[摘要] """文殊山隆起位于河西走廊西端,分割了酒西盆地和酒東盆地,是河西走廊內(nèi)部三大隆起帶之一。基于高分辨率衛(wèi)星影像解譯及野外考察,發(fā)現(xiàn)文殊山隆起西緣存在多條斷層陡坎,長度約3 km,陡坎保存比較連續(xù),并表現(xiàn)出正、反向陡坎交替出現(xiàn)的復(fù)雜組合特征。通過無人機(jī)攝影測量以及光釋光方法測年,對該斷層陡坎開展了綜合研究。結(jié)果表明,斷層陡坎發(fā)育于不同期次山前洪積扇之上,根據(jù)較早期洪積扇上累積陡坎高度4.9~5.6 m及相應(yīng)年代(37.3 ± 1.7) ka,確定其晚更新世以來垂直滑動(dòng)速率約為0.15 mm/a。斷層最新一次活動(dòng)發(fā)生在全新世,為全新世活動(dòng)斷層,形成的斷層陡坎高度為0.5~0.7 m。根據(jù)資料分析,該斷層陡坎的形成與文殊山背斜隆起、擴(kuò)展的活動(dòng)有關(guān)。
[關(guān)鍵詞] 文殊山隆起; 斷層陡坎; 滑動(dòng)速率; 河西走廊
[DOI] 10.19987/j.dzkxjz.2023-173
基金項(xiàng)目:"國家自然科學(xué)基金項(xiàng)目(42072246)資助。
0 "引言
祁連山—河西走廊地區(qū)位于青藏高原北部邊緣,是青藏高原北東方向隆升擴(kuò)展的前緣區(qū)域[1-4],也是現(xiàn)今構(gòu)造運(yùn)動(dòng)和地震活動(dòng)最為強(qiáng)烈的地區(qū)之一[5-8]。前人對該地區(qū)活動(dòng)斷裂的研究多集中在走廊南側(cè)的祁連山北緣斷裂帶和北側(cè)的金塔南山、合黎山、龍首山斷裂帶上[9-15],對于走廊盆地內(nèi)部斷裂則研究較少[16-19]。作為河西走廊盆地內(nèi)部三大隆起之一的嘉峪關(guān)—文殊山隆起帶,以往的研究主要集中在嘉峪關(guān)斷裂帶上[20-22],對于文殊山隆起活動(dòng)斷裂特征,只有零星報(bào)道[23]。我們于2019年在河西走廊文殊山隆起帶西側(cè)發(fā)現(xiàn)一系列新的斷層陡坎,這是前人未曾報(bào)道過的活動(dòng)斷層陡坎,本文對新發(fā)現(xiàn)的陡坎進(jìn)行了地貌測量和年代學(xué)研究,并對斷層活動(dòng)參數(shù)進(jìn)行了初步限定。
1 "構(gòu)造背景
河西走廊位于青藏高原東北緣,新構(gòu)造運(yùn)動(dòng)強(qiáng)烈,發(fā)育了多條規(guī)模大、活動(dòng)性強(qiáng)的斷裂,發(fā)生過多次強(qiáng)震(圖1),僅20世紀(jì)就有3次7級(jí)以上地震:1927年古浪8級(jí)地震[24]、1932年昌馬7.6級(jí)地震[25]和1954年山丹7?級(jí)地震[26]。歷史上也有多次大震,如公元180年表氏7?級(jí)地震[27]、756年張掖—酒泉7級(jí)地震[28]、1609年紅崖堡7?級(jí)地震[29]等。河西走廊是我國一條重要的地震構(gòu)造帶,河西走廊是一個(gè)呈北西—南東走向的狹長地帶,因位于黃河以西,又形如走廊,故名河西走廊。走廊南側(cè)為北祁連山,北側(cè)為龍首山、合黎山等中低山,東西長約900 km,南北寬數(shù)千米至近百千米。河西走廊內(nèi)部存在3個(gè)北北西向的隆起,即大黃山隆起、榆木山隆起和嘉峪關(guān)—文殊山隆起(圖1)。嘉峪關(guān)—文殊山隆起位于河西走廊的最西端,分割了西側(cè)的酒西盆地和東側(cè)的酒東盆地。
嘉峪關(guān)—文殊山斷裂帶是嘉峪關(guān)—文殊山隆起形成演化控制性斷裂,該斷裂帶由嘉峪關(guān)斷裂和文殊山斷裂組成。嘉峪關(guān)斷裂北起格拉子溝,向南止于滾礬片一帶,長度大于40 km,北大河以南呈隱伏狀(圖2)。根據(jù)斷層陡坎測量及宇宙成因核素測年,確定嘉峪關(guān)斷裂垂直滑動(dòng)速率為(0.22 ± 0.03) mm/a[21]。通過對斷裂古地震的研究,表明嘉峪關(guān)斷裂最新的一次地震事件發(fā)生在約4.3~5.3 ka,之前在約20.0~21.2 ka、37.0~45.0 ka、58.1 ka分別發(fā)生過3次古地震事件[22]。對于文殊山斷裂的研究則較少,該斷裂基本上沿文殊山中央主山脊發(fā)育,形成新近系和第四系的界線,遙感影像上由于巖性差異有較為明顯的線性特征,但缺乏晚第四紀(jì)地貌被斷錯(cuò)的標(biāo)志,在文殊溝,相當(dāng)于河流T1階地上保留斷層剖面,但階地上無明顯的斷層陡坎發(fā)育。根據(jù)斷層剖面測年,確定斷裂最新事件應(yīng)該發(fā)生于距今約(3.8 ± 0.2)~(4.7 ± 0.2) ka之間[23]。
對嘉峪關(guān)—文殊山斷裂帶的研究主要集中在了上述兩條斷裂上,而對于文殊山隆起周緣是否存在活動(dòng)斷層?斷層活動(dòng)特征如何?則沒有相關(guān)研究報(bào)道。
2 "文殊山西緣斷層與洪積扇的關(guān)系
2.1 "文殊山西緣斷層展布特征
在室內(nèi)遙感影像解譯的基礎(chǔ)上,結(jié)合多次野外考察,發(fā)現(xiàn)在文殊山隆起西緣晚更新世—全新世洪積扇上存在活動(dòng)斷層,主要以斷層陡坎的形式保存,斷層陡坎形態(tài)復(fù)雜,由多條正、反向陡坎組成。此斷層陡坎前人未見報(bào)道,為方便敘述,在此我們將其命名為文殊山西緣斷層。
影像解譯及野外考察結(jié)果顯示,斷層陡坎總長度約3 km,呈北東向展布,斷層陡坎線性影像清晰,斷錯(cuò)不同期洪積扇地貌面。由衛(wèi)星影像觀察,不同期次洪積扇在影像上色彩差異明顯(圖3)。最新的沖溝及漫灘呈現(xiàn)顏色較深的深灰色,其上未發(fā)現(xiàn)斷層活動(dòng)跡象。顏色黃白、廣泛分布的洪積扇上發(fā)現(xiàn)斷層陡坎,但不連續(xù),僅局部有保留,陡坎面背向文殊山,均表現(xiàn)為正向陡坎。更老的地貌上存在正、反向陡坎,陡坎高度不一,反映了斷層活動(dòng)的間歇性和持續(xù)性。
2.2 "文殊山西緣斷層斷錯(cuò)洪積扇特征
基于衛(wèi)星影像解譯,在文殊山西緣斷層南北兩端選擇了2個(gè)研究點(diǎn)進(jìn)行詳細(xì)研究。研究中利用無人機(jī)攝影測量獲得了研究點(diǎn)的高精度DEM數(shù)據(jù)[30-31],在此基礎(chǔ)上獲得了斷層位錯(cuò)量特征。研究區(qū)主要為干旱-半干旱氣候,細(xì)粒沉積物較少,多為沖洪積物形成的洪積扇,可供測年物質(zhì)主要為零星分布的粉細(xì)砂及黃土,根據(jù)沉積物沉積環(huán)境及特征,我們選擇了光釋光測年(OSL)方法用以限定各地貌面年代,該方法目前廣泛應(yīng)用于活動(dòng)構(gòu)造研究中[32-35]。本次研究中的樣品均在甘肅省地震局釋光實(shí)驗(yàn)室中處理測試,其結(jié)果如表1所示。
2.2.1 "位置1
研究點(diǎn)位置1位于斷層南端,斷層由多段不連續(xù)的斷層陡坎組成(圖4),正、反向陡坎均較發(fā)育,根據(jù)影像特征及野外校核,研究點(diǎn)處主要發(fā)育4期洪積扇(圖4b)。A0為偶爾有流水的現(xiàn)代沖溝面,沖溝較為寬闊,其上無斷層陡坎發(fā)育。A1為沖溝兩側(cè)發(fā)育的洪積扇面,一般高于沖溝1~2 m,扇面較為完整,其上發(fā)育斷層陡坎,陡坎朝向西,與地形一致(圖5a),但保存不完整。A2期洪積扇高于河道3~5 m,其上沖溝發(fā)育,斷層陡坎大多保存于本級(jí)扇面上,正、反向陡坎均有發(fā)育(圖5b)。最老一期洪積扇A3扇面侵蝕嚴(yán)重,殘留部分主要緊靠山邊,其上未見斷層陡坎發(fā)育。野外考察發(fā)現(xiàn)斷層主要斷錯(cuò)A1和A2兩期洪積扇,而A0洪積扇則未見斷錯(cuò),其上無斷層陡坎發(fā)育。野外對A2和A1兩期洪積扇采集了光釋光樣品JYGOSL-08、JYGOSL-09和JYGOSL-10,采樣位置主要集中在洪積扇上部沖洪積礫石層夾層內(nèi)的細(xì)砂層,采樣深度分別為1.2 m、3.0 m和0.6 m,結(jié)果分別為(37.3 ± 1.7) ka、(50.1 ± 3.0) ka和(44.9 ± 1.7) ka (圖5c—e)。JYGOSL-08、JYGOSL-09均采集于A2洪積扇,采樣深度有所差異,年代序列較為合理,上部的JYGOSL-08的結(jié)果可能更能代表洪積扇年代,其結(jié)果為(37.3 ± 1.7) ka。相較于A2洪積扇的年代,A1洪積扇(44.9 ± 1.7) ka結(jié)果則偏老。
利用DEM數(shù)據(jù),對陡坎高度也進(jìn)行了測量,A1洪積扇上陡坎高度為(0.7 ± 0.1) m,A2洪積扇上保存的陡坎數(shù)目較多,其累計(jì)高度~5.6 m,根據(jù)其年代結(jié)果(37.3 ± 1.7) ka,可以估算文殊山西緣斷裂整條垂直滑動(dòng)速率約0.15 mm/a。
2.2.2 "位置2
研究點(diǎn)位置2位于斷裂北端,斷裂陡坎在影像上清晰可見。同樣,在該研究點(diǎn)利用無人機(jī)獲得了高精度地形數(shù)據(jù)(圖6a),經(jīng)解譯及野外調(diào)查,該研究點(diǎn)地貌面大致可以分為3期洪積扇(圖6b),3期洪積扇的劃分與位置1相同,也表現(xiàn)出相同的特征。正、反向斷層陡坎主要保存于A2洪積扇面(圖7a),A1洪積扇只保留單一的斷層陡坎,陡坎高度較低(圖7b)。野外對A1洪積扇采集光釋光樣品JYGOSL-11(圖7c),采集位置為沖洪積相礫石層頂部黃土,采樣深度0.3 m,測試結(jié)果為(2.5 ± 0.2) ka。需要說明的是,A1洪積扇出露剖面多以洪積相粗顆粒沉積為主,適合采樣測年的物質(zhì)不多,僅在一條沖溝一側(cè)發(fā)現(xiàn)有黃土沉積,且厚度不大,很可能為洪積扇面形成后期沉積物,測年結(jié)果也偏年輕,可能不能完全代表洪積扇的形成年代。洪積扇西側(cè)為北大河通過位置,由于文殊山背斜的擴(kuò)展影響,該處形成多級(jí)河流階地[36],其中T5級(jí)階地面為山前廣泛分布的洪積扇面,與本文A1洪積扇相當(dāng),其年代為(9 ± 0.9) ka,揭示A1洪積扇也應(yīng)該形成于這一年代,即全新世以來。A1洪積扇面上形成斷層陡坎的高度約0.5 m(圖7d),A2洪積扇其累計(jì)高度~4.9 m,與位置1處的斷層陡坎高度差別不大。
3 "結(jié)論與討論
由遙感影像解譯和野外地質(zhì)調(diào)查,確認(rèn)在文殊山背斜西緣發(fā)育總長度約3 km的多條斷層陡坎,斷層陡坎保存比較連續(xù),并表現(xiàn)出正、反向陡坎交替出現(xiàn)的復(fù)雜組合特征。此陡坎前人未曾報(bào)道,我們命名為文殊山西緣斷層。為確定斷層陡坎的活動(dòng)時(shí)代,對陡坎發(fā)育的洪積扇進(jìn)行了分期和定年,斷層陡坎發(fā)育處主要發(fā)育4期洪積扇,陡坎主要發(fā)育于A1及A2期洪積扇表面。其中A1期洪積扇斷層陡坎較為單一,為高度0.5~0.7 m、朝向西的正向陡坎。A2期洪積扇面上斷層陡坎較為復(fù)雜,表現(xiàn)為高度不一的正、反向陡坎交替出現(xiàn)的復(fù)雜結(jié)構(gòu),累計(jì)高度為4.9~5.6 m。根據(jù)光釋光樣品年代測試及地貌面對比,A1和A2期洪積扇形成年代分別約為(9 ± 0.9) ka和(37.3 ± 1.7) ka。根據(jù)A1洪積扇形成年代,判斷文殊山西緣斷層在全新世以來有過一次活動(dòng),在洪積扇上形成了高約0.5~0.7 m的斷層陡坎。根據(jù)A2期洪積扇測年結(jié)果,確定文殊山西緣斷裂垂直滑動(dòng)速率約0.15 mm/a。
文殊山背斜為一個(gè)新生代背斜,文殊溝出露的新生代地層為研究高原隆升擴(kuò)展提供了地層依據(jù)。Zhao等[37]認(rèn)為玉門礫巖出現(xiàn)的4.5 Ma為祁連山及文殊山強(qiáng)烈隆起的時(shí)代;袁道陽[38]認(rèn)為4.5 Ma可能預(yù)示著祁連山山體隆升的開始,真正造成盆地內(nèi)部文殊山褶皺變形應(yīng)該始于玉門礫巖結(jié)束、酒泉礫石層開始的0.9 Ma,并認(rèn)為文殊山的隆起是由褶皺和斷層兩部分作用完成的,其中褶皺作用是背斜隆升的主要作用。以往對文殊山背斜隆起帶活動(dòng)斷裂的認(rèn)識(shí)主要集中在沿山脊發(fā)育的文殊山斷裂[23],在背斜周緣并未發(fā)現(xiàn)活動(dòng)斷裂,本次研究中在隆起帶西緣發(fā)現(xiàn)活動(dòng)斷層,在隆起帶南北兩側(cè)同樣也有斷層發(fā)育,這些斷層的發(fā)育是文殊山背斜隆起、擴(kuò)展的結(jié)果,而西緣斷裂形態(tài)結(jié)構(gòu)復(fù)雜,其組合特征及形成機(jī)制有待進(jìn)一步研究。
參考文獻(xiàn)
[1]Tapponnier P,Xu Z Q,Roger F,et al. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science,2001,294(5547):1671-1677
[2]Yuan D Y,Ge W P,Chen Z W,et al. The growth of northeastern Tibet and its relevance to large-scale continental geodynamics:A review of recent studies[J]. Tectonics,2013,32(5):1358-1370
[3]張培震,張會(huì)平,鄭文俊,等. 東亞大陸新生代構(gòu)造演化[J]. 地震地質(zhì),2014,36(3):574-585 """Zhang P Z,Zhang H P,Zheng W J,et al. Cenozoic tectonic evolution of continental eastern Asia[J]. Seismology and Geology,2014,36(3):574-585
[4]鄭文俊,袁道陽,張培震,等. 青藏高原東北緣活動(dòng)構(gòu)造幾何圖像、運(yùn)動(dòng)轉(zhuǎn)換與高原擴(kuò)展[J]. 第四紀(jì)研究,2016,36(4):775-788 """Zheng W J,Yuan D Y,Zhang P Z,et al. Tectonic geometry and kinematic dissipation of the active faults in the northeastern Tibetan Plateau and their implications for understanding northeastward growth of the plateau[J]. Quaternary Sciences,2016,36(4):775-788
[5]Tapponnier P,Meyer B,Avouac J P,et al. Active thrusting and folding in the Qilian Shan,and decoupling between upper crust and mantle in northeastern Tibet[J]. Earth and Planetary Science Letters,1990,97(3/4):382-383,387-403
[6]國家地震局地質(zhì)研究所,國家地震局蘭州地震研究所. 祁連山—河西走廊活動(dòng)斷裂系[M]. 北京:地震出版社,1993 """Institute of Geology,State Seismological Bureau,Lanzhou Institute of Seismology,State Seismological Bureau. The Qilianshan-Hexi Corridor active fault system[M]. Beijing:Seismological Press,1993
[7]Meyer B,Tapponnier P,Bourjot L,et al. Crustal thickening in Gansu-Qinghai,lithospheric mantle subduction,and oblique,strike-slip controlled growth of the Tibet Plateau[J]. Geophysical Journal International,1998,135(1):1-47
[8]Gaudemer Y,Tapponnier P,Meyer B,et al. Partitioning of crustal slip between linked,active faults in the eastern Qilian Shan,and evidence for a major seismic gap,the ‘Tianzhu Gap’,on the western Haiyuan Fault,Gansu (China)[J]. Geophysical Journal International,1995,120(3):599-645
[9]陳文彬,劉百篪,徐錫偉,等. 祁連山西段玉門斷裂晚第四紀(jì)活動(dòng)特征及相關(guān)問題的討論[J]. 西北地震學(xué)報(bào),1999,21(4):389-394 """Chen W B,Liu B C,Xu X W,et al. Activity of the Yumen fault,western Qilian mountains,during Late Quaternary and its implication to regional tectonic movements[J]. Northwestern Seismological Journal,1999,21(4):389-394
[10]劉興旺,袁道陽,邵延秀,等. 祁連山北緣玉門—北大河斷裂晚第四紀(jì)活動(dòng)特征[J]. 地震工程學(xué)報(bào),2016,38(6):948-954 """Liu X W,Yuan D Y,Shao Y X,et al. Characteristics of Late Quaternary activity of Yumen-Beidahe fault in north margin of Qilian Mountain[J]. China Earthquake Engineering Journal,2016,38(6):948-954
[11]劉興旺,袁道陽,邵延秀,等. 祁連山北緣玉門—北大河斷裂東段古地震特征[J]. 地震,2019,39(3):1-10 """Liu X W,Yuan D Y,Shao Y X,et al. Paleoearthquake characteristics of the eastern segment of Yumen-Beidahe fault in the northern margin of Qilian Shan[J]. Earthquake,2019,39(3):1-10
[12]Xu X W,Yeats R S,Yu G H. Five short historical earthquake surface ruptures near the Silk Road,Gansu Province,China[J]. Bulletin of the Seismological Society of America,2010,100(2):541-561
[13]金卿. 榆木山斷裂帶晚第四紀(jì)構(gòu)造活動(dòng)與大震危險(xiǎn)性評(píng)價(jià)[D]. 蘭州:中國地震局蘭州地震研究所,2011:1-62 """Jin Q. Study on activity in Late Quaternary and the earthquake risk assessment of the Yumu Mountain fault zone[D]. Lanzhou:Lanzhou Institute of Seismology,China Earthquake Administration,2011:1-62
[14]陳干,鄭文俊,王旭龍,等. 榆木山北緣斷裂現(xiàn)今構(gòu)造活動(dòng)特征及其對青藏高原北東擴(kuò)展的構(gòu)造地貌響應(yīng)[J]. 地震地質(zhì),2017,39(5):871-888 """Chen G,Zheng W J,Wang X L,et al. Present kinematics characteristics of the northern Yumushan active fault and its response to the northeastward growth of the Tibetan Plateau[J]. Seismology and Geology,2017,39(5):871-888
[15]龐煒,何文貴,張波. 臨澤斷裂新活動(dòng)特征初步研究[J]. 地震研究,2019,42(1):120-132 """Pang W,He W G,Zhang B. Preliminary study of new faulting characteristic of the Linze fault[J]. Journal of Seismological Research,2019,42(1):120-132
[16]陳濤,周本剛,閔偉,等. 塔爾灣—登登山—池家刺窩斷裂分段性及最大潛在地震分析[J]. 地震科學(xué)進(jìn)展,2021,51(7):315-319 """Chen T,Zhou B G,Min W,et al. Analysis of segmentation and maximum potential seismicity of Tarwan-Dengdengshan-Chijiaciwo fault[J]. Progress in Earthquake Sciences,2021,51(7):315-319
[17]鄭榮熒,陳柏旭,周文杰,等. 河西走廊西洞西灘沖洪積扇線性陡坎非構(gòu)造成因分析[J]. 地震科學(xué)進(jìn)展,2023,53(5):203-213 """Zheng R Y,Chen B X,Zhou W J,et al. Analysis on non-tectonic origin of linear scarps in alluvial-proluvial fan of the west bank of Xidong in Hexi Corridor[J]. Progress in Earthquake Sciences,2023,53(5):203-213
[18]劉興旺,袁道陽,蘇琦,等. 酒西盆地白楊河斷裂古地震特征研究[J]. 地震工程學(xué)報(bào),2020,42(1):90-97 """Liu X W,Yuan D Y,Su Q,et al. Paleoearthquake characteristics along the Baiyanghe fault in Jiuxi basin[J]. China Earthquake Engineering Journal,2020,42(1):90-97
[19]劉興旺,袁道陽,蘇琦,等. 酒西盆地內(nèi)部兩條斷裂晚第四紀(jì)滑動(dòng)速率研究[J]. 地震研究,2019,42(1):112-119 """Liu X W,Yuan D Y,Su Q,et al. Study on Late Quaternary slip rates of two faults within Jiuxi basin[J]. Journal of Seismological Research,2019,42(1):112-119
[20]何文貴,袁道陽,王愛國,等. 嘉峪關(guān)斷層中段的新活動(dòng)特征[J]. 中國地震,2010,26(3):296-303 """He W G,Yuan D Y,Wang A G,et al. The recent active characteristics of the middle segment of Jiayuguan fault[J]. Earthquake Research in China,2010,26(3):296-303
[21]Zheng W J,Zhang H P,Zhang P Z,et al. Late Quaternary slip rates of the thrust faults in western Hexi Corridor (Northern Qilian Shan,China) and their implications for northeastward growth of the Tibetan Plateau[J]. Geosphere,2013,9(2):342-354
[22]劉興旺,吳趙,梁明劍,等. 嘉峪關(guān)斷裂古地震活動(dòng)特征及其強(qiáng)震危險(xiǎn)性影響[J]. 地球科學(xué),2021,46(10):3796-3806 """Liu X W,Wu Z,Liang M J,et al. Paleoearthquake characteristics of Jiayuguan fault and its seismic risk[J]. Earth Science,2021,46(10):3796-3806
[23]鄭文俊. 河西走廊及其鄰區(qū)活動(dòng)構(gòu)造圖像及構(gòu)造變形模式[D]. 北京:中國地震局地質(zhì)研究所,2009:1-140 """Zheng W J. Geometric pattern and active tectonics of the Hexi Corridor and its adjacent regions[D]. Beijing:Institute of Geology,China Earthquake Administration,2009:1-140
[24]國家地震局蘭州地震研究所. 陜甘寧青四?。▍^(qū))強(qiáng)地震目錄[M]. 西安:陜西科學(xué)技術(shù)出版社,1985 """Lanzhou Institute of Seismology,State Seismological Bureau. Catalogue of strong earthquakes in Shaanxi,Gansu,Ningxia and Qinghai[M]. Xi’an:Shaanxi Science and Technology Press,1985
[25]國家地震局蘭州地震研究所. 昌馬活動(dòng)斷裂帶[M]. 北京:地震出版社,1992:1-207 """Lanzhou Institute of Seismology,State Seismological Bureau. The Changma active fault zone[M]. Beijing:Seismological Press,1992:1-207
[26]鄭文俊,張竹琪,張培震,等. 1954年山丹7? 級(jí)地震的孕震構(gòu)造和發(fā)震機(jī)制探討[J]. 地球物理學(xué)報(bào),2013,56(3):916-928 """Zheng W J,Zhang Z Q,Zhang P Z,et al. Seismogenic structure and mechanism of the 1954 M7? Shandan earthquake,Gansu Province,western China[J]. Chinese Journal of Geophysics,2013,56(3):916-928
[27]曹娜,雷中生,袁道陽,等. 公元180年甘肅表氏地震考[J]. 地震學(xué)報(bào),2010,32(6):744-753 """Cao N,Lei Z S,Yuan D Y,et al. Textural criticism on the Biaoshi,Gansu,earthquake in 180 A D[J]. Acta Seismologica Sinica,2010,32(6):744-753
[28]雷中生, 袁道陽, 鄭文俊, 等. 756年張掖—酒泉地震考[J]. 西北地震學(xué)報(bào), 2012, 34(1): 72-77 """Lei Z S, Yuan D Y, Zheng W J, et al. Textural research of Zhangye-Jiuquan earthquake in 756 A. D.[J]. Northwestern Seismological Journal, 2012, 34(1): 72-77
[29]劉興旺,雷中生,袁道陽,等. 1609年甘肅紅崖堡7?級(jí)地震考證[J]. 西北地震學(xué)報(bào),2011,33(2):143-148 """Liu X W,Lei Z S,Yuan D Y,et al. Textual research on the Hongyapu M7.25 earthquake in 1609[J]. Northwestern Seismological Journal,2011,33(2):143-148
[30]Bemis S P,Micklethwaite S,Turner D,et al. Ground-based and UAV-Based photogrammetry:A multi-scale,high-resolution mapping tool for structural geology and paleoseismology[J]. Journal of Structural Geology,2014,69:163-178
[31]王朋濤,邵延秀,張會(huì)平,等. sUAV攝影技術(shù)在活動(dòng)構(gòu)造研究中的應(yīng)用:以海原斷裂騸馬溝為例[J]. 第四紀(jì)研究,2016,36(2):433-442 """Wang P T,Shao Y X,Zhang H P,et al. The application of sUAV photogrammetry in active tectonics:Shanmagou site of Haiyuan fault,for example[J]. Quaternary Sciences,2016,36(2):433-442
[32]陳杰,盧演儔,魏蘭英,等. 第四紀(jì)沉積物光釋光測年中等效劑量測定方法的對比研究[J]. 地球化學(xué),1999,28(5):443-452 """Chen J,Lu Y C,Wei L Y,et al. Optically stimulated luminescence dating of Quaternary sediments:A comparison using different equivalent dose determination methods[J]. Geochimica,1999,28(5):443-452
[33]王旭龍,盧演儔,李曉妮. 細(xì)顆粒石英光釋光測年:簡單多片再生法[J]. 地震地質(zhì),2005,27(4):615-623 """Wang X L,Lu Y C,Li X N. Luminescence dating of fine-grained quartz in Chinese loess:Simplified Multiple Aliquot Regenerative-dose (MAR) protocol[J]. Seismology and Geology,2005,27(4):615-623
[34]楊傳成,陳杰,張克旗,等. 水成相沉積物細(xì)顆粒石英光釋光綜合生長曲線的建立與應(yīng)用[J]. 地震地質(zhì),2007,29(2):402-411 """Yang C C,Chen J,Zhang K Q,et al. Standardized growth curves (SGC) for optical dating of fine-grained quartz from water-lain sediments[J]. Seismology and Geology,2007,29(2):402-411
[35]張克旗,吳中海,呂同艷,等. 光釋光測年法:綜述及進(jìn)展[J]. 地質(zhì)通報(bào),2015,34(1):183-203 """Zhang K Q,Wu Z H,Lü T Y,et al. Review and progress of OSL dating[J]. Geological Bulletin of China,2015,34(1):183-203
[36]田晴映. 構(gòu)造與氣候共同作用下的祁連山—河西走廊西段晚第四紀(jì)以來的河流地貌演化過程[D]. 廣州:中山大學(xué),2021:1-149 """Tian Q Y. Fluvial evolution in the western segment of Qilian Shan-Hexi Corridor in response to tectonic deformation and climate change since Late Quaternary[D]. Guangzhou:Sun Yat-sen University,2021:1-149
[37]Zhao Z J,F(xiàn)ang X M,Li J J. Late Cenozoic magnetic polarity stratigraphy in the Jiudong Basin,northern Qilian Mountain[J]. Science in China (Series D:Earth Sciences),2001,44(S1):243-250
[38]袁道陽. 青藏高原東北緣晚新生代以來的構(gòu)造變形特征與時(shí)空演化[D]. 北京:中國地震局地質(zhì)研究所,2003:1-158 """Yuan D Y. Tectonic deformation features and space-time evolution in northeastern margin of the Qinghai-Tibetan Plateau since the Late Cenozoic time[D]. Beijing:Institute of Geology,China Earthquake Administration,2003:1-158
Discovery of active fault at the western margin of Wenshushan uplift in Hexi Corridor
Liu Xingwang1, 2, *, Zhu Junwen1, 2, Yao Yunsheng1, 2, Zhao Xiaoming2
1. Gansu Lanzhou Geophysics National Observation and Research Station, Gansu Lanzhou 730000, China
2. Lanzhou Institute of Geotechnique and Earthquake, China Earthquake Administration, Gansu Lanzhou 730000, China
[Abstract] """"The Wenshushan uplift is located at the western end of the Hexi Corridor, dividing the Jiuxi basin and Jiudong basin. It is one of the three major uplift zones within the Hexi Corridor. Based on high-resolution satellite image interpretation and field investigations, we found that there were multiple fault scarps on the western margin of the Wenshushan uplift, with a length of about 3 km. The scarps are relatively continuous and exhibit complex combination characteristics of alternating forward and reverse scarps. Through unmanned aerial vehicle photogrammetric technique and optically stimulated luminescence dating, a comprehensive study was conducted on the fault scarps. The fault scarps developed in different periods of alluvial fans in front of the mountain. Based on the accumulated fault scarp heights of 4.9~5.6 m and corresponding age of (37.3 ± 1.7) ka on the early alluvial fan, the vertical slip rate has been determined to be approximately 0.15 mm/a since the Late Pleistocene. The latest seismic activity occurred during the Holocene, which was a Holocene active fault with fault scarp heights of 0.5~0.7 m. According to data analysis, the formations of the fault scarps are the results of the uplift and expansion of the Wenshushan anticline.
[Keywords] Wenshushan uplift; fault scarp; slip rate; Hexi Corridor