摘要: 為了制備鈣鐵改性生物炭,優(yōu)化單一鐵改性生物炭對Pb(Ⅱ)的去除效果,獲得能夠高效去除水中Pb(Ⅱ)且便于回收的生物炭,本研究以楊木、竹子為原材料,分別制備了楊木生物炭(包括未改性、FeSO4改性、CaCO3+FeSO4改性、CaO+FeSO4改性)和竹子生物炭(包括未改性、FeSO4改性、CaCO3+FeSO4改性、CaO+FeSO4改性)等8種生物炭。首先通過批實(shí)驗(yàn)評估不同生物炭對地下水中Pb(Ⅱ)的修復(fù)性能,然后結(jié)合掃描電鏡(SEM)和X射線吸收近邊結(jié)構(gòu)光譜(XANES)等手段探究不同生物炭對地下水中Pb(Ⅱ)的固定機(jī)理。結(jié)果表明:鈣鐵(CaCO3+FeSO4、CaO+FeSO4)改性生物炭對Pb(Ⅱ)的去除率顯著高于鐵(FeSO4)改性生物炭,其中以CaO為鈣源的鈣鐵改性生物炭對Pb(Ⅱ)的去除效率均大于99%,而以CaCO3為鈣源的鈣鐵改性楊木生物炭、鈣鐵改性竹子生物炭對Pb(Ⅱ)的去除效率分別為58%和37%;改性后生物炭對 Pb(Ⅱ)的去除效果從高到低為CaO+FeSO4改性、CaCO3+FeSO4改性、FeSO4改性;鈣鐵改性生物炭表面多孔且粗糙,有利于鉛沉淀物的附著;Pb(Ⅱ)的XANES線性擬合得到鈣鐵改性生物炭表面的穩(wěn)定鉛組分,如堿式碳酸鉛和磷氯鉛占比較其他類型生物炭更高,其中鈣鐵改性楊木生物炭上堿式碳酸鉛和磷氯鉛占比分別為28%和34%,鈣鐵改性竹子生物炭上堿式碳酸鉛和磷氯鉛占比分別為28%和30%。生物炭表面鉛沉淀物的形成可能是Pb(Ⅱ)去除的主要途徑之一。
關(guān)鍵詞:鉛;生物炭;鐵改性;鈣鐵改性;SEM;XANES;去除率
doi:10.13278/j.cnki.jjuese.20230127
中圖分類號:X52 文獻(xiàn)標(biāo)志碼:A
收稿日期: 2023-05-15
作者簡介: 趙鈺(1996-),女,碩士研究生,主要從事地下水重金屬污染修復(fù)等方面的研究,E-mail:1104959498@qq.com
通信作者: 唐金平(1995-),男,博士研究生,主要從事地下水重金屬污染修復(fù)等方面的研究,E-mail:tangjinping@cug.edu.cn
基金項(xiàng)目: 河南省地質(zhì)局局管地質(zhì)環(huán)境項(xiàng)目(豫地環(huán)〔2021〕2號);國家重點(diǎn)研發(fā)項(xiàng)目(2019YFC1803603)
Supported by the Geological and Environmental Project of Local Management of Henan Provincial Geological Bureau (Yudihuan [2021] No. 2) and the National Key Research and Development Program of China (2019YFC1803603)
Removal Performance and Mechanism of Lead in Water by Calcium-Iron Biochar
Zhao Yu1, Liu Peng1,2, Tang Jinping1, Ye Zhihang1, Guo Lin3, Zhou Ziyi1, Feng Yu1
Abstract: In order to prepare calcium-iron modified biochar, optimize the removal effect of single iron-modified biochar on Pb(Ⅱ), and obtain biochar that can efficiently remove Pb(Ⅱ) from water and is easy to recycle, in this study, poplar and bamboo were used as raw materials to prepare eight kinds of biochar respectively, including poplar biochar (unmodified, FeSO4 modified, CaCO3+FeSO4 modified, CaO+FeSO4 modified) and bamboo biochar (unmodified, FeSO4 modified, CaCO3+FeSO4 modified, CaO+FeSO4 modified). First, the removal efficiency of different biochar on Pb(Ⅱ) in groundwater was evaluated through batch experiments. Then, the fixation mechanism of Pb(Ⅱ) in groundwater was explored by means of scanning electron microscopy (SEM) and X-ray absorption near-edge structure spectroscopy (XANES). The results show that the removal efficiency of Pb(Ⅱ) by calcium-iron (CaCO3+FeSO4, CaO+FeSO4) modified biochars were significantly higher than those by iron (FeSO4) modified biochar. In addition, the removal efficiency of Pb(Ⅱ) by calcium-iron modified biochar with CaO as the calcium source were all greater than 99%. While the removal efficiency of Pb(Ⅱ) by calcium-iron modified poplar biochar and calcium-iron modified bamboo biochar with CaCO3 as the calcium source were 58% and 37% respectively. The removal efficiency of modified biochar on Pb(Ⅱ) from high to low was in the order of CaO+FeSO4 modification, CaCO3+FeSO4 modification, and FeSO4 modification. The surfaces of calcium-iron modified biochar were porous and rough, which was beneficial for the attachment of Pb(Ⅱ) precipitation substances. Through the linear fitting of XANES of Pb(Ⅱ), the stable Pb(Ⅱ) components on the surface of calcium-iron modified biochar, such as basic lead carbonate and lead chlorophosphate, accounted for a higher proportion compared with other types of biochar. Among them, the proportions of basic lead carbonate and lead chlorophosphate on calcium-iron modified poplar biochar were 28% and 34% respectively, and those on calcium-iron modified bamboo biochar were 28% and 30% respectively. The formation of lead precipitates on the surface of biochar may be one of the main pathways for Pb(Ⅱ) removal.
Key words: lead; biochar; iron modification; iron-calcium modification; SEM;XANES; removal efficiency
0 引言
鉛(Pb)是一種不可生物降解的有毒重金屬并且沒有“安全”的暴露水平[1]。鉛在化工、電鍍等行業(yè)的廣泛應(yīng)用,造成水環(huán)境中的鉛污染日益嚴(yán)重[2]。即使低水平下的鉛攝入也會(huì)對人體生殖系統(tǒng)、消化系統(tǒng)和中樞神經(jīng)系統(tǒng)等造成損害[3-4]。近年來隨著社會(huì)經(jīng)濟(jì)的飛速發(fā)展與人們對環(huán)境、健康、安全的日益關(guān)注,對于污染場地修復(fù)治理需求也日益強(qiáng)烈,尋求低成本、高效率的Pb(Ⅱ)污染治理方法成為當(dāng)前環(huán)境科學(xué)領(lǐng)域的研究熱點(diǎn)之一。
目前已開發(fā)出多種技術(shù)用于水體中Pb(Ⅱ)的去除,包括沉淀、離子交換[5]、電凝、納米技術(shù)[6]和吸附[7]等。其中,吸附法因其能夠有效去除Pb(Ⅱ)且不會(huì)產(chǎn)生有毒污染物已經(jīng)成為一種非常有前景的方法[8-9]。生物炭是一種環(huán)境友好型材料,具有低成本和無二次污染的特點(diǎn)[10],已被證明是修復(fù)地下水中鉛重金屬的一種有效且具有成本效益的吸附劑。
已有的生物炭在Pb(Ⅱ)污染土壤和水體中的研究案例表明,單一生物炭對Pb(Ⅱ)污染的去除效果有限[11],同時(shí)由于生物炭較小的粒徑導(dǎo)致其在實(shí)際應(yīng)用中從修復(fù)后的環(huán)境中分離難度較大[12]。因此,有必要通過改性手段強(qiáng)化生物炭材料對環(huán)境介質(zhì)中鉛的去除能力,同時(shí)增強(qiáng)其分離回收的特性。已有學(xué)者通過將具有強(qiáng)吸附能力的材料包括FeCl3、Fe3O4和FeSO4等[13-15]負(fù)載到生物炭上得到鐵改性生物炭。鐵改性生物炭通過表面吸附、沉淀和離子交換等作用去除水體中的Pb(Ⅱ)[16-18],同時(shí)具有磁性便于從水體中分離。然而,含鐵納米顆??赡軙?huì)堵塞微孔,造成除Pb(Ⅱ)效率降低[19-20]。目前報(bào)道的鐵改性生物炭對Pb(Ⅱ)的吸附量差異很大,在4.96~66.67 mg/g之間[21]。為了進(jìn)一步提高鐵改性生物炭的性能,前人通過鈣(Ca)元素?fù)诫s促進(jìn)生物炭的熱裂解從而改變生物炭的表面性質(zhì)[22],有效提高了鐵改性生物炭的吸附性能。前人研究[23-24]表明,通過Ca改性可以有效促進(jìn)生物炭對Cd2+以及磷酸鹽的去除,而不同鈣源制備的鈣鐵生物炭是否能夠高效去除Pb(Ⅱ)仍有待探究。因此,有必要了解不同改性方式制備生物炭的除Pb(Ⅱ)效果以及鈣鐵生物炭除Pb(Ⅱ)的具體機(jī)理,從而開發(fā)出高效且易于從水體分離的鈣鐵改性生物炭。
本研究以楊木和竹子為原材料,使用硫酸亞鐵(FeSO4)、氧化鈣(CaO)和碳酸鈣(CaCO3)為改性劑,制備了未改性生物炭、FeSO4改性生物炭、CaO+FeSO4改性生物炭和CaCO3+FeSO4改性生物炭等8種生物炭,研究不同改性方式對生物炭除Pb(Ⅱ)性能的影響;同時(shí)利用掃描電鏡(SEM)和X射線吸收近邊結(jié)構(gòu)光譜(XANES)分別探究了反應(yīng)前后生物炭的表面特征及不同生物炭對水體中鉛的固持機(jī)制。本研究旨在通過Ca摻雜提高鐵改性生物炭的去除效率,考察不同改性方法的影響及具體機(jī)理,以及探究鈣鐵改性生物炭上負(fù)載的Pb(Ⅱ)是否處于穩(wěn)定形態(tài)。
1 材料與方法
1.1 生物炭的制備
以低成本且容易獲取的楊木和竹子作為制備生物炭的原料。將二者分別粉碎過篩后,選取粒徑為1~3 mm的顆粒,置于烘箱中在60 ℃條件下干燥48 h。將需要改性的生物質(zhì)在提前配置好的FeSO4溶液中浸泡2 d,浸泡過的生物質(zhì)濾出一部分,將其直接干燥得到鐵改性生物質(zhì),剩下部分進(jìn)一步分別添加CaO或CaCO3粉末充分?jǐn)嚢杌靹蚝蟾稍锏玫解}鐵改性生物質(zhì),具體改性細(xì)節(jié)見表1。未改性及改性好的生物質(zhì)置于真空管式爐中,于600 ℃加熱速率為8 ℃/min、保溫時(shí)間為2 h的厭氧條件下熱裂解,分別得到未改性生物炭、鐵改性生物炭以及鈣鐵改性生物炭。
1.2 不同生物炭對Pb(Ⅱ)的去除實(shí)驗(yàn)
準(zhǔn)確稱取1.598 5 g的Pb(NO3)2溶解在1 000 mL容量瓶中,緩慢加入超純水至刻度線定容,配制質(zhì)量濃度為1 000 mg/L的Pb(Ⅱ)儲備液,密封放入冰箱內(nèi)保存?zhèn)溆?。利?.01 mol/L的NaNO3溶液(提供離子強(qiáng)度)將儲備液稀釋到100 mg/L作為工作液,使用稀釋過的HNO3將工作液pH值調(diào)整到5.0,避免Pb(Ⅱ)在中性條件下形成沉淀,提高實(shí)驗(yàn)的可重復(fù)性。在25 ℃條件下,分別將0.1 g生物炭加入到40 mL的Pb(Ⅱ)工作液中混合,置于轉(zhuǎn)速為60 r/min的旋轉(zhuǎn)培養(yǎng)皿上反應(yīng)24 h,同時(shí)設(shè)置空白和平行試驗(yàn)。
實(shí)驗(yàn)取樣后,用pH電極(Orion Ross 815600)對未過濾樣品的pH值進(jìn)行測定,剩余樣品使用0.45 μm濾頭過濾,并使用濃HNO3酸化至pHlt;2。過濾后剩余的生物炭固體則在真空冷凍干燥機(jī)(SCIENTZ-10N/C)中干燥12 h后密封貯存待固態(tài)表征。水樣中Pb(Ⅱ)質(zhì)量濃度采用火焰原子吸收分光光度法及石墨爐原子吸收分光光度法測定。各生物炭對Pb(Ⅱ)的去除率(η)通過公式(1)計(jì)算得到。
式中:η為平衡時(shí)生物炭對Pb(Ⅱ)的去除率;ρ0為初始溶液中Pb(Ⅱ)的質(zhì)量濃度(mg/L);ρe為平衡時(shí)溶液中Pb(Ⅱ)的質(zhì)量濃度(mg/L)。
1.3 BET及SEM分析
采用BET(brunauer-emmett-teller)法測定生物炭的比表面積。生物炭樣品首先在105 ℃的氮?dú)庵忻摎? h,以去除其表面吸附的其余氣體;然后在77 K下,使用表面積和孔徑分布分析儀測量氮?dú)馕降葴鼐€,基于BET法計(jì)算表面積[25]。利用掃描電子顯微鏡(Tescan Mira 4)對CaO+FeSO4改性生物炭上最具代表性的區(qū)域進(jìn)行表面形貌特征分析。
1.4 Pb(Ⅱ)的XANES分析
反應(yīng)后的生物炭中Pb(Ⅱ)的XANES分析測試在美國阿貢實(shí)驗(yàn)室的同步輻射光束20 BM區(qū)完成。生物炭經(jīng)冷凍干燥、研磨和篩分(200目)用于XANES分析。將生物炭粉末填充在兩側(cè)用Kapton膠帶封閉的聚四氟乙烯樣品夾中制樣待測[26-27]。用Demeter軟件對XANES光譜進(jìn)行處理和分析。從邊前區(qū)域減去一個(gè)線性函數(shù),用Athena軟件對邊緣跳變進(jìn)行歸一化[28];在13 000~13 100 eV范圍內(nèi)對Pb的X射線吸收近邊結(jié)構(gòu)光譜進(jìn)行線性擬合(LCF)。擬合結(jié)果使用Origin 10.0進(jìn)行處理。
2 結(jié)果與討論
2.1 生物炭的BET分析
由不同改性方式制備的生物炭的表面結(jié)構(gòu)存在較大差異(表2)。由表2可見:P的比表面積為1.74 m2/g,孔隙體積為0.007 cm3/g,平均孔徑為10.53 nm;鐵改性后,F(xiàn)e-P的比表面積升高至3.82 m2/g,平均孔徑降低為6.75 nm;鈣鐵改性后,Ca1-Fe-P和Ca2-Fe-P比表面積分別升高至11.15和21.26 m2/g,孔隙體積分別升高至0.018和0.015 cm3/g,均有顯著提高,平均孔徑變化不大。B的比表面積為9.73 m2/g,遠(yuǎn)大于P;鈣鐵改性后Ca1-Fe-B的比表面積顯著增加,達(dá)到146.5 m2/g。
改性生物炭比表面積均有所增大,原因是改性后鐵納米顆粒附著于生物炭表面使得生物炭表面粗糙。同時(shí)由于部分納米顆粒的存在造成生物炭孔隙堵塞[29],使得Fe-P的孔隙直徑降低。相較于未改性及鐵改性生物炭,鈣鐵改性生物炭的比表面積、孔隙體積均顯著提高,主要是由于改性過程中Ca元素的加入能夠提高生物炭的熱解性能,從而提高比表面積和碳含量[29-30]。此外,研究[31]還表明CaO的存在通過捕獲轉(zhuǎn)化過程中產(chǎn)生的CO2來提高生物質(zhì)的轉(zhuǎn)化率。
2.2 不同類型生物炭對溶液中Pb(Ⅱ)的去除
不同改性方法制備的生物炭對Pb(Ⅱ)的去除率存在較大差異(圖1)。由圖1a可見:P對Pb(Ⅱ)的去除率約為12.4%,F(xiàn)e-P體系中Pb(Ⅱ)的去除率為7.9%, Ca2-Fe-P對Pb(Ⅱ)的去除率約為58.0%,Ca1-Fe-P對Pb(Ⅱ)的去除率接近99.9%,說明鈣鐵改性楊木生物炭對Pb(Ⅱ)的去除效率顯著提高;B對Pb(Ⅱ)的去除率接近50.0%,高于P,F(xiàn)e-B對Pb(Ⅱ)的去除率明顯降低,只去除了約3.7%的Pb(Ⅱ),Ca1-Fe-B對Pb(Ⅱ)的去除率達(dá)到98.6%以上,與楊木生物炭的去除率相近,而Ca2-Fe-B的Pb(Ⅱ)去除率僅為26.8%,高于Fe-B,仍低于B。
由圖1b可知:在P、Fe-P和Ca2-Fe-P系統(tǒng)中,pH值分別從初始值5.0增加到5.8、5.5和6.3,Ca1-Fe-P體系的pH值急劇升高,pH值從5.0增加到9.9;B、Fe-B、Ca2-Fe-B和Ca1-Fe-B體系的pH值較初始值5.0均有不同程度的增加,pH值分別增加到了5.9、5.8、6.2和9.9,與楊木生物炭體系相似。
相較于P,F(xiàn)e-P對Pb(Ⅱ)的去除性能下降與前人研究中報(bào)道的鐵改性后生物炭去除Pb(Ⅱ)能力的下降類似[22, 32],這可能與納米鐵顆粒填充孔隙有關(guān)。先前的研究[29]已經(jīng)證明,孔徑減小可能是磁化后生物炭對重金屬吸附減少的主要原因。Ca1-Fe-P和Ca2-Fe-P對Pb(Ⅱ)吸附能力的增強(qiáng)主要是由于Ca的摻雜使其具有更高的比表面積[33-34],這有利于為鉛沉淀物質(zhì)附著于生物炭表面。
雖然Ca2-Fe-P的比表面積接近Ca1-Fe-P的2倍,但Ca1-Fe-P的去除效率明顯高于Ca2-Fe-P。這可能是因?yàn)镃aO組分增加了生物炭的pH值,促進(jìn)了反應(yīng)體系中Pb(Ⅱ)的沉淀,Pb(Ⅱ)在pH 7~9時(shí)可以以固體Pb(OH)2的形式析出。Ca1-Fe-P體系的pH值為9.9,說明Ca1-Fe-P體系中Pb(Ⅱ)去除率的增加與pH值的增加有關(guān),這與前人[35]的研究結(jié)果一致。生物炭對重金屬離子的去除與生物炭的pH值有關(guān),且隨著pH值的升高去除效果增強(qiáng)[36]。
生物炭比表面積越大,對Pb(Ⅱ)的去除效果越好。B的比表面積大于P的比表面積,因此B對Pb(Ⅱ)的去除效果優(yōu)于P。生物炭的物理化學(xué)性質(zhì)會(huì)隨著原料固有性質(zhì)的不同而有很大差異,并最終影響重金屬的去除[37]。Ca2-Fe-B對Pb(Ⅱ)的吸附效果強(qiáng)于Fe-B,主要是由于Ca的加入使得鈣鐵生物炭裂解更充分,但仍低于B,這可能與納米顆粒的黏附和孔隙的填充有關(guān);Ca1-Fe-B對Pb(Ⅱ)去除率較Fe-B明顯提高,主要是由于CaO進(jìn)一步提高了生物炭的pH值,有利于Pb(Ⅱ)的沉淀析出。這與楊木生物炭類似。
2.3 CaO-Fe改性生物炭的SEM分析
掃描電鏡圖像(圖2)顯示,鈣鐵改性生物炭表面多孔且粗糙,可見部分原始楊木或竹子的結(jié)構(gòu)形態(tài)。在Ca1-Fe-P(圖2a,b)上觀察到多級孔隙結(jié)構(gòu),包括直徑約10 μm的管狀大孔(圖2c)和直徑約5 μm的圓形微孔(圖2d);而Ca1-Fe-B(圖2e,f)上的孔隙直徑為30~60 μm,大于Ca1-Fe-P,且呈整齊的網(wǎng)格狀排列。此外,所有生物炭表面附著豐富的納米鐵顆粒,可見孔隙被堵塞或部分堵塞。相較于反應(yīng)前的生物炭,反應(yīng)后生物炭表面出現(xiàn)白點(diǎn),推測為附著于生物炭表面的Pb(Ⅱ)沉淀物質(zhì)。
由于纖維素和木質(zhì)素降解過程中揮發(fā)性物質(zhì)的快速釋放,生物炭上的木細(xì)胞結(jié)構(gòu)被部分破壞,出現(xiàn)多孔結(jié)構(gòu)。原料特性(物理和化學(xué))是影響生物炭特性的主要因素之一[38],Ca1-Fe-B的孔徑大于Ca1-Fe-P,這與楊木和竹木的特性有關(guān),也解釋了B對Pb(Ⅱ)的去除率高于P。
2.4 Pb(Ⅱ)的X射線吸收近邊結(jié)構(gòu)分析
對Pb(Ⅱ)的XANES進(jìn)行線性擬合來確定負(fù)載于生物炭上不同Pb組分的占比。結(jié)果(圖3)顯示:盡管具體的占比不同,未改性生物炭(P和B)上的主要Pb組分均為碳酸鉛(PbCO3)、堿式碳酸鉛(Pb3(OH)2(CO3)2)、磷氯鉛(Pb5(PO4)3Cl)和氫氧化鉛(Pb(OH)2);生物質(zhì)經(jīng)CaCO3+FeSO4改性制備的生物炭上出現(xiàn)了硫酸鉛(PbSO4)。由圖3b可知:在Ca2-Fe-P和Ca2-Fe-B上硫酸鉛分別占23%和29%。相較于未改性生物炭和CaCO3+FeSO4改性生物炭,在Ca1-Fe-P和Ca1-Fe-B上碳酸鉛的占比較低,分別為7%和9%,而穩(wěn)定鉛組分(如堿式碳酸鉛、磷氯鉛)占比較高。
圖3中的6種生物炭上均鑒定出氫氧化鉛、磷氯鉛和碳酸鉛,這表明生物炭表面Pb(Ⅱ)沉淀物的形成可能是從溶液中去除Pb(Ⅱ)的主要途徑之一。生物炭能提供一系列與Pb(Ⅱ)共沉淀的陰離子[16, 39],例如,在生物炭中常見的PO43-和Cl-可以與Pb(Ⅱ)結(jié)合形成磷氯鉛。在自然環(huán)境中磷氯鉛是一種非常穩(wěn)定的Pb組分,其溶解度積常數(shù)(Ksp)對數(shù)(logKsp)為-84.4[40],磷氯鉛的形成有利于有效去除水溶液中的Pb(Ⅱ)。此外,金屬氧化物(如CaO)溶解在水中一般會(huì)產(chǎn)生大量的OH-,導(dǎo)致反應(yīng)體系中pH值相對較高,有利于氫氧化鉛的析出。
CaCO3+FeSO4改性生物炭中堿式碳酸鉛的占比低于未改性生物炭和CaO+FeSO4改性生物炭(圖3b),主要有兩個(gè)原因:1)CaCO3+FeSO4改性過程中,CaCO3提供了足夠高含量的CO32-與Pb3(OH)2(CO3)2反應(yīng),生成PbCO3和OH-[41]。2)CaO+FeSO4改性過程中,CaO提高了反應(yīng)體系的pH值,有利于Pb3(OH)2(CO3)2的形成[42]。PbSO4在Ca2-Fe-P和Ca2-Fe-B上的存在歸因于生物炭改性過程中引入了SO42-;但當(dāng)溶液中存在大量OH-時(shí),PbSO4可與OH-反應(yīng)生成[Pb(OH)4]2-和SO42-,因此Ca1-Fe-P和Ca1-Fe-B上未擬合出PbSO4。
3 結(jié)論
1)以楊木和竹子作為原材料,使用硫酸亞鐵(FeSO4)、氧化鈣(CaO)和碳酸鈣(CaCO3)為改性劑,制備了8種生物炭。改性生物炭中,鈣鐵改性生物炭對Pb(Ⅱ)的去除效果強(qiáng)于鐵改性生物炭。鈣鐵改性生物炭具有作為一種高效且便于回收的除Pb(Ⅱ)材料的潛力。
2)針對兩種不同的鈣源,CaO+FeSO4改性生物炭對Pb(Ⅱ)的去除效果優(yōu)于CaCO3+FeSO4改性生物炭。改性過程中Ca元素的加入能夠提高生物炭的比表面積,同時(shí)CaO進(jìn)一步提高了生物炭的pH值,促進(jìn)了反應(yīng)體系中Pb(Ⅱ)的沉淀。
3)SEM結(jié)果顯示,鈣鐵改性生物炭表面多孔且粗糙,附著豐富的納米鐵顆粒,可導(dǎo)致孔隙被堵塞或部分堵塞。
4)XANES結(jié)果表明,生物炭上附著的Pb組分類型基本相似,但CaO+FeSO4改性生物炭表面的穩(wěn)定Pb組分如堿式碳酸鉛和磷氯鉛較之其他類型生物炭占比更高。表面鉛沉淀物的形成可能是從溶液中去除Pb(Ⅱ)的主要途徑之一。
參考文獻(xiàn)(References):
[1] Finlay N C, Peacock C L, Hudson-Edwards K A, et al. Characteristics and Mechanisms of Pb(Ⅱ) Sorption onto Fe-Rich Waste Water Treatment Residue (WTR): A Potential Sustainable Pb Immobilization Technology for Soils [J]. Journal of Hazardous Materials, 2021, 402: 123433.
[2] Acharya J, Sahu J N, Mohanty C R, et al. Removal of Lead(Ⅱ) from Wastewater by Activated Carbon Developed from Tamarind Wood by Zinc Chloride Activation [J]. Chemical Engineering Journal, 2009, 149(1/2/3): 249-262.
[3] Jellali S, Diamantopoulos E, Haddad K, et al. Lead Removal from Aqueous Solutions by Raw Sawdust and Magnesium Pretreated Biochar: Experimental Investigations and Numerical Modelling [J]. Journal of Environmental Management, 2016, 180: 439-449.
[4] 姜楠, 王鶴立, 廉新穎. 地下水鉛污染修復(fù)技術(shù)應(yīng)用與研究進(jìn)展 [J]. 環(huán)境科學(xué)與技術(shù), 2008, 148(2): 56-60.
Jiang Nan, Wang Heli, Lian Xinying. Application and Research Progress of Groundwater Lead Pollution Remediation Technology [J]. Environmental Science and Technology, 2008, 148(2): 56-60.
[5] Farooq U, Kozinski J A, Khan M A, et al. Biosorption of Heavy Metal Ions Using Wheat Based Biosorbents: A Review of the Recent Literature [J]. Bioresource Technology, 2010, 101(14): 5043-5053.
[6] Qu X, Alvarez P J, Li Q. Applications of Nanotechnology in Water and Wastewater Rreatment [J]. Water Research, 2013, 47(12): 3931-3946.
[7] Hammo M M, Akar T, Sayin F, et al. Efficacy of Green Waste-Derived Biochar for Lead Removal from Aqueous Systems: Characterization, Equilibrium, Kinetic and Application [J]. Journal of Environmental Management, 2021, 289: 112490.
[8] Carolin C F, Kumar P S, Saravanan A, et al. Efficient Techniques for the Removal of Toxic Heavy Metals from Aquatic Environment: A Review [J]. Journal of Environmental Chemical Engineering, 2017, 5(3): 2782-2799.
[9] Cheng S, Liu Y, Xing B, et al. Lead and Cadmium Clean Removal from Wastewater by Sustainable Biochar Derived from Poplar Saw Dust [J]. Journal of Cleaner Production, 2021, 314: 128074.
[10] 王晟, 馮翔, 李兵, 等. 多種鐵改性和未改性生物炭對模擬地下水中六價(jià)鉻的去除 [J]. 吉林大學(xué)學(xué)報(bào)(地球科學(xué)版), 2021, 51(1): 247-255.
Wang Sheng, Feng Xiang, Li Bing, et al. Removal of Hexavalent Chromium in Simulated Groundwater by Various Iron-Modified and Unmodified Biochars [J]. Journal of Jilin University (Earth Science Edition), 2021,51(1): 247-255.
[11] 宋鑫. 改性生物炭對環(huán)境中鉛鎘重金屬的吸附及穩(wěn)定化研究 [D]. 南京: 東南大學(xué), 2020.
Song Xin. Adsorption and Stabilization of Lead and Cadmium Heavy Metals in the Environment by Modified Biochar [D]. Nanjing: Southeast University, 2020.
[12] 王戈慧. 硫鐵改性生物炭同步修復(fù)土壤砷鉛污染的穩(wěn)定化效果及作用機(jī)制 [D]. 上海: 華東理工大學(xué), 2022.
Wang Gehui. Stabilization Effects and Mechanisms of Simultaneous Remediation of Arsenic and Lead Contaminated Soil by Sulfur-Iron Modified Biochar [D]. Shanghai: East China University of Science and Technology, 2022.
[13] Harikishore K, Lee S M. Magnetic Biochar Composite: Facile Synthesis, Characterization, and Application for Heavy Metal Removal [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 454: 96-103.
[14] Mohubedu R P, Diagboya P N E, Abasi C Y, et al. Magnetic Valorization of Biomass and Biochar of A Typical Plant Nuisance for Toxic Metals Contaminated Water Treatment [J]. Journal of Cleaner Production, 2019, 209: 1016-1024.
[15] 肖雨婷. 鈣基磁性生物炭對土壤Cr(Ⅵ)的鈍化穩(wěn)定化機(jī)制及其生物有效性研究 [D]. 成都: 成都理工大學(xué), 2021.
Xiao Yuting. Mechanism of Passivation and Stabilization of Soil Cr(Ⅵ) by Calcium-Based Magnetic Biochar and Its Bioavailability Study [D]. Chengdu: Chengdu University of Technology, 2021.
[16] Wang Z, Liu G, Zheng H, et al. Investigating the Mechanisms of Biochar’s Removal of Lead from Solution [J]. Bioresource Technology, 2015, 177: 308-317.
[17] Wen E, Yang X, Chen H, et al. Iron-Modified Biochar and Water Management Regime-Induced Changes in Plant Growth, Enzyme Activities, and Phytoavailability of Arsenic, Cadmium and Lead in A Paddy Soil [J]. Journal of Hazardous Materials, 2021, 407: 124344.
[18] Zhang T, Zhu X, Shi L, et al. Efficient Removal of Lead from Solution by Celery-Derived Biochars Rich in Alkaline Minerals [J]. Bioresource Technology, 2017, 235: 185-192.
[19] Reguyal F, Sarmah A K, Gao W. Synthesis of Magnetic Biochar from Pine Sawdust Via Oxidative Hydrolysis of FeCl2 for the Removal Sulfamethoxazole from Aqueous Solution [J]. Journal of Hazardous Materials, 2017, 321: 868-878.
[20] Zhou X, Liu Y, Zhou J, et al. Efficient Removal of Lead from Aqueous Solution by Urea-Functionalized Magnetic Biochar: Preparation, Characterization and Mechanism Study [J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 91: 457-467.
[21] Yi Y, Huang Z, Lu B, et al. Magnetic Biochar for Environmental Remediation: A Review [J]. Bioresource Technology, 2020, 298: 122468.
[22] Qu J, Shi J, Wang Y, et al. Applications of Functionalized Magnetic Biochar in Environmental Remediation: A Review [J]. Journal of Hazardous Materials, 2022, 434: 128841.
[23] Fang C, Zhang T, Li P, et al. Phosphorus Recovery from Biogas Fermentation Liquid by Ca-Mg Loaded Biochar [J]. Journal of Environmental Sciences, 2015, 29: 106-114.
[24] Wang J, Kang Y, Duan H, et al. Remediation of Cd2+ in Aqueous Systems by Alkali-Modified (Ca) Biochar and Quantitative Analysis of Its Mechanism [J]. Arabian Journal of Chemistry, 2022, 15(5): 103750.
[25] Najafabadi H A, Ozalp N, Davis R A. Biochar from Cocoa Shell Pyrolysis: Potential Sorbent for CO2 Capture [J]. Journal of Energy Resources Technology, 2020,143(2):1-26.
[26] Feng Y, Liu P, Wang Y, et al. Mechanistic Investigation of Mercury Removal by Unmodified and Fe-Modified Biochars Based on Synchrotron-Based Methods [J]. Science of the Total Environment, 2020, 719: 137435.
[27] Zhou Z Y, Liu P, Wang S, et al. Iron-Modified Biochar-based Bilayer Permeable Reactive Barrier for Cr (Ⅵ) Removal [J]. Journal of Hazardous Materials, 2022, 439: 129636.
[28] Ye Z, Zhou J, Liao P, et al. Metal (Fe, Cu, and As) Transformation and Association within Secondary Minerals in Neutralized Acid Mine Drainage Characterized Using X-Ray Absorption Spectroscopy [J]. Applied Geochemistry, 2022, 139: 105242.
[29] Son E B, Poo K M, Chang J S, et al. Heavy Metal Removal from Aqueous Solutions Using Engineered Magnetic Biochars Derived from Waste Marine Macro-Algal Biomass [J]. Science of the Total Environment, 2018, 615: 161-168.
[30] 范方方, 仝仲凱, 左衛(wèi)元. 鈣改性花生殼生物炭對廢水中四環(huán)素的吸附研究 [J]. 無機(jī)鹽工業(yè), 2023, 55(6): 109-115.
Fan Fangfang, Tong Zhongkai, Zuo Weiyuan. Adsorption Study of Calcium-Modified Peanut Shell Biochar on Tetracycline in Wastewater [J]. Inorganic Salt Industry: 2023, 55(6): 109-115.
[31] Roy P, Dutta A, Acharya B, et al. An Investigation of Raw and Torrefied Lignocellulosic Biomasses with CaO During Combustion [J]. Journal of the Energy Institute, 2018, 91(4): 584-594.
[32] Zahedifar M, Seyedi N, Shafiei S, et al. Surface-Modified Magnetic Biochar: Highly Efficient Adsorbents for Removal of Pb(Ⅱ) and Cd(Ⅱ) [J]. Materials Chemistry and Physics, 2021, 271: 124860.
[33] Xu Y, Qu W, Sun B, et al. Effects of Added Calcium-Based Additives on Swine Manure Derived Biochar Characteristics and Heavy Metals Immobilization [J]. Waste Management, 2021, 123: 69-79.
[34] Yaashikaa P R, Senthil Kumar P, Varjani S J, et al. Advances in Production and Application of Biochar from Lignocellulosic Feedstocks for Remediation of Environmental Pollutants [J]. Bioresource Technology, 2019, 292: 122030.
[35] Cao X, Harris W. Properties of Dairy-Manure-Derived Biochar Pertinent to Its Potential Use in Remediation [J]. Bioresource Technology, 2010, 101(14): 5222-5228.
[36] 郭媛媛, 杜顯元, 劉亮, 等. 溶液pH對自然水體中多種固相介質(zhì)吸附鉛、鎘、銅影響的比較 [J]. 吉林大學(xué)學(xué)報(bào)(地球科學(xué)版), 2008, 38(3): 479-483.
Guo Yanyan, Du Xianyuan, Liu Liang, et al. Comparative Study on the Influence of Solution pH on the Adsorption of Lead, Cadmium, and Copper by Various Solid Phases in Natural Water Bodies [J]. Journal of Jilin University (Earth Science Edition), 2008, 38(3): 479-483.
[37] Wang L, Ok Y S, Tsang D C W, et al. New Trends in Biochar Pyrolysis and Modification Strategies: Feedstock, Pyrolysis Conditions, Sustainability Concerns and Implications for Soil Amendment [J]. Soil Use and Management, 2020, 36(3): 358-386.
[38] Zhao L, Cao X, Masek O, et al. Heterogeneity of Biochar Properties as a Function of Feedstock Sources and Production Temperatures [J]. Journal of Hazardous Materials, 2013, 256/257: 1-9.
[39] Yang X, Wan Y, Zheng Y, et al. Surface Functional Groups of Carbon-Based Adsorbents and Their Roles in the Removal of Heavy Metals from Aqueous Solutions: A Critical Review [J]. Chemical Engineering Journal, 2019, 366: 608-621.
[40] Ruby M V, Davis A, Nicholson A. In Situ Formation of Lead Phosphates in Soils as a Method to Immobilize Lead [J]. Environmental Science amp; Technology, 1994, 28(4): 646-654.
[41] Godelitsas A, Astilleros J M, Hallam K, et al. Interaction of Calcium Carbonates with Lead in Aqueous Solutions [J]. Environmental Science amp; Technology, 2003, 37(15): 3351-3360.
[42] Inyang M, Gao B, Yao Y, et al. Removal of Heavy Metals from Aqueous Solution by Biochars Derived from Anaerobically Digested Biomass [J]. Bioresource Technology, 2012, 110: 50-56.