摘要: 為研究熱-力耦合作用對(duì)增強(qiáng)型地?zé)嵯到y(tǒng)熱儲(chǔ)裂隙滲透率演化的影響,利用含粗糙單裂隙的花崗巖試樣,分別在加卸載圍壓為5~30 MPa,室溫(25 ℃)、高溫(150和180 ℃)條件下進(jìn)行了流動(dòng)-應(yīng)力加卸載耦合實(shí)驗(yàn),分析了應(yīng)力加卸載引起的彈-塑性變形與裂隙滲透率演化規(guī)律。結(jié)果表明:花崗巖粗糙裂隙滲透率與圍壓呈對(duì)數(shù)負(fù)相關(guān)關(guān)系。當(dāng)溫度分別為25、150和180 ℃時(shí),加載階段裂隙滲透率分別減小78%、90%和92%,卸載階段裂隙滲透率僅分別恢復(fù)63%、26%和19%;這表明加卸載過程粗糙裂隙面在應(yīng)力作用下發(fā)生了塑性變形,導(dǎo)致裂隙滲透率出現(xiàn)永久性衰減。當(dāng)溫度由25 ℃增加到150 ℃和180 ℃時(shí),加卸載過程塑性變形導(dǎo)致粗糙裂隙的滲透率衰減率由15%分別上升至64%和73%;這表明塑性變形與裂隙表面接觸微凸體發(fā)生的礦物顆粒破碎有關(guān),高溫條件下其影響更為顯著。
關(guān)鍵詞:增強(qiáng)型地?zé)嵯到y(tǒng);地?zé)崃严叮粺?力耦合作用;流動(dòng)實(shí)驗(yàn);裂隙滲透率
doi:10.13278/j.cnki.jjuese.20230134
中圖分類號(hào):P641 文獻(xiàn)標(biāo)志碼:A
收稿日期: 2023-05-22
作者簡介: 袁益龍(1990-),男,教授,博士,主要從事地下復(fù)雜環(huán)境水-熱-應(yīng)力-化學(xué)耦合模擬程序開發(fā)及應(yīng)用方面的研究,E-mail: yuanyl14@mails.jlu.edu.cn
通信作者: 鐘承昊(1995-),男,博士,主要從事高溫高壓水-巖作用熱力學(xué)和動(dòng)力學(xué)方面的研究,E-mail: zhongch20@mails.jlu.edu.cn
基金項(xiàng)目: 國家自然科學(xué)基金項(xiàng)目(42372283);吉林省科技廳自然科學(xué)基金項(xiàng)目(20220101160JC)
Supported by the National Natural Science Foundation of China (42372283) and the Natural Science Foundation "of Jilin Provincial Department of Science and Technology (20220101160JC)
Permeability Evolution of Granite with Rough Fracture Under Thermal-Mechanical Coupling
Yuan Yilong1, 2,Tang Jiawei1,Li Peng3,He Ruimin3,Guo Qiang1,Zhong Chenghao2
1. State Key Laboratory of Water Resource Protection and Utilization in Coal Mining, Beijing 102209, China
2. Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education," Changchun 130021, China
3. Technology Research Institute, CHN Energy Shendong Coal Group Co., Ltd., Yulin 719315, Shaanxi, China
Abstract: To study the effect of thermal-mechanical coupling on fracture permeability evolution of enhanced geothermal systems (EGS), flow-stress loading and unloading coupling experiments were carried out on granite samples with rough single fracture under the normal temperature (e.g., 25 ℃) and high temperature (e.g., 150 ℃ and 180 ℃) conditions, respectively. The confining pressure of loading and unloading processes was between 5 MPa and 30 MPa. The evolution law of fracture permeability induced by elastic-plastic deformation was analyzed during stress loading and unloading. The results show that the fracture permeability has a logarithmic negative correlation with the confining pressure. When the temperature was 25, 150 and 180 ℃, the fracture permeability decreased by 78%, 90% and 92% in the loading stage, and only recovered by 63%, 26% and 19% in the unloading stage. This indicated that the rough fracture surface has occurred plastic deformation during loading and unloading processes, which leads to permanent attenuation of fracture permeability. When the temperature increased from 25 ℃ to 150 ℃ and 180 ℃, the permeability attenuation caused by plastic deformation increased from 15% to 64% and 73%, respectively. This indicated that the effect of plastic deformation on the fracture surface is related to the crushing of mineral particles, which becomes more significant in high temperatures.
Key words: enhanced geothermal system; geothermal fracture; thermal-mechanical coupling effect; flow experiment; fracture permeability
0 引言
預(yù)計(jì)到2035年,全球能源需求將增加目前的1/3以上,這需要可再生能源增加約77%[1]。地?zé)崮茏鳛樽钣星熬暗牡吞假Y源之一,受到了廣泛關(guān)注。一方面,地?zé)豳Y源可以提供基本負(fù)荷電力[2]。從1950年到2015年,全球地?zé)岚l(fā)電總裝機(jī)容量增長了64倍[3-4];截至2019年底,地?zé)岚l(fā)電總裝機(jī)容量達(dá)到107.72 GW[5]。另一方面,地?zé)崮芾媚壳懊磕昕蓽p少約252.6億t二氧化碳排放量[5]。預(yù)計(jì)到2050年,減少二氧化碳排放量將達(dá)到約800億t[4]。
干熱巖(HDR)地?zé)豳Y源儲(chǔ)存在地下3~10 km,溫度大于150 ℃的低孔隙度、低滲透性結(jié)晶巖中[6]。我國干熱巖地?zé)豳Y源量超過2.52×1025 J,如果開發(fā)其中的2%,可滿足約4 000 a的能源需求[7]。近年來,在我國青藏高原東北部的共和盆地發(fā)現(xiàn)了豐富的干熱巖地?zé)豳Y源[8]。自20世紀(jì)70年代以來,增強(qiáng)型地?zé)嵯到y(tǒng)(EGS)為高效、經(jīng)濟(jì)地利用干熱巖地?zé)崮芴峁┝藢?shí)際可行的途徑[9]。EGS工程通常需要采用水力壓裂來開啟和擴(kuò)展人工裂隙,并獲得連通的裂隙網(wǎng)絡(luò),進(jìn)而提高地?zé)醿?chǔ)層的滲透率[10]。相較于圍巖基質(zhì),即使圍壓達(dá)到100 MPa,裂隙通道仍具有更高的滲透性[11]。因此,裂隙是EGS儲(chǔ)層的主要流動(dòng)通道。
地?zé)崃黧w流經(jīng)熱儲(chǔ)裂隙是一個(gè)傳熱-流動(dòng)-巖石力學(xué)-地球化學(xué)(THMC)多場耦合過程[12]。因此,對(duì)于EGS工程生產(chǎn)性能的提升需要綜合性地了解THMC耦合作用下地?zé)醿?chǔ)層裂隙演化規(guī)律與控制機(jī)制[13]。EGS運(yùn)行過程中裂隙通道的細(xì)微變化難以通過現(xiàn)場測試和試驗(yàn)進(jìn)行分析,因此通過室內(nèi)巖心流動(dòng)實(shí)驗(yàn)定量分析注采過程中裂隙滲透性的演化規(guī)律十分必要,相關(guān)學(xué)者對(duì)此開展了大量研究。一方面,通過利用含裂隙巖心開展應(yīng)力加載實(shí)驗(yàn),進(jìn)行了應(yīng)力加載下裂隙滲透性的演化規(guī)律研究[14-16];結(jié)果表明,作用在裂隙表面的應(yīng)力增加會(huì)抑制裂隙的水動(dòng)力性能,隨著壓縮次數(shù)不斷增加,花崗巖滲透率持續(xù)減小,并逐步趨于穩(wěn)定。另一方面,基于室內(nèi)裂隙巖心流動(dòng)實(shí)驗(yàn)測試結(jié)果,進(jìn)行了花崗巖裂隙滲透率隨圍壓、溫度和巖石力學(xué)參數(shù)等變化的定量演化關(guān)系研究[17-20];結(jié)果表明,加載過程中裂隙滲透率及其敏感性隨應(yīng)力變化基本符合對(duì)數(shù)函數(shù)或冪函數(shù)關(guān)系式,并且裂隙巖心流動(dòng)實(shí)驗(yàn)的壓力梯度與滲透流速的關(guān)系可通過線性達(dá)西定律進(jìn)行描述。
以上實(shí)驗(yàn)和模型研究對(duì)于認(rèn)識(shí)花崗巖裂隙滲透率動(dòng)態(tài)演化規(guī)律具有重要意義[21-24]。然而,現(xiàn)有的研究大多只關(guān)注加載過程對(duì)裂隙滲透性演化的影響,并未深入分析卸載過程裂隙滲透率的恢復(fù)情況。實(shí)驗(yàn)分析很少同時(shí)考慮應(yīng)力加卸載作用下彈-塑性變形對(duì)地?zé)醿?chǔ)層裂隙的影響。此外,以往的實(shí)驗(yàn)圍壓設(shè)置相對(duì)較低(通常小于20 MPa),這導(dǎo)致難以捕捉加載過程塑性變形對(duì)地?zé)醿?chǔ)層裂隙的潛在影響。針對(duì)以上問題,本次研究利用粗糙單裂隙花崗巖試樣進(jìn)行了應(yīng)力加卸載耦合作用下的高溫滲流實(shí)驗(yàn),實(shí)驗(yàn)最高溫度和圍壓分別達(dá)到180 ℃和30 MPa,以期揭示高溫彈-塑性變形耦合作用對(duì)地?zé)醿?chǔ)層粗糙裂隙滲透性能演化的影響,為增強(qiáng)型地?zé)峁こ探ㄔO(shè)與可持續(xù)開發(fā)提供實(shí)驗(yàn)證據(jù)。
1 實(shí)驗(yàn)方法
1.1 樣品制備
青海省共和盆地為我國干熱巖地?zé)豳Y源開發(fā)的有利目標(biāo)地區(qū)[25]。通過野外調(diào)查,我們基于新鮮未風(fēng)化露頭采集了共和盆地花崗巖巖樣,在實(shí)驗(yàn)室將其制備成直徑為25 mm、長為50 mm的圓柱形花崗巖樣品(圖1a),并將其表面用砂紙拋光。通過巴西劈裂法將巖石樣品分成兩半,獲得帶有人工粗糙裂隙的圓柱形試樣進(jìn)行滲流實(shí)驗(yàn)(圖1b)。本次高溫流動(dòng)-應(yīng)力耦合實(shí)驗(yàn)共制備了3個(gè)測試樣品,以研究熱-力耦合作用對(duì)地?zé)醿?chǔ)層裂隙演化的影響(圖1c)。
1.2 實(shí)驗(yàn)系統(tǒng)
流動(dòng)實(shí)驗(yàn)系統(tǒng)包含五個(gè)主要部分:注入系統(tǒng)、巖心夾持器、壓力控制系統(tǒng)、溫度控制系統(tǒng)及數(shù)據(jù)采集和記錄系統(tǒng)(圖2)。流體注入壓力通過注入泵進(jìn)行控制,最大注入壓力為40 MPa?;◢弾r樣品固定在巖心夾持器中。在試樣安裝到巖心夾持器之前,樣品被包裹在一層很薄的聚合物防水膠帶中,以確保流體只在人工裂隙中流動(dòng)。圍壓通過獨(dú)立的圍壓泵進(jìn)行控制,最大圍壓上限為30 MPa。巖心夾持器水平放置在加熱箱中,加熱箱上限溫度為200 ℃。數(shù)據(jù)采集和記錄系統(tǒng)用于記錄進(jìn)、出口壓力和流速。此外,在出口處安裝了冷凝器,以方便高溫實(shí)驗(yàn)下的流體樣品采集。
1.3 實(shí)驗(yàn)方案
國外研究普遍將干熱巖溫度的下限定義為150 ℃[9, 25]。中國國家能源局組織地?zé)嵝袠I(yè)專家編制了國家能源行業(yè)標(biāo)準(zhǔn)《地?zé)崮苄g(shù)語》(NB-T 10097—2018)[26],規(guī)定干熱巖為溫度高于180 ℃的異常高溫巖體。為此,本次實(shí)驗(yàn)分別考慮在室溫(25 ℃)和高溫(150和180 ℃)情景下進(jìn)行三組加卸載過程的裂隙巖心流動(dòng)實(shí)驗(yàn),且兩組高溫實(shí)驗(yàn)可以相互對(duì)照。巖石樣品在流動(dòng)測試開始前保持在指定的溫度和圍壓下進(jìn)行單次加卸載。圍壓在加載階段由5 MPa逐漸增大到30 MPa,在卸載階段沿原路徑逐漸減小。在測試過程中,蒸餾水被用作工作循環(huán)流體,且在注入裂隙巖心前提前預(yù)熱至與巖石試樣相同溫度。每次實(shí)驗(yàn)設(shè)置恒定的1 MPa回壓,以確保水在高溫下仍能保持液體狀態(tài)。在實(shí)驗(yàn)過程中,注入流速保持在恒定5 mL/min,每60 s監(jiān)測并記錄一次注入壓力。
1.4 滲透率計(jì)算
根據(jù)實(shí)測的進(jìn)出口壓差,利用達(dá)西定律[27]可以計(jì)算出單個(gè)裂隙的滲透率,公式為
式中:ke為滲透率(m2);q為流量(m3/s);μ為水的動(dòng)力黏度(Pa·s);L為裂隙長度(m);p為進(jìn)出口壓差(Pa);A為裂縫截面積(m2)。
此外,滲透率計(jì)算考慮了水的動(dòng)力黏度對(duì)溫度的依賴性,即不同溫度(t,℃)條件下水的動(dòng)力黏度,根據(jù)如下經(jīng)驗(yàn)公式[28]進(jìn)行計(jì)算:
2 實(shí)驗(yàn)結(jié)果與分析
2.1 室溫條件應(yīng)力加卸載過程粗糙裂隙滲透特性
流動(dòng)實(shí)驗(yàn)結(jié)果顯示,室溫條件下粗糙裂隙滲透率與圍壓呈指數(shù)關(guān)系,如圖3所示。由圖3可知:加載階段(圍壓從5 MPa增加到30 MPa),裂隙滲透率隨圍壓的增大呈對(duì)數(shù)遞減趨勢(shì),此階段滲透率降低了78%。這是由于壓力增加對(duì)裂隙閉合的影響逐漸降低,因此在加載早期滲透率降低較快,隨后滲透率降低速率變慢。卸載階段(圍壓從30 MPa降低到5 MPa),裂隙滲透率隨圍壓的增大呈對(duì)數(shù)遞增趨勢(shì),這一恢復(fù)過程主要受裂隙的彈性變形控制;然而,與加載階段的滲透率相比,卸載階段各圍壓下的滲透率均偏低,即滲透率無法完全恢復(fù)到其初始值,表現(xiàn)出滯后效應(yīng),此階段滲透率僅恢復(fù)了63%,表明加卸載過程導(dǎo)致粗糙裂隙滲透率衰減了15%。
前人[21, 29-33]的研究成果表明,這種滯后效應(yīng)主要由粗糙裂隙面在應(yīng)力作用下發(fā)生塑性變形控制,這是一個(gè)永久的、不可逆的過程。如圖4所示:流出液中含有少量的巖石顆粒,這是由于加載過程導(dǎo)致的塑性變形通常與發(fā)生在裂隙表面接觸微凸體的礦物顆粒破碎有關(guān),這一過程伴隨著礦物顆粒的脫落[29];一些大于裂隙開度的礦物顆粒被滯留在裂隙中,這不僅直接減小了流動(dòng)空間,而且進(jìn)一步造成流動(dòng)通道堵塞引起滲透率降低。分析可知,應(yīng)力加卸載過程引起的彈-塑性變形耦合作用是影響粗糙裂隙滲透率動(dòng)態(tài)演化的主要因素[30-33]。
2.2 溫度對(duì)應(yīng)力加卸載過程粗糙裂隙滲透特性演化的影響
本次研究我們開展了高溫150 ℃和180 ℃條件下粗糙裂隙巖心流動(dòng)實(shí)驗(yàn),以研究溫度耦合力學(xué)作用對(duì)粗糙裂隙滲透率的影響。高溫條件下裂隙滲透率與圍壓同樣呈指數(shù)關(guān)系,如圖5所示。由于巖樣之間存在一定差異,因此其初始滲透率并不一致,但其受溫度和應(yīng)力作用影響下的滲透性演化規(guī)律保持一致。加載階段(圍壓從5 MPa增加到30 MPa),當(dāng)溫度為150 ℃和180 ℃時(shí),裂隙滲透率分別減小了90%和92%,相較于室溫條件,粗糙裂隙滲透率在高溫下減小幅度更大。這主要是由于高溫條件降低了巖石力學(xué)強(qiáng)度,導(dǎo)致應(yīng)力加載條件下粗糙裂隙面壓縮變形更大,從而導(dǎo)致滲透率衰減更明顯。卸載階段(圍壓從30 MPa降低到5 MPa),當(dāng)溫度為150 ℃和180 ℃時(shí),裂隙滲透率分別僅恢復(fù)了26%和19%;這表明高溫條件下,加卸載過程導(dǎo)致粗糙裂隙面的塑性變形作用對(duì)裂隙滲透率的影響更加顯著。由此可知,干熱花崗巖粗糙裂隙滲透率的滯后效應(yīng)隨溫度的升高而增大。以5 MPa圍壓為例,當(dāng)巖石溫度由25 ℃增加到150 ℃和180 ℃時(shí),加卸載過程引起的粗糙裂隙滲透率衰減程度由15%增加至64%和73%。
溫度對(duì)粗糙裂隙滲透性演化的影響可以用一些疊加的過程進(jìn)行說明,如圖6所示。前人研究[29, 34]表明:高溫增強(qiáng)了巖石熱膨脹效應(yīng),降低了花崗巖基質(zhì)的彈性模量。由圖6可知,在高溫條件下,巖石基質(zhì)由于應(yīng)力加載產(chǎn)生的機(jī)械變形可能加劇,并導(dǎo)致裂隙流動(dòng)空間的截面面積減小。此外,隨著溫度升高,粗糙裂隙面接觸微凸體處的礦物顆粒可能進(jìn)一步破裂。這一過程伴隨著礦物顆粒的脫落,減少了流動(dòng)空間,并導(dǎo)致裂隙閉合作用加劇[34]。因此,高溫條件下粗糙裂隙滲透率的變化更為明顯。
高溫高圍壓作用下裂隙閉合作用加劇,裂隙流動(dòng)空間減小會(huì)導(dǎo)致注入流體與裂隙面之間的接觸面積減小,也就是水巖反應(yīng)面積減小,因此可通過流出液離子濃度的檢測對(duì)以上裂隙面演化的分析進(jìn)行輔[HJ1.75mm]助證明。掃描電鏡(SEM)結(jié)果顯示,花崗巖樣品顆粒為中粒(2~5 mm),呈塊狀結(jié)構(gòu)(圖7)。X射線衍射(XRD)結(jié)果顯示,實(shí)驗(yàn)花崗巖樣品中含有斜長石(42%)、鉀長石(18%)、石英(30%)、云母(8%)和其他礦物(2%)。由圖7可以看出,高溫條件下注入的蒸餾水主要導(dǎo)致長石類礦物發(fā)生溶解,具體的水巖反應(yīng)如表1所示。
依據(jù)表1中可能發(fā)生的水巖化學(xué)反應(yīng),我們對(duì)室溫(25 ℃)和高溫(150 ℃)實(shí)驗(yàn)樣品在不同圍壓下的流出液進(jìn)行了收集,并對(duì)K+、Na+和Ca2+質(zhì)量濃度進(jìn)行了檢測分析。由于室溫環(huán)境下流出液樣品的檢測質(zhì)量濃度低于儀器檢測精度,因此圖8僅顯示了高溫(150 ℃)實(shí)驗(yàn)流出液中不同離子質(zhì)量濃度隨實(shí)驗(yàn)圍壓變化的特征。由圖8可以看出,流出液中離子質(zhì)量濃度隨著圍壓的增加而減小,這主要是由于高圍壓下裂隙流動(dòng)空間的截面面積減小,導(dǎo)致水巖反應(yīng)面積降低所致。綜上分析可知,對(duì)于高溫干熱巖地?zé)衢_采,由于地?zé)醿?chǔ)層原位地應(yīng)力通常較高,因此對(duì)于水力壓裂后形成的人工裂縫需要添加高強(qiáng)度支撐劑,以避免地?zé)崃黧w長期動(dòng)態(tài)開采過程中人工裂縫的閉合降低系統(tǒng)采熱性能。
2.3 干熱巖工程指示意義
與多孔介質(zhì)相比,裂隙介質(zhì)中的流體運(yùn)移和熱量傳遞更加復(fù)雜,并且受到THMC耦合作用的顯著影響[35-38]。人工熱儲(chǔ)裂隙本質(zhì)上是非均勻的,其水力特性與裂隙幾何形狀密切相關(guān)[39],裂隙幾何形狀取決于裂隙表面的有效應(yīng)力,而裂隙表面的有效應(yīng)力通常由深度和有效地應(yīng)力(主應(yīng)力的大小和方向)控制[21, 37]。地?zé)衢_發(fā)系統(tǒng)工質(zhì)流體循環(huán)過程中孔隙壓力變化引起的機(jī)械加卸載對(duì)裂隙的幾何形狀影響很大[40]。部分裂隙的水力開啟可能會(huì)增加作用在相鄰裂隙表面的正應(yīng)力,即應(yīng)力陰影效應(yīng)[41],同樣會(huì)對(duì)裂隙的滲流性能產(chǎn)生影響。本文開展的不同溫度條件下流動(dòng)-應(yīng)力加載耦合實(shí)驗(yàn)結(jié)果顯示,粗糙裂隙中較大的塑性變形與較高的溫度有關(guān)。因此,高強(qiáng)度支撐劑的添加對(duì)于高地應(yīng)力條件下裂隙型地?zé)醿?chǔ)層的可持續(xù)地?zé)衢_發(fā)非常重要[6, 42]。此外,相關(guān)模擬和實(shí)驗(yàn)研究[43-45]同樣表明,支撐劑的添加對(duì)深部地?zé)醿?chǔ)層裂隙滲透率的穩(wěn)定具有積極作用。本次研究明確了熱-力耦合作用下花崗巖地?zé)醿?chǔ)層粗糙裂隙滲透率演化的主要控制機(jī)制,為干熱巖地?zé)峁こ涕_發(fā)過程中可持續(xù)流動(dòng)采熱問題的解決提供了理論支撐。
3 結(jié)論
1)應(yīng)力加載過程中粗糙裂隙滲透率的降低同時(shí)受到彈性變形和塑性變形的影響。應(yīng)力卸載過程彈性變形造成的粗糙裂隙滲透率降低可以完全恢復(fù),然而,塑性變形導(dǎo)致的粗糙裂隙滲透率降低并不能完全恢復(fù),且高溫條件下塑性變形導(dǎo)致的粗糙裂隙滲透率衰減滯后效應(yīng)更加明顯。
2)當(dāng)溫度分別為25、150和180 ℃時(shí),加載階段裂隙滲透率分別減小了78%、90%和92%,卸載階段裂隙滲透率分別僅恢復(fù)了63%、26%和19%,加卸載過程塑性變形導(dǎo)致粗糙裂隙的滲透率衰減幅度分別為15%、64%和73%。
3)高溫高圍壓作用下裂隙閉合作用加劇,裂隙流動(dòng)空間減小會(huì)導(dǎo)致注入流體與裂隙面之間的接觸面積減小,也就是水巖反應(yīng)面積減小,因此流出液中不同離子的質(zhì)量濃度隨著實(shí)驗(yàn)圍壓的增加而降低。
參考文獻(xiàn)(References):
[1] George A, Shen B X, Craven M, et al. A Review of Non-Thermal Plasma Technology: A Novel Solution for CO2 Conversion and Utilization[J]. Renewable amp; Sustainable Energy Reviews, 2021, 135: 109702.
[2] Song X Z, Shi Y, Li G S, et al. Numerical Simulation of Heat Extraction Performance in Enhanced Geothermal System with Multilateral Wells[J]. Applied Energy, 2018, 218: 325-337.
[3] Bertani R. Geothermal Power Generation in the World 2010–2014 Update Report[J]. Geothermics, 2016, 60: 31-43.
[4] Pan S Y, Gao M Y, Shah K J, et al. Establishment of Enhanced Geothermal Energy Utilization Plans: Barriers and Strategies[J]. Renewable Energy, 2019, 132: 19-32.
[5] Lund J W, Toth A N. Direct Utilization of Geothermal Energy 2020 Worldwide Review[J]. Geothermics, 2021, 90: 101915.
[6] Lu S M. A Global Review of Enhanced Geothermal System (EGS)[J]. Renewable amp; Sustainable Energy Reviews, 2018, 81: 2902-2921.
[7] Hao Z G, Fei H C, Hao Q Q, et al. China First Discovered Massive Available Hot Dry Rock Resources[J]. Acta Geologica Sinica, 2015, 89(3): 1039-1040.
[8] Zhang C, Hu S B, Zhang S S, et al. Radiogenic Heat Production Variations in the Gonghe Basin, Northeastern Tibetan Plateau: Implications for the Origin of High-Temperature Geothermal Resources[J]. Renewable Energy, 2020, 148: 284-297.
[9] Olasolo P, Juarez M C, Morales M P, et al. Enhanced Geothermal Systems (EGS): A Review[J]. Renewable and Sustainable Energy Reviews, 2016, 56: 133-144.
[10] Li K W, Pan B Z, Horne R. Evaluating Fractures in Rocks from Geothermal Reservoirs Using Resistivity at Different Frequencies[J]. Energy, 2015, 93: 1230-1238.
[11] Watanabe N, Hirano N, Tsuchiya N. Experimental Evaluation of Fluid Flow Through Artificial Shear Fracture in Granite[J]. Geothermal Resources Council, 2006, 30: 361-366.
[12] Yasuhara H, Polak A, Mitani Y, et al. Evolution of Fracture Permeability Through Fluid–Rock Reaction Under Hydrothermal Conditions[J]. Earth and Planetary Science Letters, 2006, 244(1): 186-200.
[13] Fang Y, Wang C, Elsworth D, et al. Seismicity-Permeability Coupling in the Behavior of Gas Shales, CO2 Storage and Deep Geothermal Energy[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2017, 3(2): 189-198.
[14] Selvadurai A P S. Normal Stress-Induced Permeability Hysteresis of a Fracture in a Granite Cylinder[J]. Geofluids, 2015, 15(1/2): 37-47.
[15] Meng X X, Liu W, Meng T.Experimental Investigation of Thermal Cracking and Permeability Evolution of Granite with Varying Initial Damage Under High Temperature and Triaxial Compression[J]. Advances in Materials Science and Engineering, 2018, 2018: 8759740.
[16] 李軍, 張楊, 胡大偉, 等. 花崗巖三軸循環(huán)加卸載條件下的氣體滲透率[J]. 巖土力學(xué), 2019, 40(2): 693-700.
Li Jun, Zhang Yang, Hu Dawei, et al. Gas Permeability of Granite in Triaxial Cyclic Loading/Unloading Tests[J]. Rock and Soil Mechanics, 2019, 40(2): 693-700.
[17] Wang L C, Cardenas M B. Development of an Empirical Model Relating Permeability and Specific Stiffness for Rough Fractures from Numerical Deformation Experiments[J]. Journal of Geophysical Research-Solid Earth, 2016, 121(7): 4977-4989.
[18] 高紅梅, 蘭永偉, 趙延林, 等. 花崗巖在圍壓和溫度作用下滲透率變化規(guī)律研究[J]. 佳木斯大學(xué)學(xué)報(bào)(自然科學(xué)版), 2017, 35(6): 955-958.
Gao Hongmei, Lan Yongwei, Zhao Yanlin, et al. Study on Permeability of Granite Under Conditions of Stress and Temperature[J]. Journal of Jiamusi University (Natural Science Edition), 2017, 35(6): 955-958.
[19] 武治盛, 馮子軍, 石曉巔, 等. 不同圍壓下花崗巖滲透率及其滲透敏感性規(guī)律研究[J]. 礦業(yè)研究與開發(fā), 2020, 40(10): 46-50.
Wu Zhisheng, Feng Zijun, Shi Xiaodian, et al. Study on Permeability of Granite Under Different Confining Pressure and Its Permeability Sensitivity[J]. Mining Research and Development, 2020, 40(10): 46-50.
[20] 李林林, 朱俊福, 靖洪文, 等. 高溫處理后花崗巖應(yīng)力作用下滲透特性演化研究[J]. 煤炭科學(xué)技術(shù), 2021, 49(7): 45-50.
Li Linlin, Zhu Junfu, Jing Hongwen, et al. Study on Evolution of Granite Permeability Under Stress After High Temperature Exposure[J]. Coal Science and Technology, 2021, 49(7): 45-50.
[21] Hofmann H, Blocher G, Milsch H, et al. Transmissivity of Aligned and Displaced Tensile Fractures in Granitic Rocks During Cyclic Loading[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 87: 69-84.
[22] Vogler D, Amann F, Bayer P, et al. Permeability Evolution in Natural Fractures Subject to Cyclic Loading and Gouge Formation[J]. Rock Mechanics and Rock Engineering, 2016, 49(9): 3463-3479.
[23] Zhao Y, Wang C L, Bi j. Analysis of Fractured Rock Permeability Evolution Under Unloading Conditions by the Model of Elastoplastic Contact Between Rough Surfaces[J]. Rock Mechanics and Rock Engineering, 2020, 53(12): 5795-5808.
[24] Shu B, Zhu R J, Elsworth D, et al. Effect of Temperature and Confining Pressure on the Evolution of Hydraulic and Heat Transfer Properties of Geothermal Fracture in Granite[J]. Applied Energy, 2020, 272: 115290.
[25] 許天福, 胡子旭, 李勝濤, 等. 增強(qiáng)型地?zé)嵯到y(tǒng):國際研究進(jìn)展與我國研究現(xiàn)狀[J]. 地質(zhì)學(xué)報(bào), 2018, 92(9): 1936-1947.
Xu Tianfu, Hu Zixu, Li Shengtao, et al. Enhanced Geothermal System: International Progresses and Research Status of China[J]. Acta Geologica Sinica, 2018, 92(9): 1936-1947.
[26] 地?zé)崮苄g(shù)語:NB/T 10097—2018[S]. 北京:中國石化出版社, 2018.
Terminology of Geothermal Energy:
NB/T 10097—2018[S]. Beijing:China Petrochemical Press Co.,Ltd., 2018.
[27] Caulk R A, Ghazanfrai E, Perdrial J N, et al. Experimental Investigation of Fracture Aperture and Permeability Change Within Enhanced Geothermal Systems[J]. Geothermics, 2016, 62: 12-21.
[28] Qu Z Q, Zhang W, Guo T K. Influence of Different Fracture Morphology on Heat Mining Performance of Enhanced Geothermal Systems Based on COMSOL[J]. International Journal of Hydrogen Energy, 2017, 42(29): 18263-18278.
[29] Siratovich P A, Villeneuve M C, Cole J W, et al. Saturated Heating and Quenching of Three Crustal Rocks and Implications for Thermal Stimulation of Permeability in Geothermal Reservoirs[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 80: 265-280.
[30] Yasuhara H, Elsworth D, Polak A. Evolution of Permeability in a Natural Fracture: Significant Role of Pressure Solution[J]. Journal of Geophysical Research-Solid Earth, 2004, 109(B3): B03204.
[31] Yasuhara H, Elsworth D. Compaction of a Rock Fracture Moderated by Competing Roles of Stress Corrosion and Pressure Solution[J]. Pure and Applied Geophysics, 2008, 165(7): 1289-1306.
[32] Yasuhara H, Kinoshita N, Ohfuji H, et al. Temporal Alteration of Fracture Permeability in Granite Under Hydrothermal Conditions and Its Interpretation by Coupled Chemo-Mechanical Model[J]. Applied Geochemistry, 2011, 26(12): 2074-2088.
[33] Ghassemi A, Kumar G S. Changes in Fracture Aperture and Fluid Pressure due to Thermal Stress and Silica Dissolution/Precipitation Induced by Heat Extraction from Subsurface Rocks[J]. Geothermics, 2007, 36(2): 115-140.
[34] Zhou X P, Li G Q, Ma H C. Real-Time Experiment Investigations on the Coupled Thermomechanical and Cracking Behaviors in Granite Containing Three Pre-Existing Fissures[J]. Engineering Fracture Mechanics, 2020, 224: 106797.
[35] Polak A, Elsworth D, Yasuhara H, et al. Permeability Reduction of a Natural Fracture Under Net Dissolution by Hydrothermal Fluids[J]. Geophysical Research Letters, 2003, 30(20): 2020.
[36] Ghassemi A, Zhang Q. Porothermoelastic Analysis of the Response of a Stationary Crack Using the Displacement Discontinuity Method[J]. Journal of Engineering Mechanics, 2006, 132(1): 26-33.
[37] Zhou S W, Zhuang X Y, Rabczuk T. A Phase-Field Modeling Approach of Fracture Propagation in Poroelastic Media[J]. Engineering Geology, 2018, 240: 189-203.
[38] Rabczuk T, Belytschko T. Cracking Particles: A Simplified Meshfree Method for Arbitrary Evolving Cracks[J]. International Journal for Numerical Methods in Engineering, 2004, 61(13): 2316-2343.
[39] Chen Y D, Lian H J, Liang W G, et al. The Influence of Fracture Geometry Variation on Non-Darcy Flow in Fractures Under Confining Dtresses[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 113: 59-71.
[40] Chen Y D, Liang W G, Selvadurai A P S, et al. Influence of Asperity Degradation and Gouge Formation on Flow During Rock Fracture Shearing[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 143: 104795.
[41] Yoon J S, Zimmermann G, Zang A. Numerical Investigation on Stress Shadowing in Fluid Injection-Induced Fracture Propagation in Naturally Fractured Geothermal Reservoirs[J]. Rock Mechanics and Rock Engineering, 2015, 48(4): 1439-1454.
[42] Yuan Y L, Xu T F, Moore J, et al. Coupled Thermo-Hydro-Mechanical Modeling of Hydro-Shearing Stimulation in an Enhanced Geothermal System in the Raft River Geothermal Field, USA[J]. Rock Mechanics and Rock Engineering, 2020, 53(12): 5371-5388.
[43] Bandara K M A S, Ranjith P G, Rathnaweera T D, et al. Thermally-Induced Mechanical Behaviour of a Single Proppant Under Compression: Insights into the Long-Term Integrity of Hydraulic Fracturing in Geothermal Reservoirs[J]. Measurement, 2018, 120: 76-91.
[44] Bandara K M A S, Ranjith P G, Haque A, et al. An Experimental Investigation of the Effect of Long-Term, Time-Dependent Proppant Embedment on Fracture Permeability and Fracture Aperture Reduction[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 144: 104813.
[45] Fan M, Han Y H, Chen C. Thermal-Mechanical Modeling of a Rock/Proppant System to Investigate the Role of Shale Creep on Proppant Embedment and Fracture Conductivity[J]. Rock Mechanics and Rock Engineering, 2021, 54(12): 6495-6510.