• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    弗里德曼數(shù)

    2024-12-31 00:00:00顧森
    關(guān)鍵詞:弗里德曼正整數(shù)位數(shù)

    數(shù)學(xué)是一門浩瀚偉大的學(xué)科,看似平平無奇的數(shù)字中卻存在著很多玄妙而有趣的現(xiàn)象.

    52=25.

    認(rèn)真觀察這個(gè)等式,你會(huì)發(fā)現(xiàn)一個(gè)很有意思的現(xiàn)象,算式52中僅含有數(shù)字2和5,而結(jié)果25中也僅含有2和5.

    類似的算式還有很多,比如:

    112=121.

    (4÷2)10=1 024,

    [(86+2x7)5-91]÷34=123 456 789.

    如果一個(gè)數(shù)可以用自己的各位數(shù)字通過加、減、乘、除和乘方算出,這個(gè)數(shù)就叫作“弗里德曼數(shù)”(以美國(guó)數(shù)學(xué)家埃里?!じダ锏侣拿置畡偛盼覀兛吹剑?5,121,1 024,123 456 789都是弗里德曼數(shù).

    弗里德曼數(shù)有多少呢?在所有的兩位數(shù)中,只有25是弗里德曼數(shù),占比約為1.1 0-10.在所有的三位數(shù)中,弗里德曼數(shù)一共有17個(gè),占比約為1.9%.看起來,在自然數(shù)當(dāng)中,弗里德曼數(shù)的分布很稀疏.如果數(shù)字位數(shù)更多,組合出的算式就有更豐富的可能,是不是更容易算出自己呢?在所有的四位數(shù)中,弗里德曼數(shù)一共有58個(gè),占了大約0.6%.?dāng)?shù)字位數(shù)變多,弗里德曼數(shù)所占的比例竟然下降了!

    會(huì)不會(huì)到了位數(shù)特別多的時(shí)候,就再也沒有弗里德曼數(shù)了呢?不會(huì)!借助52=25,我們能構(gòu)造出無數(shù)多個(gè)弗里德曼數(shù):

    502+0=2 500.

    5002+0+0=250 000.

    5 0002+0+0+0=25 000 000.

    事實(shí)上,對(duì)于任意正整數(shù)n,都有:

    (5×10n)2=52×102n=25×102n.

    其中5×10n里面有n個(gè)0,25×102n里面有2n個(gè)0.因此,在(5×10n)2的后面添加n個(gè)“+0”,這個(gè)式子里用到的數(shù)字就和25×102n完全一樣了.

    利用上面的“模板”,我們還能證明一個(gè)更加厲害的結(jié)論:弗里德曼數(shù)可以用任意數(shù)字串結(jié)尾!比方說,有沒有哪個(gè)弗里德曼數(shù)以123結(jié)尾呢?有!例如:

    5 0002+123=25 000 123.

    今年是2024年,有沒有哪個(gè)弗里德曼數(shù)以2 024結(jié)尾呢?有!例如:

    50 0002+2 024=2 500 002 024.

    這一招適用于任意一個(gè)n位數(shù).如果把這個(gè)n位數(shù)記作N,那么:

    (5×10n)2+N=52×102n+N=25×102n+N.

    其中5×10n里面有n個(gè)0,25×102n里面有2n個(gè)0,但加上N之后,后n位數(shù)字就變得和N相同.所以,(5×10n)2+N和25×102n+N就擁有完全相同的一組數(shù)字.

    邁克,里德發(fā)現(xiàn),弗里德曼數(shù)也能以任意數(shù)字串開頭,比方說,下面這兩個(gè)弗里德曼數(shù)就分別以123和2 024開頭:

    123×(4+6)5+66=12 346 656,

    2024×(4+6)5+66=202 446 656.

    這一招也可以用于任意一個(gè)n位數(shù).如果把這個(gè)n位數(shù)記作N,那么N乘(4+6)5再加上66,就相當(dāng)于在N的末尾添加5個(gè)0.再加上46 656,本質(zhì)上也就是直接在N后面添加數(shù)字46 656.而46 656正好把“×(4+6)5+66”里的數(shù)字用了個(gè)遍,因此它就是弗里德曼數(shù)了.

    有一類非常漂亮的弗里德曼數(shù):算式和得數(shù)當(dāng)中的數(shù)字順序也能完全一樣,這樣的弗里德曼數(shù)就叫作“好的弗里德曼數(shù)”,比如:

    -1+27=127.

    (3+4)3=343,

    163×(8-4)=16 384.

    其實(shí),好的弗里德曼數(shù)也有無數(shù)多個(gè):

    2+502=2 502,

    2+(500+0)2=250 002,

    2+(5 000+0+0)2=25 000 002,

    這樣的式子能無限地寫下去,背后也是有原因的.對(duì)于任意正整數(shù)n.都有:

    2+(5×10n)2=2+52×102n=25 000…00+2.

    等式最右邊現(xiàn)在有2n個(gè)0,但加了2之后,最后那個(gè)0會(huì)變成2,所以得數(shù)實(shí)際上有2n-1個(gè)0.等式最左邊,數(shù)字5的后面一共有n個(gè)0.所以,在括號(hào)里面添加n-1個(gè)“+0”即可.

    還有一類更厲害的弗里德曼數(shù),算式里面只有一種數(shù)字,例如:

    [(11-1)11-1×1]÷(11-1-1)

    =11 111 111 111.

    [5×(5+5)5+5-5]÷(5+5-5÷5)

    =5 555 555 555.

    顯然,這樣的弗里德曼數(shù)都是好的弗里德曼數(shù),這樣的弗里德曼數(shù)又有多少個(gè)呢?答案還是無數(shù)多個(gè),布倫丹·歐文發(fā)現(xiàn),對(duì)于1到9中的任意數(shù)字a,25個(gè)a或者更多的a連在一起,形成的都是弗里德曼數(shù).

    看到這里,你是不是突然覺得,當(dāng)數(shù)字位數(shù)夠多時(shí),弗里德曼數(shù)的分布應(yīng)該還是挺密集的?

    猜你喜歡
    弗里德曼正整數(shù)位數(shù)
    五次完全冪的少位數(shù)三進(jìn)制展開
    被k(2≤k≤16)整除的正整數(shù)的特征
    戴維·弗里德曼 美大使發(fā)表偏以色列言論遭譴責(zé)
    東西南北(2019年14期)2019-09-09 06:12:12
    周期數(shù)列中的常見結(jié)論及應(yīng)用*
    弗里德曼眼里的“免費(fèi)”
    方程xy=yx+1的全部正整數(shù)解
    文學(xué)少年(有聲彩繪)(2017年2期)2017-03-06 07:55:54
    一類一次不定方程的正整數(shù)解的新解法
    遙感衛(wèi)星CCD相機(jī)量化位數(shù)的選擇
    “判斷整數(shù)的位數(shù)”的算法分析
    河南科技(2014年11期)2014-02-27 14:09:41
    404 Not Found

    404 Not Found


    nginx
    海南省| 抚松县| 嵩明县| 洪洞县| 巩留县| 新绛县| 平利县| 保康县| 花莲市| 龙山县| 朔州市| 西乡县| 洪湖市| 沿河| 青阳县| 富阳市| 万盛区| 沙雅县| 榆树市| 合川市| 曲水县| 凉城县| 喀什市| 桃源县| 那坡县| 旺苍县| 大理市| 昌吉市| 金华市| 宁乡县| 全州县| 贵阳市| 探索| 手游| 皋兰县| 吴旗县| 山阳县| 兰坪| 师宗县| 县级市| 奉节县|