jìn)藥液里浸泡15 s后撈出晾干,晾干后放至塑料容器中;每罐塑料容器中放入20~23頭棉薊馬初羽化健康雌成蟲,置于1.1所述的人工氣候箱中培養(yǎng);培養(yǎng)48 h后檢查并統(tǒng)計死亡試蟲數(shù)量,用毛筆輕觸試蟲完全不動視為死亡。用Microsoft Excel 2019整理各個質(zhì)量濃度下棉薊馬成蟲的死亡數(shù)/存活數(shù),采用公式(1)、(2)計算校正死亡率,使用IBM SPSS Statistics 27.0軟件擬合毒力回歸方程,計算相關(guān)系數(shù)、LC20以及95%置信區(qū)間[32]。
死亡率=死亡蟲數(shù)/供試試蟲總數(shù)×100%
(1)
校正死亡率=(處理組死亡率-對照組死亡率)/(1-對照組死亡率)×100% (2)
1.3 基因克隆
從棉薊馬種群中隨機吸取40頭棉薊馬初羽化雌成蟲,采用TRIzol法抽提總RNA,參照TransScript○R" First-Strand cDNA Synthesis SuperMix試劑盒說明書合成cDNA第1鏈。通過棉薊馬不同生長發(fā)育時期轉(zhuǎn)錄組數(shù)據(jù)(尚未發(fā)表)獲得CYP4C101、CYP4C102、CYP6K1、GST1、GSTX1共5個基因的開放閱讀框(open reading frame, ORF),并在ORF兩端設(shè)計引物(表1),對其序列進(jìn)行擴增并測序驗證,引物均由生工生物工程(上海)股份有限公司合成。以棉薊馬cDNA為模板進(jìn)行PCR擴增,擴增體系:模板1 μL,經(jīng)焦碳酸二乙酯處理的無菌超純水14.5 μL,10×PCR Buffer 2 μL,dNTP 1.6 μL,上下游引物各0.4 μL,rTaq酶0.1 μL。PCR擴增程序:94 ℃預(yù)變性3 min,94 ℃變性30 s,57 ℃退火30 s,72 ℃延伸1 min,共40個循環(huán);最后72 ℃延伸7 min。PCR產(chǎn)物于4 ℃保存。
1.4 生物信息學(xué)分析
用Expasy-ProtParam tool(https://web.expasy.org/protparam/)在線軟件對蛋白的理化性質(zhì)進(jìn)行分析,用TMHMM-2.0(https://services.healthtech.dtu.dk/services/TMHMM-2.0/)分析蛋白是否包含跨膜結(jié)構(gòu),利用SignalP-5.0(https://services.healthtech.dtu.dk/services/SignalP-5.0/)網(wǎng)頁預(yù)測信號肽,分別利用SOPMA(https://npsa-pbil.ibcp.fr/cgi-bin/
npsa_automat.pl?page=npsa_sopma.html)和SWISS-
MODEL(https://swissmodel.expasy.org/)分析蛋白質(zhì)的二級結(jié)構(gòu)和三級結(jié)構(gòu)。在保守結(jié)構(gòu)域網(wǎng)站( (https://www.ncbi.nlm.nih.gov/cdd/)預(yù)測棉薊馬CYP4C101、CYP4C102、CYP6K1、GST1、GSTX1蛋白的保守結(jié)構(gòu)域。在美國國立生物技術(shù)信息中心(National Center for Biotechnology Information, NCBI)數(shù)據(jù)庫利用棉薊馬CYP4C101、CYP4C102、CYP6K1、GST1、GSTX1蛋白序列進(jìn)行Blast比對分析,最終選取13條昆蟲CYP4C1蛋白氨基酸序列、7條昆蟲CYP6K1蛋白氨基酸序列、15條昆蟲GST1蛋白氨基酸序列、7條昆蟲GSTX1蛋白氨基酸序列(包含棉薊馬的5個解毒蛋白序列),利用MEGA 11軟件采用鄰接法進(jìn)行系統(tǒng)發(fā)育分析,自展值(bootstrap)設(shè)為1 000,其他參數(shù)為默認(rèn)值。
1.5 甲維鹽脅迫對棉薊馬CYP450基因和GST基因表達(dá)的影響
收集棉薊馬1齡幼蟲、2齡幼蟲、蛹和羽化后第1、3、5、7、9天的成蟲完整蟲體,每個時期設(shè)3個生物學(xué)重復(fù),每個生物學(xué)重復(fù)約100頭,用于總RNA提取和cDNA合成。根據(jù)1.2毒力測定結(jié)果,采用浸葉法,使用LC20劑量的甲維鹽浸泡紫甘藍(lán)葉片,飼喂羽化后第9天的棉薊馬,以喂食經(jīng)0.01%曲拉通水溶液浸泡的紫甘藍(lán)葉片為對照,分別在喂食24 h、48 h后重復(fù)3次取樣,每次取20頭作為樣品,用于RNA提取和cDNA合成。用Primer 6設(shè)計引物q-CYP4C101、q-
CYP4C102、q-CYP6K1、q-GST1、q-GSTX1(表1),以棉薊馬GADPH(基因登錄號:PQ443459)為內(nèi)參基因,檢測基因的表達(dá)情況。按照TransStart○R" Top Green qPCR superMix試劑盒說明書進(jìn)行試驗,每個生物學(xué)重復(fù)設(shè)置3個技術(shù)重復(fù)。根據(jù)2-△△Ct法[33]對基因的表達(dá)量進(jìn)行分析。采用獨立樣本t檢驗法分析2組樣本均值的差異顯著性,采用單因素方差分析和鄧肯多重范圍檢驗進(jìn)行多重比較。
2 結(jié)果與分析
2.1 甲維鹽對棉薊馬的生物活性
甲維鹽對棉薊馬的室內(nèi)毒力試驗結(jié)果(表2)顯示,在100 mg·L-1、50 mg·L-1、25 mg·L-1、12.5 mg·L-1、6.25 mg·L-1、3.125 mg·L-1甲維鹽處理下,棉薊馬的校正死亡率分別為100.00%、95.00%、77.78%、58.82%、35.00%、15.00%。經(jīng)過計算,甲維鹽對棉薊馬的毒力回歸方程為y=2.215x-2.178,甲維鹽處理棉薊馬48 h后的LC20為4.01 mg·L-1、LC20的95%置信區(qū)間為2.19~5.81 mg·L-1(表3)。
2.2 棉薊馬CYP450及GST基因的克隆與序列分析
擴增得到CYP4C101、CYP4C102、CYP6K1、GST1和GSTX1的ORF長度分別為1 524 bp、1 587 bp、1 542 bp、648 bp和624 bp,分別編碼507、528、513、215和207個氨基酸殘基(表4);編碼蛋白的相對分子質(zhì)量分別為57 895.91、59 895.81、58 335.3、23 752.74和23 601.23 Da。CYP4C102等電點為9.41,偏堿性,其余4個蛋白的等電點均小于9,偏酸性;5個蛋白的親水系數(shù)均為負(fù)數(shù),說明它們都是親水性蛋白。
利用SOPMA在線軟件分析5個蛋白的二級結(jié)構(gòu),結(jié)果表明:CYP4C101、CYP4C102、CYP6K1、GST1、GSTX1蛋白二級結(jié)構(gòu)中無規(guī)則卷曲分別占36.29%、36.93%、37.82%、31.16%、31.88%,α-螺旋分別占48.13%、47.16%、44.44%、49.77%、51.69%,延伸鏈分別占10.85%、11.74%、13.45%、13.49%、10.63%,β-轉(zhuǎn)角分別占4.73%、4.17%、4.29%、5.58%、5.80%。此外,經(jīng)Swiss-
Model在線軟件預(yù)測,棉薊馬CYP4C101、CYP4C102、CYP6K1、GST1、GSTX1蛋白的三級結(jié)構(gòu)均含有較多α-螺旋和無規(guī)則卷曲,與二級結(jié)構(gòu)預(yù)測結(jié)果相符。
結(jié)構(gòu)域預(yù)測(附圖1)表明,CYP4C101蛋白在第76~494個氨基酸殘基處含有1個細(xì)胞色素P450超家族結(jié)構(gòu)域,CYP4C102蛋白在第90~519個氨基酸殘基處含有1個CYP4結(jié)構(gòu)域;CYP6K1蛋白在第67~498個氨基酸殘基處含有1個CYP6類(CYP6-like)結(jié)構(gòu)域;細(xì)胞色素P450超家族結(jié)構(gòu)域、CYP4結(jié)構(gòu)域、CYP6類結(jié)構(gòu)域均屬于含血紅素蛋白結(jié)合位點,是CYP450蛋白的特征結(jié)構(gòu)。GST1蛋白在第4~194個氨基酸殘基處含有1個GSTA結(jié)構(gòu)域;GSTX1蛋白包含保守的N端結(jié)構(gòu)域GST_N_Sigma_like和C端結(jié)構(gòu)域GST_C_3,分別位于氨基酸序列第99~200位、第5~74位,具有谷胱甘肽結(jié)合位點。
2.3 棉薊馬CYP450及GST基因進(jìn)化分析
棉薊馬CYP4C101、CYP4C102、CYP6K1、GST1、GSTX1與其他物種同源蛋白氨基酸序列的系統(tǒng)進(jìn)化分析結(jié)果(圖1)顯示:棉薊馬CYP4C101與褐花薊馬(F. fusca)KAK3930146.1聚在同一分支上,同源性最高;棉薊馬GSTX1與西花薊馬(F. occidentalis)XP_026282890.2同源性最高;棉薊馬CYP4C102、CYP6K1、GST1分別與西花薊馬CYP4C1蛋白XP_052123521.1、CYP6K1蛋白XP_026290339.1、GST1蛋白XP_026286575.1以及褐花薊馬CYP4C1蛋白KAK3923271.1、CYP6K1蛋白KAK3911614.1、GST1蛋白KAK3928862.1聚在同一分支,具有較近的親緣關(guān)系。
2.4 CYP450及GST基因在棉薊馬各個齡期中的相對表達(dá)量
運用qRT-PCR分析1齡幼蟲、2齡幼蟲、蛹及成蟲羽化后第1、3、5、7、9天的棉薊馬體內(nèi)CYP4C101、CYP4C102、CYP6K1、GST1、GSTX1基因的相對表達(dá)量變化,結(jié)果如圖2所示。CYP4C101、CYP4C102、CYP6K1、GST1、GSTX1基因在棉薊馬各個發(fā)育階段均表達(dá),在成蟲羽化后第9天的表達(dá)水平最高;在其他發(fā)育階段的基因表達(dá)水平各有不同。CYP4C101基因在棉薊馬成蟲羽化后第1天表達(dá)量最低,CYP4C102和CYP6K1基因在棉薊馬2齡幼蟲、蛹期以及成蟲羽化后第1天的表達(dá)量均較低;GST1基因在棉薊馬成蟲羽化后第9天顯著上調(diào)表達(dá),在其余時期間的表達(dá)量均無顯著差異;GSTX1基因在2齡幼蟲和蛹期的表達(dá)水平最低。上述結(jié)果表明CYP4C101、CYP4C102、CYP6K1、GST1、GSTX1基因在棉薊馬羽化后第9天高水平表達(dá)。
2.5 甲維鹽脅迫對棉薊馬CYP450及GST基因表達(dá)的影響
采用qRT-PCR檢測LC20甲維鹽脅迫下棉薊馬CYP450及GST基因的相對表達(dá)量,結(jié)果(圖3)顯示:在甲維鹽處理24 h后,棉薊馬CYP4C101、CYP4C102、CYP6K1、GST1、GSTX1基因均顯著上調(diào)表達(dá),分別上調(diào)至4.43倍、22.91倍、8.48倍、9.06倍、5.26倍;甲維鹽處理48 h后,5個基因均上調(diào)表達(dá),但只有CYP4C102和CYP6K1基因顯著上調(diào),分別上調(diào)至3.84倍和1.43倍。以上結(jié)果表明甲維鹽可誘導(dǎo)棉薊馬CYP450及GST等解毒基因的表達(dá)。
3 討論
甲維鹽是1種登記用于防治薊馬的農(nóng)藥。本研究室內(nèi)毒力測定確認(rèn)甲維鹽對棉薊馬的急性毒性較好。CYP450蛋白由CYP450編碼,可催化昆蟲體內(nèi)多種內(nèi)源性和外源性物質(zhì)的氧化代謝,參與昆蟲對殺蟲劑的解毒作用,可誘導(dǎo)昆蟲產(chǎn)生抗藥性。此外,在昆蟲代謝農(nóng)藥的過程中GST基因同樣發(fā)揮著關(guān)鍵作用。谷胱甘肽S-轉(zhuǎn)移酶是可溶性的二聚體蛋白,與代謝解毒、大量內(nèi)源性和外源性化合物的排泄有關(guān),許多昆蟲的抗藥性與該酶活性增強有關(guān)[34]。
CYP450和GST基因在昆蟲發(fā)育過程中發(fā)揮著重要作用。德國小蠊(Blattella germanica)的CYP6L1基因在其發(fā)育的各個階段均表達(dá),在幼蟲不同發(fā)育階段表達(dá)量逐漸增強,且在成蟲階段維持較高表達(dá)量[35]。桔小實蠅(Bactrocera dorsalis)CYP6A41和GSTO1基因在所有發(fā)育階段均有表達(dá),且表達(dá)量隨著幼蟲的發(fā)育逐漸升高,在化蛹第1天達(dá)到最高峰,推測其在蛹早期的發(fā)育過程中發(fā)揮重要作用[36-37]。本研究發(fā)現(xiàn),棉薊馬CYP4C101、CYP4C102、CYP6K1、GST1、GSTX1基因與德國小蠊CYP6L1基因、桔小實蠅的CYP6A41、GSTO1基因具有相似的表達(dá)特征,不僅在各個時期都有表達(dá),并在成蟲羽化后第9天表達(dá)量達(dá)到最高峰,推測CYP4C101、CYP4C102、CYP6K1、GST1、GSTX1基因在棉薊馬成蟲發(fā)育過程中發(fā)揮重要作用。
部分CYP4、CYP6和GST基因家族成員可被殺蟲劑誘導(dǎo)表達(dá)。噻蟲胺處理能顯著誘導(dǎo)韭菜遲眼蕈蚊(Bradysia odoriphaga)CYP6SX1和CYP6QE1高表達(dá)[28]。吡蟲啉脅迫2 d后,煙粉虱CYP4CS6、CYP6DW4、CYP6DW5、CYP6DW6和CYP6DZ8基因的表達(dá)量顯著升高;通過RNAi降低CYP4CS6、CYP6DW4、CYP6DW5、CYP6DW6
和CYP6DZ8基因的表達(dá)量,導(dǎo)致暴露于吡蟲啉的煙粉虱死亡率顯著提高[38]。在氟啶蟲酰胺脅迫下,紅火蟻(Solenopsis invicta)CYP6A14基因上調(diào)表達(dá),推測該基因可能參與氟啶蟲酰胺在體內(nèi)的代謝[29]。Zhou等[39]通過分析白背飛虱(Sogatella furcifera)在吡蟲啉脅迫下的轉(zhuǎn)錄組數(shù)據(jù),發(fā)現(xiàn)2個CYP4家族基因被誘導(dǎo)上調(diào)表達(dá)。分析擬除蟲菊酯殺蟲劑脅迫下煙草甲(Lasioderma serricorne)的轉(zhuǎn)錄組數(shù)據(jù),發(fā)現(xiàn)6個GST基因的表達(dá)水平顯著升高,其中LsGSTe1上調(diào)最多,通過RNAi敲低LsGSTe1基因,則能顯著提升煙草甲幼蟲對擬除蟲菊酯的敏感性[40]。本研究初步探索了CYP4、CYP6家族基因以及GST基因參與棉薊馬對甲維鹽抗性的機理,所選的3個CYP450基因和2個GST基因均能被甲維鹽顯著誘導(dǎo)表達(dá)。
CYP450基因、GST基因的表達(dá)量隨藥劑處理時間、昆蟲種類不同而變化。梁曉等[41]在研究擬除蟲菊酯類農(nóng)藥的LC20劑量處理時間對赤擬谷盜(Tribolium castaneum)的CYP4G7表達(dá)量的影響中發(fā)現(xiàn),該基因表達(dá)量在處理6 h、12 h、24 h后皆顯著上調(diào),而在處理48 h后表達(dá)水平雖上調(diào),但不顯著。李婷[42]分析嗜蟲書虱(Liposcelis entomophila)的轉(zhuǎn)錄組,發(fā)現(xiàn)多數(shù)CYP450基因可被溴氰菊酯誘導(dǎo)上調(diào)表達(dá),誘導(dǎo)24 h后表達(dá)量達(dá)到高峰;經(jīng)氰氟蟲腙LC10和LC25處理后的小菜蛾(Plutella xylostella)CYP6CN1 mRNA的表達(dá)量在處理24 h后顯著高于對照組,但處理48 h后的表達(dá)量與對照組無顯著差異[43];徐希寶等[44]用甲氧蟲酰肼處理不同抗性的棉鈴蟲(Helicoverpa armigera)種群,處理48 h后,抗性種群的GSTd1、GSTd2、GSTe1和GSTs1基因表達(dá)量均顯著高于對照種群,而GSTe2基因表達(dá)量沒有顯著差異。本研究結(jié)果與上述結(jié)果基本一致:在本研究中用甲維鹽LC20處理棉薊馬24 h后,CYP4C101、CYP4C102、CYP6K1、GST101、GSTX1基因表達(dá)量均顯著升高;處理48 h后只有CYP4C102及CYP6K1基因顯著上調(diào)表達(dá),其他基因與對照組無顯著差異。
先前研究表明CYP450和GST基因在昆蟲解毒、抗藥性方面起到重要作用[34],這些基因的具體功能及其各自的調(diào)控機理在棉薊馬中有待深入研究。本實驗利用qRT-PCR 技術(shù)快速篩選了棉薊馬中可能與甲維鹽抗性有關(guān)的5個基因,為后續(xù)通過RNAi等延緩棉薊馬的抗藥性,以及在分子水平上明確CYP、GST基因在棉薊馬中的功能及特性奠定基礎(chǔ)。
4 結(jié)論
棉薊馬CYP4C101、CYP4C102、CYP6K1、GST101、GSTX1基因表達(dá)量均在成蟲羽化后第9天最高。在甲維鹽LC20處理24 h后,這5個基因的表達(dá)量均顯著升高;處理48 h后,CYP4C102及CYP6K1基因表達(dá)量顯著升高。本研究為進(jìn)一步解析CYP450基因和GST基因在棉薊馬解毒代謝甲維鹽中的功能奠定了基礎(chǔ)。
附件:
詳見本刊網(wǎng)站(https://journal.cricaas.com.cn)本文網(wǎng)頁版。
參考文獻(xiàn):
[1] Muvea A M, Meyh?觟fer R, Subramanian S, et al. Colonization of onions by endophytic fungi and their impacts on the biology of Thrips tabaci[J/OL]. PLoS One, 2014, 9(9): e108242[2024-05-
16]. https://doi.org/10.1371/journal.pone.0108242.
[2] 韓運發(fā). 中國經(jīng)濟昆蟲志: 第55冊: 纓翅目[M]. 北京: 科學(xué)出版社, 1997.
Han Yunfa. Economic insect fauna of China. Fasc. 55, Thysanoptera[M]. Beijing: Science Press, 1997.
[3] 袁偉方, 羅宏偉. 蔬菜薊馬防治技術(shù)研究進(jìn)展[J/OL]. 熱帶農(nóng)業(yè)科學(xué), 2014(9): 69-74[2024-05-16]. https://doi.org/10.3969/
j.issn.1009-2196.2014.09.015.
Yuan Weifang, Luo Hongwei. Research progress on control technology of vegetable Thrips[J/OL]. Chinese Journal of Tropical Agriculture, 2014(9): 69-74[2024-05-16]. https://doi.org/10.3969/j.issn.1009-2196.2014.09.015.
[4] 謝永輝, 李正躍, 張宏瑞. 煙薊馬研究進(jìn)展[J/OL]. 安徽農(nóng)業(yè)科學(xué), 2011, 39(5): 2683-2685[2024-05-16]. https://doi.org/10.3969/
j.issn.0517-6611.2011.05.064.
Xie Yonghui, Li Zhengyue, Zhang Hongrui. Research advances on the onion Thrips (Thrips tabaci)[J/OL]. Journal of Anhui Agricultural Sciences, 2011, 39(5): 2683-2685[2024-05-16]. https://doi.org/10.3969/j.issn.0517-6611.2011.05.064.
[5] Sanjta S, Chauhan U, Mehta P K. Thrips and their natural enemies in different ornamental plants of Himachal Pradesh[J]. Journal of Biological Control, 2018, 32(1): 20-24.
[6] 王嵚, 曹栓柱, 李曉君, 等. 新疆南疆小海子墾區(qū)“干播濕出”棉花病蟲害發(fā)生特點及綠色防控技術(shù)[J/OL]. 中國棉花, 2024, 51(6): 57-59[2024-05-16]. https://doi.org/10.11963/cc20230167.
Wang Qin, Cao Shuanzhu, Li Xiaojun, et al. Occurrence characteristics and green prevention and control techniques of cotton pests and diseases in the \"dry sowing and wet germination\" mode in Xiaohaizi Reclamation Area in southern Xinjiang[J/OL]. China Cotton, 2024, 51(6): 57-59[2024-05-16]. https://doi.org/10.11963/cc20230167.
[7] 韓云, 唐良德, 吳建輝. 薊馬類害蟲綜合治理研究進(jìn)展[J]. 中國農(nóng)學(xué)通報, 2015, 31(22): 163-174.
Han Yun, Tang Liangde, Wu Jianhui. Researches advances on integrated pest management of Thrips (Thysanoptera)[J]. Chinese Agricultural Science Bulletin, 2015, 31(22): 163-174.
[8] 城塚可奈子, 金子修治, 柴尾學(xué). 大阪府內(nèi)のミナミキイロアザミウマおよびネギアザミウマに対する薬剤殺蟲効果[J/OL]. 関西病蟲害研究會報, 2020, 62: 193-195[2024-05-16]. https://doi.org/10.4165/kapps.62.193.
Shirotsuka K, Kaneko S, Shibao M. Toxicity of insecticides on Thrips palmi Karny and Thrips tabaci Lindeman (Thysanoptera: Thripidae) in Osaka Prefecture, Japan[J/OL]. Annual Report of The Kansai Plant Protection Society, 2020, 62: 193-195[2024-05-16]. https://doi.org/10.4165/kapps.62.193.
[9] Pathak M, Pandey S, Pandey M, et al. Evaluation of different insecticides for management of onion thrips (Thrips tabaci Lindeman)[J/OL]. Journal of Entomology and Zoology Studies, 2020, 8(1): 1463-1468[2024-05-16]. https://api.semanticscholar.org/CorpusID:226668729.
[10] Wakil W, Gulzar S, Wu S H, et al. Development of insecticide resistance in field populations of onion thrips, Thrips tabaci (Thysanoptera: Thripidae)[J/OL]. Insects, 2023, 14(4): e376[2024-05-16]. https://doi.org/10.3390/insects14040376.
[11] Yesuf N S, Alemu Z, Getahun S. Comparative efficacy and economic efficiency of different insecticides against cotton thrips (Thrips tabaci L.) (Thysanoptera: Thripidae) on cotton in the middle awash, Ethiopia[J/OL]. African Journal of Agricultural Research, 2022, 18(10): 850-859[2024-05-16]. https://doi.org/10.5897/AJAR2022.16080.
[12] Lee J, Mwamula A O, Choi J, et al. Comparative bioactivity of emamectin benzoate formulations against the pine wood nematode, Bursaphelenchus xylophilus[J/OL]. The Plant Pathology Journal, 2023, 39(1): 75-87[2024-05-16]. https://doi.org/10.5423/PPJ.OA.08.2022.0120.
[13] Deng L G, Chen L, Guan S, et al. Dissipation of emamectin benzoate residues in rice and rice-growing environments[J/OL]. Molecules, 2020, 25(3): e483[2024-05-16]. https://doi.org/10.3390/molecules25030483.
[14] 戴瀚洋, 孫洋, 柏立新, 等. 亞致死濃度甲維鹽脅迫對甜菜夜蛾幼蟲解毒酶系活力及其相關(guān)基因表達(dá)量的影響[J/OL]. 棉花學(xué)報, 2015, 27(2): 149-158[2024-05-16]. https://doi.org/10.11963/issn.1002-7807.201502008.
Dai Hanyang, Sun Yang, Bai Lixin, et al. Activities of detoxification enzymes and expressions of related genes in Spodoptera exigua larvae treated with sublethal concentrations of emamectin benzoate[J/OL]. Cotton Science, 2015, 27(2): 149-
158[2024-05-16]. https://doi.org/10.11963/issn.1002-7807.
201502008.
[15] Lekha, Ameta P O, Swami H, et al. Efficacy of emamectin benzoate against fruit borer, Helicoverpa armigera in tomato[J]. Indian Journal of Plant Protection, 2016, 44(2): 173-176.
[16] Kuldeep S, SVS R, Ravi S K, et al. Field efficacy of novel insecticides emamectin benzoate and spinosad against fruit borer, Helicoverpa armigera (Hubner) on tomato[J/OL]. Journal of Entomological Research, 2022, 46(1): 106-110[2024-05-16]. https://doi.org/10.5958/0974-4576.2022.00018.4.
[17] Rasool K G, Husain M, Salman S, et al. Toxicity and field efficacy of emamectin benzoate (ARETOR) against red palm weevil, by using syngenta tree micro-injection technique[J]. International Journal of Agriculture and Biology, 2021, 25(5): 1120-1125.
[18] 鄭曉斌, 王京, 袁江江, 等. 三種納米緩釋劑農(nóng)藥對蔥薊馬的田間藥效評價[J/OL]. 環(huán)境昆蟲學(xué)報, 2022, 44(1): 244-249[2024-05-16]. https://doi.org/10.3969/j.issn.1674-0858.2022.01.
28.
Zheng Xiaobin, Wang Jing, Yuan Jiangjiang, et al. Evaluation of the field efficacy of three controlled release nanopesticides against Thrips tabaci Lindeman[J/OL]. Journal of Environmental Entomology, 2022, 44(1): 244-249[2024-05-16]. https://doi.org/10.3969/j.issn.1674-0858.2022.01.28.
[19] Nauen R, Bass C, Feyereisen R, et al. The role of cytochrome p450s in insect toxicology and resistance[J/OL]. Annual Review of Entomology, 2022, 67(1): 105-124[2024-05-16]. https://doi.org/10.1146/annurev-ento-070621-061328.
[20] 尤燕春, 謝苗, 尤民生. 昆蟲谷胱甘肽S-轉(zhuǎn)移酶的多樣性及其介導(dǎo)的抗藥性[J]. 應(yīng)用昆蟲學(xué)報, 2013, 50(3): 831-840.
You Yanchun, Xie Miao, You Minsheng. The diversity and role of glutathione S-transferase in insecticide resistance in insects[J]. Chinese Journal of Applied Entomology, 2013, 50(3): 831-840.
[21] Huang M J, Fu B L, Yin C, et al. Cytochrome p450 CYP6EM1 underpins dinotefuran resistance in the Whitefly Bemisia tabaci[J/OL]. Journal of Agricultural and Food Chemistry, 2024, 72(10): 5153-5164[2024-05-16]. https://doi.org/10.1021/acs.jafc.3c06953.
[22] Li S Y, Yang H J, Wang Y X, et al. RNA interference reveals the impacts of CYP6CY7 on imidacloprid resistance in Aphis glycines[J/OL]. Insects, 2024, 15(3): e188[2024-05-16]. https://
doi.org/10.3390/insects15030188.
[23] Wang L X, Tao S, Jia Y L, et al. Mechanism of metabolic resistance to pymetrozine in Nilaparvata lugens: over-expression of cytochrome p450 CYP6CS1 confers pymetrozine resistance[J/OL]. Pest Management Science, 2021, 77(9): 4128-4137[2024-05-16]. https://doi.org/10.1002/ps.6438.
[24] Zhai X D, Wang S H, Ma M, et al. Suppressing the expression of glutathione S-transferase gene GSTd10 increases the sensitivity of Zeugodacus cucurbitae against β-cypermethrin[J/OL]. Insect Molecular Biology, 2024, 33(3): 218-227[2024-
05-16]. https://doi.org/10.1111/imb.12892.
[25] Liu J Y, Tian Z, Li R C, et al. Key contributions of the overexpressed Plutella xylostella sigma glutathione S-transferase 1 gene (PxGSTs1) in the resistance evolution to multiple insecticides[J/OL]. Journal of Agricultural and Food chemistry, 2024, 72(5): 2560-2572[2024-05-16]. https://doi.org/10.1021/
acs.jafc.3c09458.
[26] He M X, Zhang T Y, Chen Q S, et al. NiCoNC nanoenzyme enhances the performance of insecticides against Solenopsis invicta by inhibiting the gene expression of p450[J/OL]. Chemical Engineering Journal, 2023, 474: e145569[2024-05-
16]. https://doi.org/10.1016/j.cej.2023.145569.
[27] Nagar G, Upadhaya D, Sharma A K, et al. Association between overexpression of cytochrome p450 genes and deltamethrin resistance in Rhipicephalus microplus[J/OL]. Ticks and Tick-borne Diseases, 2021, 12(2): e101610[2024-05-16]. https://
doi.org/10.1016/j.ttbdis.2020.101610.
[28] Zhang C N, Du S K, Liu R F, et al. Overexpression of multiple cytochrome p450 genes conferring clothianidin resistance in Bradysia odoriphaga[J/OL]. Journal of Agricultural and Food Chemistry, 2022, 70(25): 7636-7643[2024-05-16]. https://doi.org/10.1021/acs.jafc.2c01315.
[29] Zhang T Y, Gong C W, Pu J, et al. Enhancement of tolerance against flonicamid in Solenopsis invicta (Hymenoptera: Formicidae) through overexpression of CYP6A14[J/OL]. Pesticide Biochemistry and Physiology, 2023, 197: e105651[2024-05-16]. https://doi.org/10.1016/j.pestbp.2023.105651.
[30] Zhang Y X, Yang B J, Yu N, et al. Insecticide resistance associated overexpression of two sigma GST genes assists Nilaparvata lugens to remedy oxidative stress from feeding on resistant rice variety[J/OL]. Pesticide Biochemistry and Physiology, 2022, 188: e105230[2024-05-16]. https://doi.org/
10.1016/j.pestbp.2022.105230.
[31] 中華人民共和國農(nóng)業(yè)部. 農(nóng)藥室內(nèi)生物測定試驗準(zhǔn)則 殺蟲劑 第14部分: 浸葉法: NY/T 1154.14―2008[S/OL]. 2008[2024-
05-16]. https://hbba.sacinfo.org.cn/stdDetail/8c5bcfc4b052967
c2d56abe6a916552280063f89db1c11a848a2ac98a5cff0cb.
Ministry of Agriculture of the PRC. Guideline for laboratory bioassay of pesticides Part 14: leaf-dipping method: NY/T 1154.14―2008[S/OL]. 2008[2024-05-16]. https://hbba.sacinfo.org.cn/stdDetail/8c5bcfc4b052967c2d56abe6a916552280063f
89db1c11a848a2ac98a5cff0cb.
[32] 李鵬飛, 鄭藝翔, 茍長青, 等. 5種殺蟲劑對棉蚜的防效和對多異瓢蟲的安全性評價[J/OL]. 棉花學(xué)報, 2023, 35(6): 487-
496[2024-05-16]. https://doi.org/10.11963/cs20220066.
Li Pengfei, Zheng Yixiang, Gou Changqing, et al. Effect of five insecticides against Aphis gossypii and their safety evaluation on Hippodamia variegata[J/OL]. Cotton Science, 2023, 35(6): 487-496[2024-05-16]. https://doi.org/10.11963/cs20220066.
[33] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method [J/OL]. Methods, 2001, 25(4): 402-408[2024-05-16]. https://
doi.org/10.1006/meth.2001.1262.
[34] 劉喃喃, 朱芳, 徐強, 等. 昆蟲抗藥性機理: 行為和生理改變及解毒代謝增強[J]. 昆蟲學(xué)報, 2006, 49(4): 671-679.
Liu Nannan, Zhu Fang, Xu Qiang, et al. Behavioral change, physiological modification, and metabolic detoxification: mechanisms of insecticide resistance[J]. Acta Entomologica Sinica, 2006, 49(4): 671-679.
[35] Wen Z, Scott J G. Cytochrome p450 CYP6L1 is specifically expressed in the reproductive tissues of adult male German cockroaches, Blattella germanica(L.)[J/OL]. Insect Biochemistry and Molecular Biology, 2001, 31(2): 179-187[2024-05-16]. https://doi.org/10.1016/S0965-1748(00)00116-8.
[36] 胡黎明, 申建梅, 胡美英, 等. 桔小實蠅P450基因CYP6A41的克隆與表達(dá)分析[J/OL]. 西北農(nóng)林科技大學(xué)學(xué)報(自然科學(xué)版), 2012, 40(8): 113-121[2024-05-16]. https://doi.org/10.13207/
j.cnki.jnwafu.2012.08.017.
Hu Liming, Shen Jianmei, Hu Meiying, et al. Cloning and expression analysis of CYP6A41 in Bactrocera dorsalis (Hendel) (Diptera: Tephritidae)[ J/OL]. Journal of Northwest A amp; F University (Natural Science Edition), 2012, 40(8): 113-121[2024-05-16]. https://doi.org/10.13207/j.cnki.jnwafu.2012.08.
017.
[37] 胡黎明, 曾玲, 申建梅, 等. 桔小實蠅BdorGSTO1基因的克隆及發(fā)育表達(dá)分析[J/OL]. 中國農(nóng)學(xué)通報, 2012, 28(24): 188-
193[2024-05-16]. https://doi.org/10.3969/j.issn.1000-6850.
2012.24.036.
Hu Liming, Zeng Ling, Shen Jianmei, et al. Cloning and developmental expression pattern analysis of GSTO1 from Bactrocera dorsalis Hendel[J/OL]. Chinese Agricultural Science Bulletin, 2012, 28(24): 188-193[2024-05-16]. https://doi.org/10.3969/j.issn.1000-6850.2012.24.036.
[38] Qin P H, Zheng H Y, Tao Y L, et al. Genome-wide identification and expression analysis of the cytochrome P450 gene family in Bemisia tabaci MED and their roles in the insecticide resistance[J/OL]. International Journal of Molecular Sciences, 2023, 24(6): e5899[2024-05-16]. https://doi.org/10.3390/ijms24065899.
[39] Zhou C, Yang H, Wang Z, et al. Comparative transcriptome analysis of Sogatella furcifera (Horváth) exposed to different insecticides[J/OL]. Scientific Reports, 2018, 8(1): 8773[2024-
05-16]. https://doi.org/10.1038/s41598-018-27062-4.
[40] Liu X Y, Sun H M, Luo Y H, et al. Identification of 14 glutathione-S-transferase genes from Lasioderma serricorne and characterization of LsGSTe1 involved in lambda-cyhalothrin detoxification[J/OL]. Pesticide Biochemistry and Physiology, 2023, (193): e105425[2024-05-16]. https://doi.org/10.1016/j.pestbp.2023.105425.
[41] 梁曉, 伍春玲, 陳青, 等. 擬除蟲菊酯類殺蟲劑對赤擬谷盜CYP4基因的誘導(dǎo)表達(dá)特性[J/OL]. 熱帶作物學(xué)報, 2018, 39(7): 1402-1409[2024-05-16]. https://doi.org/10.3969/j.issn.1000-
2561.2018.07.021.
Liang Xiao, Wu Chunling, Chen Qing, et al. Induction pattern of cytochrome p450 genes from CYP4 family of Tribolium castaneum under treatment of pyrethroid insecticides[J/OL]. Chinese Journal of Tropical Crops, 2018, 39(7): 1402-1409[2024-05-16]. https://doi.org/10.3969/j.issn.1000-2561.2018.07.
021.
[42] 李婷. 基于轉(zhuǎn)錄組數(shù)據(jù)的嗜蟲書虱P450基因的克隆與表達(dá)研究[D]. 重慶: 西南大學(xué), 2016.
Li Ting. Identification and transcription profile analysis of cytochrome P450 genes in Liposcelis entomophila (Enderlein) (Psocoptera: Liposcelididae)[D]. Chongqing: Southwest University, 2016.
[43] 申君, 魯艷輝, 張淑真, 等. 亞致死濃度氰氟蟲腙對小菜蛾三種解毒酶及P450 mRNA表達(dá)量的影響[J/OL]. 應(yīng)用昆蟲學(xué)報, 2016, 53(2): 256-263[2024-05-16]. https://doi.org/10.7679/
j.issn.2095-1353.2016.033.
Shen Jun, Lu Yanhui, Zhang Shuzhen, et al. Effects of sublethal concentrations of metaflumizone on detoxifying enzyme activity, and expression of cytochrome P450 genes, in Plutella xylostella (L.)[ J/OL]. Chinese Journal of Applied Entomology, 2016, 53(2): 256-263[2024-05-16]. https://doi.org/10.7679/j.issn.2095-1353.2016.033.
[44] 徐希寶, 張靖, 芮昌輝. 甲氧蟲酰肼對不同抗性棉鈴蟲種群谷胱甘肽S-轉(zhuǎn)移酶活性和基因表達(dá)量的影響[J/OL]. 昆蟲學(xué)報, 2014, 57(12): 1381-1388[2024-05-16]. https://doi.org/10.16380/j.kcxb.2014.12.005.
Xu Xibao, Zhang Jing, Rui Changhui. Effects of methoxyfenozide on the activities and gene expression levels of glutathione S-transferases (GST) in the methoxyfenozide-
resistant and homologous control populations of Helicoverpa armigera (Lepidoptera: Noctuidae)[J/OL]. Acta Entomologica Sinica, 2014, 57(12): 1381-1388[2024-05-16]. https://doi.org/
10.16380/j.kcxb.2014.12.005.
(責(zé)任編輯:王國鑫 責(zé)任校對:王小璐)