摘 要:【目的】研究旱作條件下減量施用氮肥對水稻營養(yǎng)元素含量以及氮肥偏生產(chǎn)力的影響。
【方法】以美香粘為材料進行大田試驗,設置5個處理:常規(guī)淹水施氮(216 kg/hm2,CK)、旱作施氮(216 kg/hm2,H0)、旱作減氮10%(194.4 kg/hm2,H10)和旱作減氮20%(172.8 kg/hm2,H20)、旱作減氮40%(129.6 kg/hm2,H40),研究不同水分條件和氮肥減施對稻田土壤基礎(chǔ)養(yǎng)分、水稻生物量、含氮量以及產(chǎn)量和氮肥偏生產(chǎn)力的影響。
【結(jié)果】與傳統(tǒng)淹水栽培相比,水稻旱作顯著提高了土壤有機質(zhì)含量,顯著降低了土壤pH值和速效磷含量,其它養(yǎng)分含量均無顯著變化。旱作降低了水稻根、莖、葉、穗生物量、總氮含量以及氮肥偏生產(chǎn)力,水稻單位面積株數(shù)、千粒重、產(chǎn)量在旱作處理下無明顯變化。在旱作條件下減施氮肥,土壤養(yǎng)分狀況變化各異,與旱作和傳統(tǒng)淹水栽培相比變化較小。水稻根、莖、葉、穗生物量和含氮量隨著氮肥減施程度的增加下降,穗生物量和氮含量在H40處理下相比H0處理顯著升高。氮肥偏生產(chǎn)力隨著氮肥減施程度增加而提高,在H40時達到最高。與H0相比,H10、H20的產(chǎn)量降低幅度不顯著,H40降低幅度大于H10和H20,但其產(chǎn)量與H0差異不顯著。
【結(jié)論】在旱作條件下氮肥減施40%,可在產(chǎn)量不顯著降低的同時卻顯著提高肥料生產(chǎn)力。
關(guān)鍵詞:水稻;旱作;氮肥減施;氮素利用率;產(chǎn)量
中圖分類號:S511 ""文獻標志碼:A ""文章編號:1001-4330(2024)08-1907-10
收稿日期(Received):2023-07-03
基金項目:廣東省自然科學基金項目(2023A1515011736);韶關(guān)學院國家級大學生創(chuàng)新訓練計劃項目(202110576016);韶關(guān)市科技計劃項目(220606154533827);廣東省教育廳普通高校重點科研平臺和項目(2020KCXTD037)
作者簡介:趙敏華(1997-),女,山西人,碩士,研究方向為作物水分與養(yǎng)分高效利用,(E-mail)zmhuayk@163.com
通訊作者:陳曉遠(1968-),男,廣東韶關(guān)人,教授,博士,碩士生/博士生導師,研究方向為作物水分與養(yǎng)分高效利用,(E-mail)chenxy2@163.com
0 引 言
【研究意義】全球氣候變暖及季節(jié)性干旱導致水資源日益緊張,已成為世界水稻生產(chǎn)的主要限制因素[1,2]。我國粵北地區(qū)屬于亞熱帶濕潤性季風氣候,是廣東省主要的水稻生產(chǎn)區(qū),農(nóng)業(yè)優(yōu)勢明顯,但粵北水稻生產(chǎn)經(jīng)常受到季節(jié)性和區(qū)域性干旱的影響[3]。水稻旱作減氮是近年來發(fā)展起來的一種綠色高效低碳栽培技術(shù)。與傳統(tǒng)水淹種植相比,水稻旱作具有明顯的生長優(yōu)勢,包括干物質(zhì)積累量較高,成熟期葉片衰老慢,根系活力強等優(yōu)點[4-7]。氮素作為水稻生長的重要營養(yǎng)元素,參與碳氮代謝、蛋白質(zhì)合成等過程,更是植物激素、氨基酸和葉綠體的重要組成部分[8-10]。為了在減少農(nóng)業(yè)用水的同時維持作物產(chǎn)量,農(nóng)業(yè)生產(chǎn)中會增加氮肥的用量[11-13]。輸入稻田的氮肥大約有9%~39%以氨氣的形式揮發(fā),最高可達60%[14-16]。因此,粵北地區(qū)實行水稻旱作對今后農(nóng)業(yè)可持續(xù)發(fā)展具有重要意義。【前人研究進展】適量的氮肥減施可以有效的調(diào)節(jié)土壤肥力、光合作用,從而在一定程度上提高氮素利用率,進而維持植株產(chǎn)量[17]。尹彩俠等[18]相較于傳統(tǒng)施肥,氮肥減施20%顯著提高氮素吸收效率。張小祥等[19]對不同品種水稻進行氮肥減施處理,結(jié)果表明減氮處理降低了氮素轉(zhuǎn)運量和穗部氮素積累量,提高了氮素吸收利用率和氮肥偏生產(chǎn)力。彭曉宗等[20]采用區(qū)域施肥調(diào)查和田間試驗相結(jié)合的方法,發(fā)現(xiàn)適當減氮可以在保證作物產(chǎn)量的同時降低氮素損失率,減少環(huán)境風險及人工成本,提高經(jīng)濟效益?!颈狙芯壳腥朦c】關(guān)于旱作和減施氮肥對水稻產(chǎn)量的影響已有很多報道,但在旱作條件下減施氮肥研究水稻干物質(zhì)量積累、氮肥利用以及產(chǎn)量的影響還鮮有報道?!緮M解決的關(guān)鍵問題】以美香占2號為材料,研究不同水分條件和氮肥減施對稻田土壤基礎(chǔ)養(yǎng)分、水稻生物量、含氮量以及產(chǎn)量和氮肥偏生產(chǎn)力的影響,為水稻旱作與氮肥減施技術(shù)提供參考。
1 材料與方法
1.1 材 料
試驗水稻品種為美香粘(廣東省農(nóng)科院水稻研究所選育),試驗地點設在韶關(guān)市始興縣美青農(nóng)業(yè)發(fā)展有限公司(24°56′0″N,114°3′36″E)。試驗地地勢平坦,前茬蔬菜作物為茄子和豇豆,土壤質(zhì)地為紅壤性水稻土,土壤結(jié)構(gòu)為重壤土,土壤基礎(chǔ)養(yǎng)分:pH值5.83,有機質(zhì)4.45 g/kg,全氮532.18 mg/kg,硝態(tài)氮18.84 mg/kg,銨態(tài)氮17.77 mg/kg,堿解氮123.48 mg/kg,速效磷118.95 mg/kg,速效鉀210.80 mg/kg。供試化肥為單質(zhì)肥料,分別為尿素(N 46%)、過磷酸鈣(P2O5 12%)和氧化鉀(K2O 60%)。
1.2 方 法
1.2.1 試驗設計
參照陳曉遠等[21]方法,試驗設置淹水灌溉(按照當?shù)爻R?guī)淹水方式)和旱作(整個生育期均不灌溉)2種水分處理,及4種氮肥用量處理:當?shù)爻R?guī)施用量(216 kg/hm2)、減少 10%施用量(194.4 kg/hm2)、減少 20%施用量(172.8 kg/hm2)、減少40%施用量(129.6 kg/hm2),共計5個處理,即CK(淹水灌溉+當?shù)爻R?guī)氮肥用量)、H0(旱作+當?shù)爻R?guī)氮肥用量)、H10(旱作+氮肥減施 10%)、H20(旱作+氮肥減施 20%)、H40(旱作+氮肥減施 40%),每個處理3次重復。表1
試驗于2019年5~8月進行,試驗地區(qū)年均降雨量1 468 mm(主要集中在上半年),年均日照總時數(shù)1 500~1 900 h。采用隨機區(qū)組設計,小區(qū)面積為7 m×7 m=49 m2。常規(guī)淹水施氮處理采用人工插秧方式種植,旱作處理采用機械直播方式種植,旱作處理播種密度參照插秧密度,苗間距為5 cm。5月10日播種,起壟后用塑料薄膜覆蓋以阻隔水分交換,8月10日收獲。
氮磷鉀肥料分3次施用,施用時期和分配比例為播種后一周施用氮肥總量的36%;播種一個月施用氮肥總量的32%、磷肥總量的63%和鉀肥總量的63%;灌漿期施用氮肥總量的32%、磷肥總量的37%和鉀肥總量的37%。水稻成熟后測定處理土壤養(yǎng)分含量、產(chǎn)后植株養(yǎng)分含量、植株部位干重、植株部位養(yǎng)分含量并計算氮肥偏生產(chǎn)力。表2
1.2.2 測定指標
土壤養(yǎng)分:農(nóng)田翻耕后采集土壤樣品,測試土壤有機質(zhì)等養(yǎng)分數(shù)據(jù);收獲后再次采樣測定養(yǎng)分數(shù)據(jù);植株不同器官氮含量:水稻成熟后,每處理隨機選取1 m×1 m樣方3塊,采集植株根、莖、葉、穗等器官,測定其氮含量;植株不同器官生物量:
水稻成熟后,采集植株根、莖、葉、穗等器官,測定其生物量;水稻產(chǎn)量及其構(gòu)成因素:水稻成熟后,每處理隨機選取2 m×2 m樣方3塊進行人工收割測產(chǎn)。
重鉻酸鉀氧化-油浴加熱法測定土壤有機質(zhì)含量;凱氏定氮儀法測定土壤和植株全氮含量;還原蒸餾法測定土壤硝態(tài)氮;KCl溶液浸提-分光光度法測定土壤銨態(tài)氮;
堿解擴散法測定土壤堿解氮;NaHCO3浸提鉬銻抗比色法測定土壤速效磷;醋酸銨-火焰光度計法測定土壤速效鉀;烘干法測定植株生物量。
采集植物樣品,清洗根部,分別將根、莖、葉、穗放置在烘箱中,在80℃溫度下烘干24 h,測定其干重。
氮肥偏生產(chǎn)力=施肥作物產(chǎn)量/肥料投入量。
1.3 數(shù)據(jù)處理
試驗數(shù)據(jù)應用軟件Graph prism8.0、SPSS 22.0和Microsoft Excel 2019進行整理分析,對各處理間的差異采用LSD法和鄧肯法進行0.05水平上的顯著性檢驗。
2 結(jié)果與分析
2.1 旱作條件下氮肥減施對土壤養(yǎng)分的影響
研究表明,與CK相比,H0、H10、H20、H40處理下土壤pH值均降低,差異顯著。氮肥減施處理中,土壤pH值與氮肥減施的程度呈反比。與CK相比,H0、H10、H20、H40處理下土壤有機質(zhì)含量均提高,其中H10、H20、H40分別提高30.25%、30.25%、24.39%,土壤有機質(zhì)含量與氮肥減施的程度呈正比,各處理間差異不顯著。與CK相比,氮肥減施處理的土壤硝態(tài)氮、銨態(tài)氮、堿解氮含量均無顯著變化;H20處理的銨態(tài)氮和堿解氮顯著升高,分別比CK升高87.9%和35.39%。與CK相比,H0處理的土壤速效磷含量降低20.86%,其余處理的土壤速效磷含量無顯著變化,氮肥減施處理的速效磷含量與氮肥減施的程度成正比。與CK相比,H10、H20處理的土壤速效鉀含量分別升高5.12%和5.53%,其余處理土壤速效鉀含量無顯著差異。表3
2.2 旱作條件下氮肥減施對水稻植株生物量的影響
研究表明,各處理中,莖部(含葉鞘)生物量均為最高,根部生物量均為最低,與CK相比,H0處理的根、莖的生物量分別降低28.36%、23.78%,差異不顯著,穗顯著降低了50.44%。氮肥減施處理的根、莖、穗的生物量隨著氮肥減施程度的增加先降低后增加,H40處理的生物量在旱作條件下最高,與CK相比均差異不顯著,與H0相比僅穗的生物量差異顯著;H20的生物量在所有中最低,與CK相比,其根、莖、穗、葉生物量分別降低35%、77%、38%、17.54%。葉片在所有處理中均無顯著變化。圖1
2.3 旱作條件下氮肥減施對水稻植株各器官氮含量的影響
研究表明,CK的總氮量最高,H10處理的最低,比CK下降44.89%。在旱作處理中,植株總氮量隨著氮肥減施程度的加強呈先下降后增加的趨勢,H40處理總氮含量最高。在所有處理中,CK的莖、穗、葉、根的氮含量最高,H20處理的穗、葉、根氮含量最低。與CK相比,H20處理的莖、穗、葉、根的氮含量分別降低10.96%、3.73%、26.27%、31.11%。在旱作處理中,植株各部位氮含量隨著氮肥減施的程度呈先下降后增加(H40,莖部除外)的趨勢,在H40時穗的氮含量相比H0顯著升高27.78%。表4
2.4 旱作條件下氮肥減施對水稻產(chǎn)量和氮肥偏生產(chǎn)力的影響
研究表明,水稻產(chǎn)量、單位面積株數(shù)、千粒重均在CK處理下最高。在旱作條件下,產(chǎn)量和單位面積株數(shù)以及千粒重與氮肥減施的程度呈反比。與CK相比,H0處理的產(chǎn)量、千粒重和單位面積株數(shù)分別下降2.38%、0.95%、2.4%,差異不顯著;H10和H20分別下降2.72%、2.85%、8.64%和3.4%、5.21%、34.56%,差異不顯著;H40分別下降了6.46%、8.36%、39.5%,差異顯著。與CK相比,H0處理的氮肥偏生產(chǎn)力下降。在旱作條件下,隨著氮肥減施程度的增加氮肥偏生產(chǎn)力增加,H40處理的氮肥偏生產(chǎn)力最高,可達83.76,相比CK和H0處理分別增加了36.72%、37.39%。表5
3 討 論
3.1
旱作通過減少農(nóng)業(yè)用水,減少水稻生長過程中水分蒸發(fā)提高水分利用率,進而保證產(chǎn)量,水稻旱作技術(shù)對節(jié)約水資源和糧食生產(chǎn)具有重要意義[22]。土壤養(yǎng)分作為水稻生長的基礎(chǔ),對水稻質(zhì)量和產(chǎn)量有重要作用。然而,關(guān)于旱作對土壤肥力的影響還存在一些爭議[23,24]。研究發(fā)現(xiàn),旱作條件下減施氮肥與正常灌溉相比土壤的pH值顯著下降,但均在水稻適宜生長的范圍內(nèi)。旱作條件對土壤的硝態(tài)氮、銨態(tài)氮、堿解氮以及速效鉀影響較小,而有機質(zhì)含量顯著提高,速效磷含量顯著降低。是因為水稻旱作相比傳統(tǒng)淹水栽培,限制土壤微生物的活動,降低有機質(zhì)的分解速度,從而影響到堿解氮的釋放[25,26,27]。同時由于土壤酸化,土壤磷的有效性會降低,其溶解度也會減小,造成速效磷含量下降[28]。在旱作條件下減施氮肥后,土壤養(yǎng)分變化各異,但與傳統(tǒng)淹水或旱作不減氮條件相比,變化較穩(wěn)定,但銨態(tài)氮和堿解氮含量在H20處理下顯著升高,導致這一變化的原因目前尚不清楚,后續(xù)會進一步研究。
3.2
通過旱作技術(shù),可以提高水稻的產(chǎn)量,并且與傳統(tǒng)水淹技術(shù)相比,還能達到較高的節(jié)水率。樊紅柱等[29]通過旱作技術(shù),使水稻顯著節(jié)水增產(chǎn),與傳統(tǒng)水淹技術(shù)相比節(jié)水率達到63%。趙成全等[30]在遼寧省進行的水稻旱直播試驗結(jié)果表明,水稻早直播比育秧移栽節(jié)水25%~50%,產(chǎn)量比插秧提高5.33%。朱倫[31]通過早稻的旱直播栽培試驗發(fā)現(xiàn),旱直播比常規(guī)裁培增產(chǎn)22%,節(jié)約灌溉用水6 000 m3/hm2。在研究中,旱作處理不進行人工灌水,水稻生長所需水分均來自土壤原有水分和天然降水,因此,與傳統(tǒng)人工淹水栽培相比,可節(jié)約大量灌溉用水,從而降低生產(chǎn)成本。
3.3
水稻旱作可調(diào)節(jié)土壤水肥能力,影響根系生長,進而導致地上部分生物量和營養(yǎng)物質(zhì)的積累[32]。研究表明,旱作與傳統(tǒng)淹水相比,水稻產(chǎn)量會因為時間、地理條件以及肥水管理產(chǎn)生差異。李金才等[33]研究表明,露地旱作水稻群體干物質(zhì)量相比水作顯著降低,千粒重和產(chǎn)量下降。魏永霞等[34]研究發(fā)現(xiàn),與傳統(tǒng)淹水相比,旱作條件下水稻植株各部位干物質(zhì)累積量較低,產(chǎn)量變化不顯著。徐令旗等[35]發(fā)現(xiàn)與傳統(tǒng)水淹相比,旱作條件下水稻生物量、千粒重以及產(chǎn)量略低,但能降低農(nóng)民生產(chǎn)成本,增加經(jīng)濟收入,提高生態(tài)效益。研究證實,與傳統(tǒng)淹水栽培相比,水稻旱作降低了植物根、莖、葉和穗的生物量和氮含量,植株總生物量和總氮含量也處于下降趨勢;雖然穗的生物量和氮含量均顯著降低,但對水稻的千粒重和產(chǎn)量影響并不大,與上述文獻的研究結(jié)果差異不大,說明雖然旱作條件下,由于田間水量減少,導致植株對土壤養(yǎng)分的吸收受到影響,使得植株生物量和氮含量減少,但輕度的水分脅迫并不會對水稻生長和代謝造成顯著影響。因此,與CK相比,旱作各處理產(chǎn)量并未顯著下降。
3.4
氮肥是植物生長發(fā)育所必需的主要營養(yǎng)元素之一,對植物的生長具有重要的促進作用。適量的氮肥能夠提供植物所需的氮元素,并促進植物光合作用、葉片的形成和生物量的積累[36]。然而,為了實現(xiàn)水稻增產(chǎn)而施用大量氮肥,又會造成氮肥利用率下降和生態(tài)環(huán)境持續(xù)惡化[37-40]。另一方面,氮肥施用過低也會造成產(chǎn)量和品質(zhì)下降,因此把握好氮肥施用量對農(nóng)業(yè)生態(tài)環(huán)境以及作物生長具有重要意義。董瑜皎等[41]發(fā)現(xiàn),在覆膜旱作條件下施氮量為120 kg/hm2時水稻地上部分總生物量升高。鄧小強等[42]研究表明,施氮120 kg/hm2時,水稻產(chǎn)量最高,單產(chǎn)達到9 532.9 kg/hm2。周江明等[43]研究發(fā)現(xiàn),早稻施N 153.11~69.4 kg/hm2,晚稻施N 161.51~90.1 kg/hm2可實現(xiàn)高產(chǎn)高效節(jié)氮。研究結(jié)果表明,與淹水栽培相比,旱作減施氮肥會使水稻產(chǎn)量下降,但下降并不顯著,這與前人的結(jié)果較為一致。
肥料偏生產(chǎn)力指施用某一特定肥料下的作物產(chǎn)量與施肥量的比值,它是反映當?shù)赝寥阑A(chǔ)養(yǎng)分水平和化肥施用量綜合效應的重要指標[44]。陳曉萍[45]等發(fā)現(xiàn),在常規(guī)施肥的基礎(chǔ)上減施氮肥,水稻籽粒產(chǎn)量并無顯著降低,而且氮肥表觀利用率、偏生產(chǎn)力和氮肥內(nèi)部利用率均略微提高本。魯偉林等[46]發(fā)現(xiàn),氮肥偏生產(chǎn)力隨著氮肥的增加呈現(xiàn)下降趨勢,與產(chǎn)量存在負相關(guān)關(guān)系。王道中等[47]發(fā)現(xiàn),氮肥減施提高了氮肥回收率,增加水稻結(jié)實率、每穗粒數(shù)和千粒重,從而維持產(chǎn)量。王瑜等[48]發(fā)現(xiàn),氮肥減施后千粒重、穗粒數(shù)、結(jié)實率呈遞下降趨勢,氮肥偏生產(chǎn)力升高,但產(chǎn)量并無顯著變化。
4 結(jié) 論
4.1
與傳統(tǒng)淹水灌溉相比,水稻旱作和旱作條件下減施氮肥對土壤有機質(zhì)、硝態(tài)氮、銨態(tài)氮、堿解氮含量影響較小。與傳統(tǒng)淹水栽培相比,水稻旱作顯著提高了土壤有機質(zhì)含量,顯著降低了土壤pH值和速效磷含量,其他養(yǎng)分含量均無顯著變化。
4.2
水稻旱作及減施氮肥降低了植株生物量和含氮量,但減施40%可使植株的穗生物量和含氮量升高。
4.3
水稻旱作及氮肥減施降低了植株的有效株數(shù)、千粒重及產(chǎn)量,降低程度與氮肥減施程度成正相關(guān)。
4.4
氮肥偏生產(chǎn)力會隨著氮肥減施程度的增加而增加,減施40%的處理,氮肥偏生產(chǎn)力最大,比旱作不減施處理和淹水處理分別提高59.73%和58.04%,但其產(chǎn)量只比前者下降了4,18%和6.46%,差異不顯著。因此,在一定范圍內(nèi),旱作減施可以顯著提高肥料生產(chǎn)效率。氮肥偏生產(chǎn)力與氮肥減施程度成正相關(guān),減施40%的處理,氮肥偏生產(chǎn)力最大,但其產(chǎn)量降低不顯著。旱作并減施40%氮肥,可以在維持一定產(chǎn)量的同時顯著提高肥料生產(chǎn)力。
參考文獻(References)
[1]高志紅, 陳曉遠, 曾越. 局部根系水分脅迫下氮素形態(tài)對水稻幼苗生理特性和根系生長的影響[J]. 華北農(nóng)學報, 2019, 34(2): 154-161.
GAO Zhihong, CHEN Xiaoyuan, ZENG Yue. Effects of N forms on physiological characteristics and root growth of rice seedling in condition of partial root water stress[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(2): 154-161.
[2] Wang W Q, Peng S B, Liu H Y, et al. The possibility of replacing puddled transplanted flooded rice with dry seeded rice in central China: a review[J]. Field Crops Research, 2017, (214): 310-320.
[3] 高志紅, 林浴霞, 張宇鵬, 等. 不同水分脅迫和氮素形態(tài)對水稻生長及木質(zhì)部液流離子含量的影響[J]. 華北農(nóng)學報, 2021, 36(2): 146-153.
GAO Zhihong, LIN Yuxia, ZHANG Yupeng, et al. Growth and ion content in rice seedling xylem sap under different water stresses and nitrogen forms[J]. Acta Agriculturae Boreali-Sinica, 2021, 36(2): 146-153.
[4] Jiang H, Song Z, Su Q W, et al. Transcriptomic and metabolomic reveals silicon enhances adaptation of rice under dry cultivation by improving flavonoid biosynthesis, osmoregulation, and photosynthesis[J]. Frontiers in Plant Science, 2022, (13): 967537.
[5] Jiang H, Thobakgale T, Li Y Z, et al. Construction of dominant rice population under dry cultivation by seeding rate and nitrogen rate interaction[J]. Scientific Reports, 2021, 11(1): 7189.
[6] Zhan J H, Lu X, Liu H Y, et al. Mesocotyl elongation, an essential trait for dry-seeded rice (Oryza sativa L.): a review of physiological and genetic basis[J]. Planta, 2019, 251(1): 27.
[7] Jiang W J, Huang W C, Liang H, et al. Is rice field a nitrogen source or sink for the environment[J]. Environmental Pollution, 2021, (283): 117122.
[8] Liu X W, Wang H Y, Zhou J M, et al. Effect of N fertilization pattern on rice yield, N use efficiency and fertilizer-N fate in the Yangtze River Basin, China[J]. PLoS One, 2016, 11(11): e0166002.
[9] Padukkage D, Geekiyanage S, Reparaz J M, et al. Bradyrhizobium japonicum, B. elkanii and B. diazoefficiens interact with rice (Oryza sativa), promote growth and increase yield[J]. Current Microbiology, 2021, 78(1): 417-428.
[10] 湯國平, 熊強強, 鐘蕾, 等. 雙季早稻氮素虧缺補償效應的形成及其生理機制初探[J]. 核農(nóng)學報, 2017, 31(8): 1585-1593.
TANG Guoping, XIONG Qiangqiang, ZHONG Lei, et al. Primary research on the formation and its physiological mechanism of nitrogen deficiency compensatory effects in double-season early rice[J]. Journal of Nuclear Agricultural Sciences, 2017, 31(8): 1585-1593.
[11] Jacoby R, Peukert M, Succurro A, et al. The role of soil microorganisms in plant mineral nutrition-current knowledge and future directions[J]. Frontiers in Plant Science, 2017, (8): 1617.
[12] Liu Q, Wu K, Song W Z, et al. Improving crop nitrogen use efficiency toward sustainable green revolution[J]. Annual Review of Plant Biology, 2022, (73): 523-551.
[13] 李姍, 黃允智, 劉學英, 等. 作物氮肥利用效率遺傳改良研究進展[J]. 遺傳, 2021, 43(7): 629-640.
LI Shan, HUANG Yunzhi, LIU Xueying, et al. Genetic improvement of nitrogen use efficiency in crops[J]. Hereditas(Beijing), 2021, 43(7): 629-640.
[14] Huang L N, Cheng S M, Liu H L, et al. Effects of nitrogen reduction combined with organic fertilizer on growth and nitrogen fate in banana at seedling stage[J]. Environmental Research, 2022, (214): 113826.
[15] Li T L, Wang Z G, Wang C X, et al. Ammonia volatilization mitigation in crop farming: a review of fertilizer amendment technologies and mechanisms[J]. Chemosphere, 2022, (303): 134944.
[16] Sun H J, Zhang H L, Xiao H D, et al. Wheat straw biochar application increases ammonia volatilization from an urban compacted soil giving a short-term reduction in fertilizer nitrogen use efficiency[J]. Journal of Soils and Sediments, 2019, 19(4): 1624-1631.
[17] 宮亮, 金丹丹, 牛世偉, 等. 長期定位氮肥減施對水稻產(chǎn)量和氮素吸收利用的影響[J]. 中國稻米, 2022, 28(3): 42-46.
GONG Liang, JIN Dandan, NIU Shiwei, et al. Effects of long-term position nitrogen fertilizer reduction on rice yield and nitrogen absorption and utilizationn[J]. China Rice, 2022, 28(3): 42-46.
[18] 尹彩俠, 劉志全, 孔麗麗, 等. 減氮增密提高寒地水稻產(chǎn)量與氮素吸收利用[J]. 農(nóng)業(yè)資源與環(huán)境學報, 2022, 39(6): 1124-1132.
YIN Caixia, LIU Zhiquan, KONG Lili, et al. Reducing nitrogen and increasing rice transplanting density in a cold region of China can improve rice yield, nitrogen absorption, and nitrogen utilization[J]. Journal of Agricultural Resources and Environment, 2022, 39(6): 1124-1132.
[19] 張小祥, 邵士梅, 趙步洪, 等. 氮肥減施模式對不同穗型遲熟中粳水稻產(chǎn)量及氮素吸收利用的影響[J]. 中國水稻科學, 2022, 36(3): 278-294.
ZHANG Xiaoxiang, SHAO Shimei, ZHAO Buhong, et al. Effects of nitrogen reduction model on yield and nitrogen absorption and utilization of late-maturing mid-japonica rice with different panicle types[J]. Chinese Journal of Rice Science, 2022, 36(3): 278-294.
[20] 彭曉宗, 翟麗梅, 王洪媛, 等. 遼河三角洲稻區(qū)緩釋肥施用下氮肥減施潛力研究[J]. 中國土壤與肥料, 2022,(5): 51-60.
PENG Xiaozong, ZHAI Limei, WANG Hongyuan, et al. Reduction potential of nitrogen fertilizer under slow-release fertilizer application in Liaohe Delta rice area[J]. Soil and Fertilizer Sciences in China, 2022,(5): 51-60.
[21] 朱勇勇, 宋秉羲, 楊王敏, 等. 旱作條件下氮肥減施對水稻生長、產(chǎn)量與經(jīng)濟收益的影響[J]. 生態(tài)環(huán)境學報, 2021, 30(11): 2150-2156.
ZHU Yongyong, SONG Bingxi, YANG Wangmin, et al. Effects of reduced nitrogen application on rice growth, yield and economy profits under dry farming conditions[J]. Ecology and Environmental Sciences, 2021, 30(11): 2150-2156.
[22] Jin X X, Zuo Q, Ma W W, et al. Water consumption and water-saving characteristics of a ground cover rice production system[J]. Journal of Hydrology, 2016, (540): 220-231.
[23] 何進宇, 劉飛楊, 馬波, 等. 不同旱作節(jié)水灌溉條件對土壤理化性質(zhì)及水稻產(chǎn)量的影響[J]. 干旱地區(qū)農(nóng)業(yè)研究, 2023, 41(1): 121-127.
HE Jinyu, LIU Feiyang, MA Bo, et al. Effects of different irrigation conditions on soilphysicochemical properties and rice yield[J]. Agricultural Research in the Arid Areas, 2023, 41(1): 121-127.
[24] Li Y S, Wu L H, Zhao L M, et al. Influence of continuous plastic film mulching on yield, water use efficiency and soil properties of rice fields under non-flooding condition[J]. Soil and Tillage Research, 2007, 93(2): 370-378.
[25] 柳燕蘭, 馬明生, 張緒成, 等. 施肥對旱作區(qū)新修梯田土壤理化性質(zhì)及馬鈴薯產(chǎn)量的影響[J]. 寒旱農(nóng)業(yè)科學, 2022, 1(11): 115-118.
LIU Yanlan, MA Mingsheng, ZHANG Xucheng, et al. Effects of fertilization on soil physical and chemical properties and potato yield of new terraced farmland in raid-fed region[J]. Journal of Cold-Arid Agricultural Sciences, 2022, 1(11): 115-118.
[26] 孫紅, 孫明明, 呂世翔, 等. 水旱輪作對土壤和水稻的影響[J]. 黑龍江農(nóng)業(yè)科學, 2019,(10): 141-143.
SUN Hong, SUN Mingming, LYU Shixiang, et al. Effects of paddy-upland rotations on soil and rice[J]. Heilongjiang Agricultural Sciences, 2019,(10): 141-143.
[27] 趙龍, 張友良, 王娟, 等. 水稻覆膜旱作對土壤環(huán)境及水稻生長的影響研究進展[J]. 水資源與水工程學報, 2020, 31(5): 255-260.
ZHAO Long, ZHANG Youliang, WANG Juan, et al. Research progress of effects of ground cover rice production system with plastic film mulch on soil environment and rice growth[J]. Journal of Water Resources and Water Engineering, 2020, 31(5): 255-260.
[28] 李艾芬, 麻萬諸, 章明奎. 水稻土的酸化特征及其起因[J]. 江西農(nóng)業(yè)學報, 2014, 26(1): 72-76.
LI Aifen, MA Wanzhu, ZHANG Mingkui. Characteristics and causes of acidification of paddy soil[J]. Acta Agriculturae Jiangxi, 2014, 26(1): 72-76.
[29] 樊紅柱, 曾祥忠, 張冀, 等. 覆蓋旱作水稻的生長及水分利用效率研究[J]. 西南農(nóng)業(yè)學報, 2010, 23(2): 349-353.
FAN Hongzhu, ZENG Xiangzhong, ZHANG Ji, et al. Effects of different mulch modes on rice production and water utilization efficiency[J]. Southwest China Journal of Agricultural Sciences, 2010, 23(2): 349-353.
[30] 趙成全, 姜洪濤, 任朝明, 等. 水稻旱直播高產(chǎn)高效栽培關(guān)鍵技術(shù)的研究[J]. 吉林農(nóng)業(yè)科學, 2007, 32(4): 9-11.
ZHAO Chengquan, JIANG Hongtao, REN Chaoming, et al. Studies on key techniques of sowing rice directly on dry land for high yield and high efficiency[J]. Journal of Jilin Agricultural Sciences, 2007, 32(4): 9-11.
[31] 朱倫. 早稻旱直播栽培試驗初報[J]. 廣西農(nóng)學報, 2008, 23(3): 10-11, 15.
ZHU Lun. A report on dry direct seeding cultivation technique of early rice[J]. Journal of Guangxi Agriculture, 2008, 23(3): 10-11, 15.
[32] 龐喆, 王啟龍. 不同灌溉量對土壤理化性質(zhì)及水稻生長發(fā)育的影響[J]. 灌溉排水學報, 2019, 38(S2): 37-41.
PANG Zhe, WANG Qilong. Effects of different irrigation amounts on soil physical and chemical properties and rice growth and development[J]. Journal of Irrigation and Drainage, 2019, 38(S2): 37-41.
[33] 李金才, 黃義德, 魏鳳珍, 等. 旱作對水稻干物質(zhì)積累、分配及產(chǎn)量的影響[J]. 安徽農(nóng)業(yè)科學, 2001, 29(1): 56-57.
LI Jincai, HUANG Yide, WEI Fengzhen, et al. Effects of dry farming on dry matter accumulation, distribution and yield of rice[J]. Journal of Anhui Agricultural Sciences, 2001, 29(1): 56-57.
[34] 魏永霞, 侯景翔, 吳昱, 等. 不同水分管理旱直播水稻生長生理與節(jié)水效應[J]. 農(nóng)業(yè)機械學報, 2018, 49(8): 253-264.
WEI Yongxia, HOU Jingxiang, WU Yu, et al. Effects of different water management on growth physiology and water-saving of dry direct seeding rice[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(8): 253-264.
[35] 徐令旗, 郭曉紅, 呂艷東, 等. 旱直播對水稻穗部性狀、產(chǎn)量和經(jīng)濟效益的影響[J]. 干旱地區(qū)農(nóng)業(yè)研究, 2021, 39(5): 186-192.
XU Lingqi, GUO Xiaohong, LV Yandong, et al. Effects of dry direct seeding on panicle characters, yield and economic benefits of rice[J]. Agricultural Research in the Arid Areas, 2021, 39(5): 186-192.
[36] 武姣娜, 魏曉東, 李霞, 等. 植物氮素利用效率的研究進展[J]. 植物生理學報, 2018, 54(9): 1401-1408.
WU Jiaona, WEI Xiaodong, LI Xia, et al. Research progress in nitrogen use efficiency in plants[J]. Plant Physiology Journal, 2018, 54(9): 1401-1408.
[37] 程爽, 車陽, 田晉鈺, 等. 水稻緩控釋氮肥應用研究現(xiàn)狀與展望[J]. 揚州大學學報(農(nóng)業(yè)與生命科學版), 2020, 41(2): 1-8.
CHENG Shuang, CHE Yang, TIAN Jinyu, et al. Research advances and prospects of slow-controlled release nitrogen fertilizer in rice[J]. Journal of Yangzhou University (Agricultural and Life Science Edition), 2020, 41(2): 1-8.
[38] 段里成, 呂偉生, 方加海, 等. 施氮量和每穴苗數(shù)對雙季雜交早稻產(chǎn)量及氮肥利用率的影響[J]. 生態(tài)學雜志, 2018, 37(10): 2959-2967.
DUAN Licheng, LV Weisheng, FANG Jiahai, et al. Effects of nitrogen application rate and seedlings per hole on yield and nitrogen use efficiency of double-season early hybrid rice[J]. Chinese Journal of Ecology, 2018, 37(10): 2959-2967.
[39] 郭騰飛, 梁國慶, 周衛(wèi), 等. 施肥對稻田溫室氣體排放及土壤養(yǎng)分的影響[J]. 植物營養(yǎng)與肥料學報, 2016, 22(2): 337-345.
GUO Tengfei, LIANG Guoqing, ZHOU Wei, et al. Effect of fertilizer management on greenhouse gas emission and nutrient status in paddy soil[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(2): 337-345.
[40] 蘭艷, 黃鵬, 江谷馳弘, 等. 施氮量和栽插密度對粳稻D46產(chǎn)量及氮肥利用率的影響[J]. 華南農(nóng)業(yè)大學學報, 2016, 37(1): 20-28.
LAN Yan, HUANG Peng, JIANG Guchihong, et al. Effect of planting density and nitrogen application on yield and nitrogen uptake and utilization of japonica rice cultivar D46[J]. Journal of South China Agricultural University, 2016, 37(1): 20-28.
[41] 董瑜皎, 袁江, 呂世華. 2個氮水平下不同施鋅方式對覆膜水稻產(chǎn)量及鋅吸收的影響[J]. 西南農(nóng)業(yè)學報, 2018, 31(8): 1655-1661.
DONG Yujiao, YUAN Jiang, LU Shihua. Effects of different Zn application methods on yield and Zn uptake of plastic mulching rice under two nitrogen levels[J]. Southwest China Journal of Agricultural Sciences, 2018, 31(8): 1655-1661.
[42] 鄧小強, 范貴國, 王懿. 施氮量對覆膜栽培水稻經(jīng)濟性狀、產(chǎn)量與氮肥利用的影響[J]. 湖北農(nóng)業(yè)科學, 2016, 55(16): 4103-4106.
DENG Xiaoqiang, FAN Guiguo, WANG Yi. Effects of nitrogen application level on economic characters, yield and nitrogen use of rice cultivated with film mulching[J]. Hubei Agricultural Sciences, 2016, 55(16): 4103-4106.
[43] 周江明, 趙琳, 董越勇, 等. 氮肥和栽植密度對水稻產(chǎn)量及氮肥利用率的影響[J]. 植物營養(yǎng)與肥料學報, 2010, 16(2): 274-281.
ZHOU Jiangming, ZHAO Lin, DONG Yueyong, et al. Nitrogen and transplanting density interactions on the rice yield and N use rate[J]. Plant Nutrition and Fertilizer Science, 2010, 16(2): 274-281.
[44] 郝玉波, 李梁, 于洋, 等. 增施秸稈有機肥及減施化肥對玉米產(chǎn)量形成和肥料偏生產(chǎn)力的影響[J]. 黑龍江農(nóng)業(yè)科學, 2021,(7): 15-18.
HAO Yubo, LI Liang, YU Yang, et al. Effects of increasing straw organic fertilizer and decreasing chemical fertilizer on maize yield formation and feitilizer partial factor productivity in black soil area[J]. Heilongjiang Agricultural Sciences, 2021,(7): 15-18.
[45] 陳曉萍, 曹雪仙, 陳文偉, 等. 氮肥減施對水稻產(chǎn)量、氮吸收和利用的影響[J]. 浙江農(nóng)業(yè)科學, 2021, 62(12): 2367-2370.
CHEN Xiaoping, CAO Xue-Xian, CHEN Wen-Wei, et al. Effect of nitrogen fertilizer reduction on rice yield and nitrogen uptake and utilization[J]. Journal of Zhejiang Agricultural Sciences, 2021, 62(12): 2367-2370.
[46] 魯偉林, 段仁周, 余新春, 等. 氮肥施用量對雜交粳稻氮素吸收和利用的影響[J]. 中國農(nóng)學通報, 2016, 32(30): 1-6.
LU Weilin, DUAN Renzhou, YU Xinchun, et al. Effects of nitrogen fertilizer on nitrogen absorption and utilization of japonica hybrid rice[J]. Chinese Agricultural Science Bulletin, 2016, 32(30): 1-6.
[47] 王道中, 張成軍, 郭熙盛. 減量施肥對水稻生長及氮素利用率的影響[J]. 土壤通報, 2012, 43(1): 161-165.
WANG Daozhong, ZHANG Chengjun, GUO Xisheng. Effects of lower fertilizer on rice growth and nitrogen use efficiency[J]. Chinese Journal of Soil Science, 2012, 43(1): 161-165.
[48] 王瑜, 趙慶雷, 信彩云, 等. 氮肥減施對麥茬機插水稻產(chǎn)量及氮肥利用的影響[J]. 農(nóng)業(yè)與技術(shù), 2023, 43(1): 6-8.
WANG Yu, ZHAO Qinglei, XIN Caiyun, et al. Effect of nitrogen fertilizer reduction on rice yield and nitrogen utilization by mechanical transplanting after wheat stubble[J]. Agriculture and Technology, 2023, 43(1): 6-8.
Effects of nitrogen fertilizer reduction on rice yield and nitrogen partial
factor productivity under dry farming conditions
ZHAO Minhua1,2, SONG Bingxi1," ZHANG Yupeng1, GAO Zhihong1,
ZHU Yongyong1, CHEN Xiaoyuan1
(1.College of Biology and Agriculture, Shaoguan University/Engineering Research Center for Efficient Utilization of Water and Soil Resources in Northern Guangdong, Shaoguan Guangdong 512005, China; 2. College of Life and Geographical Sciences, Kashi University/Key Laboratory of Biological Resources and Ecology of Xinjiang Pamir Plateau, Kashi University, Kashgar Xinjiang 844000, China)
Abstract:【Objective】 To explore the effects of reducing nitrogen application on nutrient content and nitrogen partial factor productivity of rice under dry farming conditions.
【Methods】 A field experiment was conducted with Meixiangnian as the material. Five treatments were set up: conventional flooding nitrogen application (216 kg/hm2, CK), dry farming nitrogen application (216 kg/hm2, H0), dry farming nitrogen reduction 10 % (194.4 kg/hm2, H10), dry farming nitrogen reduction 20 % (172.8 kg/hm2, H20), dry farming nitrogen reduction 40 % (129.6 kg/hm2, H40). The effects of different water conditions and nitrogen fertilizer reduction on soil basic nutrients, rice biomass, nitrogen content, yield and partial factor productivity of nitrogen fertilizer in paddy field were studied.
【Results】 The results showed that compared with the traditional flooding cultivation, rice dry farming significantly increased soil organic matter content, significantly reduced soil pH value and available phosphorus content, and other nutrient contents did not change significantly. Dry farming reduced the biomass of rice roots, stems, leaves, panicles, total nitrogen content and partial factor productivity of nitrogen fertilizer. There was no significant change in the number of plants per unit area, 1000-grain weight and yield of rice under dry farming. Under the condition of reducing nitrogen fertilizer in dry farming, the change of soil nutrient status was different, and the change was slighter than that of dry farming and traditional flooding cultivation. The biomass and nitrogen content of roots, stems, leaves and panicles of rice decreased with the increase of nitrogen fertilizer reduction, and the biomass and nitrogen content of panicles increased significantly under H40 treatment compared with H0 treatment. The partial factor productivity of nitrogen fertilizer increased with the increase of nitrogen fertilizer reduction, and reached the highest at H40. Compared with H0, the yield of H10 and H20 did not decrease significantly, and the decrease of H40 was greater than those of H10 and H20, but the yield was not significantly different from that of H0.
【Conclusion】 Reducing nitrogen fertilizer by 40 % under dry farming conditions can significantly increase fertilizer productivity while reducing yield.
Key words:rice; dryland; nitrogen reduction; nitrogen use efficiency; yield
Fund projects:Natural Science Foundation of Guangdong Province (2023A1515011736); Innovation Training Project for College Students of Shaoguan University" (202110576016);Science and Technology Program Project of Shaoguan City (220606154533827);Key Scientific Research Platform Project in General Universities of Department of Education of Guangdong Province (2020KCXTD037)
Correspondence author:CHEN Xiaoyuan(1968-), male, from Shaoguan Guangdong,professor,Ph.D.,master/doctoral supervison,research direction:Crop water and nutrients are highly effcient, (E-mail)chenxy2@163.com