摘要:肝細(xì)胞癌是肝臟最常見的惡性腫瘤,給中國乃至全球帶來了嚴(yán)重的衛(wèi)生負(fù)擔(dān)。然而,大部分肝細(xì)胞癌患者就診時已處于晚期階段,手術(shù)機會較少,治療選擇有限。近年來,分子靶向治療的進展為晚期肝細(xì)胞癌患者提供了新的希望。其中,侖伐替尼是美國食品藥品監(jiān)督管理局繼索拉非尼之后批準(zhǔn)的第二個用于晚期肝細(xì)胞癌治療的一線藥物,因其強大的抗腫瘤特性獲得廣泛關(guān)注。然而,侖伐替尼的療效受到其耐藥性的嚴(yán)重限制。本文主要針對侖伐替尼在肝細(xì)胞癌中耐藥的分子機制研究進展進行綜述,討論可能改善侖伐替尼耐藥的方法,以期能提高其療效。
關(guān)鍵詞:癌,肝細(xì)胞;侖伐替尼;抗藥性,腫瘤
肝細(xì)胞癌(hepatocellular carcinoma,HCC)是肝臟最常見的原發(fā)性惡性腫瘤,占肝癌病例的75%~85%,是全球第六大常見的惡性腫瘤,也是癌癥相關(guān)死亡的第三大原因。每年約90萬新發(fā)病例及83萬死亡病例[1]。HCC早期癥狀不明顯,導(dǎo)致大部分患者在確診時已處于中晚期,無根治性手術(shù)適應(yīng)證,治療選擇有限。近年來,分子靶向治療和免疫治療為晚期HCC患者帶來了新的治療前景。2018年,侖伐替尼(Lenvatinib)成為繼索拉非尼之后第二個被美國食品藥品監(jiān)督管理局批準(zhǔn)用于治療晚期HCC的一線藥物[2]。REFLECT研究[3]結(jié)果顯示,侖伐替尼組在總體生存期上與索拉非尼組相比表現(xiàn)出非劣效性(13.6個月vs 12.3個月),以及在客觀應(yīng)答率(24.1% vs 9.2%)和疾病無進展期(7.4個月vs 3.7個月)上有顯著改善。侖伐替尼的應(yīng)用改變了索拉非尼作為肝癌唯一一線多靶點酪氨酸激酶受體抑制劑治療方法的地位,但其療效受到嚴(yán)重的耐藥性限制。
侖伐替尼是一種口服的選擇性多靶點酪氨酸激酶受體抑制劑,通過抑制血管內(nèi)皮生長因子受體(vascular endothelial growth factor receptor,VEGFR)1/2/3與成纖維細(xì)胞生長因子受體(fibroblast growth factor receptor,F(xiàn)GFR)1/2/3/4,以及干預(yù)VEGF和FGF信號通路抑制腫瘤生長[4]。此外,侖伐替尼對高FGFR表達(dá)的HCC細(xì)胞具有直接的抗增殖作用[5]。同時還參與抑制血小板衍生生長因子受體α以及原癌基因KIT和RET等。盡管如此,其抗腫瘤效果受到耐藥性的限制。本文旨在總結(jié)和闡明侖伐替尼耐藥相關(guān)基因和通路,深化臨床工作者對其耐藥機制的理解,為改善侖伐替尼耐藥性提供潛在靶點。
1"""" 表皮生長因子受體(epidermal growth factor receptor,EGFR)
EGFR是受體酪氨酸激酶中ERBB家族中的一員,是一種跨膜糖蛋白受體。其細(xì)胞外結(jié)構(gòu)域與相應(yīng)配體如EGF和轉(zhuǎn)化生長因子α(TGF-α)結(jié)合后會誘導(dǎo)同源或異源二聚體形成,引起胞內(nèi)域酪氨酸激酶活化和多個下游通路激活,參與細(xì)胞增殖、生存和分化等過程。EGFR的過度表達(dá)和異常激活與HCC的進展轉(zhuǎn)移、不良預(yù)后和耐藥性相關(guān)。Jin等[6]研究發(fā)現(xiàn),侖伐替尼對酪氨酸激酶受體(如FGFR)的抑制反饋激活了EGFR/PAK2/ERK1/2和EGFR/PAK2/ERK5通路,導(dǎo)致MAPK信號通路不能被完全沉默,因此限制了藥物療效,形成了原發(fā)性耐藥。侖伐替尼與EGFR抑制劑吉非替尼(Gefitinib)聯(lián)合使用在表達(dá)EGFR的肝癌細(xì)胞系以及在相應(yīng)小鼠模型中顯示出有效的抗腫瘤增殖作用。與上述研究一致的是,He等[7]研究發(fā)現(xiàn)EGFR抑制劑厄洛替尼(Erlotinib)能下調(diào)侖伐替尼耐藥肝癌細(xì)胞中異常激活的ERK信號。當(dāng)與侖伐替尼聯(lián)合使用時,厄洛替尼恢復(fù)了耐藥HCC細(xì)胞系對侖伐替尼的敏感性,提高了療效。另一項研究[8]表明,甲基轉(zhuǎn)移酶樣蛋白3介導(dǎo)的m6A修飾通過刺激HCC細(xì)胞中EGFR mRNA翻譯效率誘導(dǎo)侖伐替尼耐藥。Huang等[9]研究表明甲基轉(zhuǎn)移酶樣蛋白1介導(dǎo)的tRNA m7G修飾通過促進EGFR通路基因的翻譯效率誘導(dǎo)肝癌細(xì)胞對侖伐替尼耐藥。EGFR通路的異常激活是侖伐替尼耐藥一個重要機制。
2"""" VEGFR
VEGFR是VEGF的受體,主要在血管內(nèi)皮細(xì)胞中表達(dá),促進腫瘤內(nèi)大量新血管生成并調(diào)節(jié)血管的通透性,最終促進HCC細(xì)胞的生長、遷移和侵襲。Zhao等[10]建立了耐侖伐替尼的HCC細(xì)胞系,發(fā)現(xiàn)VEGFR2的表達(dá)及其下游RAS/MEK/ERK信號通路在耐侖伐替尼的HCC細(xì)胞中明顯上調(diào)。轉(zhuǎn)錄因子E26轉(zhuǎn)化特異性序列1的激活促進VEGFR2表達(dá)的增強,從而介導(dǎo)對侖伐替尼的耐藥性。上調(diào)的VEGFR2表達(dá)可能是侖伐替尼治療HCC耐藥的預(yù)測指標(biāo)。
3"""" FGFR
FGF與FGFR的結(jié)合誘導(dǎo)細(xì)胞增殖、遷移、分化和存活。當(dāng)FGF/FGFR信號異常時,可誘發(fā)多種癌癥,包括HCC。FGFR是侖伐替尼的典型靶點。侖伐替尼的長期治療可引起FGFR激酶結(jié)構(gòu)域的點突變,導(dǎo)致構(gòu)象改變,阻礙藥物在特定模型中的充分結(jié)合。體外研究[11]表明,F(xiàn)GFR的把關(guān)突變(gatekeeper mutation)是靶向治療獲得性或內(nèi)在耐藥性的常見機制。Zhao等[12]的研究表明高表達(dá)的FGFR1誘導(dǎo)AKT/mTOR和ERK信號激活從而導(dǎo)致HCC中的侖伐替尼耐藥性。侖伐替尼長期治療后FGFR1的突變不僅影響侖伐替尼的正常靶向結(jié)合降低其療效,還能激活相關(guān)信號通路加強對侖伐替尼的耐藥性。
4"""" 多藥耐藥蛋白1(multi-drug resistance protein 1,MDR1)和乳腺癌耐藥蛋白(breast cancer resistance protein,BCRP)
MDR1和BCRP轉(zhuǎn)運體均是重要的ABC轉(zhuǎn)運蛋白,在各種人類癌癥中通過促進藥物外排來介導(dǎo)抗腫瘤藥物的多重耐藥性[13]。有研究[14-15]表明,侖伐替尼是MDR1的底物,使用利福平或酮康唑抑制MDR1可增加健康成人的侖伐替尼血漿濃度。Sun等[16]的研究發(fā)現(xiàn)聯(lián)合使用MDR1和BCRP轉(zhuǎn)運蛋白抑制劑依克立達(dá)(Elacridar)和侖伐替尼在體內(nèi)外表現(xiàn)出顯著的協(xié)同抗腫瘤作用,同時減少集落形成并下調(diào)CD133、EpCAM、SOX- 9和c-Myc表達(dá)抑制腫瘤干細(xì)胞(cancer stem-like cells,CSC)的特性。通過抑制MDR1和BCRP轉(zhuǎn)運體來抑制侖伐替尼外排可能是克服侖伐替尼耐藥并發(fā)揮協(xié)同抗腫瘤作用的潛在機制。
5"""" 自噬
自噬是細(xì)胞在應(yīng)激或損傷等條件下利用溶酶體降解細(xì)胞器、蛋白質(zhì)和大分子的過程,對維持應(yīng)激條件下的細(xì)胞穩(wěn)態(tài)至關(guān)重要。在癌癥中,自噬發(fā)揮著雙重作用,一方面抑制腫瘤的發(fā)生,另一方面支持腫瘤的進展[17]。自噬被認(rèn)為是腫瘤細(xì)胞在營養(yǎng)剝奪下生存的一種適應(yīng)機制,已被證明在誘導(dǎo)多種腫瘤的耐藥性方面發(fā)揮著至關(guān)重要的作用[18-19]。Pan等[20]研究發(fā)現(xiàn)溶酶體跨膜蛋白5(lysosomal associated transmembrane protein 5,LAPTM5)可以通過促進自噬體-溶酶體融合來顯著提高自噬通量,從而降低HCC對侖伐替尼的敏感性。通過羥氯喹或沉默LAPTM5表達(dá)抑制自噬溶酶體形成,與侖伐替尼協(xié)同作用抑制腫瘤生長。Zhang等[21]研究結(jié)果表明,長鏈非編碼RNA LINC01607通過競爭性結(jié)合miR-892b上調(diào)p62觸發(fā)線粒體自噬,降低ROS水平,促進侖伐替尼耐藥。然而,F(xiàn)ernandez-Palanca等[22]研究表明在體外通過阻斷自噬,肝癌細(xì)胞增殖和遷移能力得到恢復(fù),導(dǎo)致侖伐替尼的抗腫瘤作用降低。綜合以上研究結(jié)果,自噬在侖伐替尼對于HCC的療效中起著雙重作用??赡苁怯捎谑荏w位置不同產(chǎn)生的影響不同,也可能是由于不同的通路使得自噬被促進或抑制,自噬對于侖伐替尼療效影響的具體機制仍有待進一步的研究和探討。
6"""" Wnt/β-catenin信號通路
Wnt/β-catenin信號通路的異常激活在多個類型腫瘤中被發(fā)現(xiàn)有促進癌細(xì)胞生長、誘導(dǎo)上皮-間質(zhì)轉(zhuǎn)化(epithelial-to-mesenchymal transition,EMT)、賦予干細(xì)胞樣特征和產(chǎn)生治療耐藥性的作用[23]。Wnt/β-catenin 通路在HCC中經(jīng)常被激活,導(dǎo)致腫瘤轉(zhuǎn)移、耐藥和惡性進展[24]。Guo等[25]研究發(fā)現(xiàn)干擾素調(diào)節(jié)因子2(interferon regulatory factor 2,IRF2)的高表達(dá)上調(diào)β-catenin的表達(dá)促進了肝癌細(xì)胞的增殖,抑制了細(xì)胞的凋亡,并增加了對侖伐替尼的耐藥性。Wang等[26]研究發(fā)現(xiàn)卷曲受體10(frizzled class receptor 10,F(xiàn)ZD10)通過β-catenin/c-Jun/MEK/ERK軸抑制了肝癌細(xì)胞對侖伐替尼治療的反應(yīng)性。用靶向FZD10的腺相關(guān)病毒治療耐侖伐替尼HCC可恢復(fù)侖伐替尼的抗腫瘤作用。近期,一項研究[27]表明細(xì)胞周期蛋白依賴性激酶6(cyclin-dependent kinase 6,CDK6)直接結(jié)合并磷酸化糖原合成酶激酶3β(glycogen synthase kinase-3β,GSK3B),激活Wnt/β-catenin信號通路,從而導(dǎo)致侖伐替尼耐藥,聯(lián)合應(yīng)用侖伐替尼和CDK6抑制劑帕博西尼(Palbociclib)可恢復(fù)HCC對侖伐替尼的敏感性。提示W(wǎng)nt/β-catenin在肝癌侖伐替尼耐藥中發(fā)揮重要作用。
7"""" Notch信號通路
Notch信號通路廣泛參與了多種惡性腫瘤的發(fā)生發(fā)展,參與調(diào)控CSC,與CSC的自我更新能力密切相關(guān)[28-29]。近來,一項研究[30]表明m6A閱讀蛋白YTH N6甲基腺苷RNA結(jié)合蛋白1(YTH N6-methyladenosine RNA binding protein 1,YTHDF1)在高干性HCC中表達(dá)上調(diào),YTHDF1與m6A修飾的Notch1 mRNA結(jié)合,增強了其穩(wěn)定性和翻譯,從而增加了Notch1基因的表達(dá)。通過YTHDF1/m6A/Notch1 mRNA表觀遺傳學(xué)軸促進腫瘤干性和侖伐替尼的耐藥性。靶向YTHDF1/m6A/Notch1可以恢復(fù)對侖伐替尼的敏感性。Feng等[31]建立了侖伐替尼耐藥類器官模型,發(fā)現(xiàn)Notch通路調(diào)控類器官對侖伐替尼的耐藥,聯(lián)合應(yīng)用Notch通路抑制劑DAPT可恢復(fù)侖伐替尼耐藥類器官對侖伐替尼的敏感性。另一項研究[32]結(jié)果顯示四次跨膜蛋白1(transmembrane 4 L six family member 1,TM4SF1)通過上調(diào)肌球蛋白重鏈9(myosin heavy chain 9,MYH9)激活Notch信號通路,最終促進HCC腫瘤干性,并增強HCC細(xì)胞對侖伐替尼的耐藥性。以上研究均提示Notch信號通路在侖伐替尼耐藥中的關(guān)鍵作用。靶向Notch信號通路減少CSC數(shù)量和干性是一項有前景的治療策略。
8"""" MAPK/ERK信號通路
MAPK/ERK是一種重要的信號傳導(dǎo)通路,參與多種細(xì)胞生理過程的調(diào)控,包括細(xì)胞增殖、生存、分化和遷移等。這一信號通路在HCC中常常被異常激活,導(dǎo)致細(xì)胞增殖、生存和轉(zhuǎn)移能力提高,從而促進HCC的進展和惡化[33]。最近的研究發(fā)現(xiàn),MAPK/ERK信號通路在HCC侖伐替尼治療耐藥的過程中發(fā)揮一定作用。Huang等[34]在體內(nèi)外侖伐替尼耐藥HCC細(xì)胞中觀察到雙特異性磷酸酶4(dual specificity phosphatase 4,DUSP 4)缺陷,導(dǎo)致細(xì)胞存活、遷移和細(xì)胞凋亡的減少。DUSP4是雙特異性磷酸酶亞家族的成員,參與相應(yīng)靶激酶的失活,包括MAPK級聯(lián)[35]。進一步的研究發(fā)現(xiàn),DUSP4敲除在體內(nèi)外侖伐替尼治療期間通過激活MAPK/ERK信號傳導(dǎo)增強了HCC細(xì)胞存活、增殖和遷移能力。使用MEK抑制劑司美替尼(Selumetinib)可以逆轉(zhuǎn)DUSP4缺失相關(guān)的侖伐替尼耐藥。另外,Lu等[36]研究發(fā)現(xiàn)神經(jīng)纖維瘤蛋白(neurofibromin 1,NF1)缺失重新激活PI3K/AKT和MAPK/ERK信號通路,DUSP9缺失激活MAPK/ERK信號通路,從而誘導(dǎo)侖伐替尼耐藥。應(yīng)用MEK抑制劑曲美替尼(Trametinib)能增加HCC對侖伐替尼治療敏感性。總之,MAPK/ERK通路的異常激活在HCC的發(fā)生、進展和治療抵抗等方面起著重要的作用。使用MEK抑制劑能逆轉(zhuǎn)侖伐替尼耐藥,二者聯(lián)合使用具有更佳的治療潛力。
9"""" 細(xì)胞間質(zhì)上皮轉(zhuǎn)換因子(cellular-mesenchymal epithelial transition factor,c-Met)
c-Met為受體酪氨酸激酶家族成員。其在腫瘤組織或外周血中的異常表達(dá)可以作為預(yù)后生物標(biāo)志物以及藥物反應(yīng)的預(yù)測生物標(biāo)志物[37]。Fu等[38]研究發(fā)現(xiàn)HGF/c-MET軸通過激活下游PI3K/AKT和MAPK/ERK通路并促進具有高c-MET表達(dá)的HCC細(xì)胞的EMT來誘導(dǎo)侖伐替尼耐藥。侖伐替尼和c-MET抑制劑PHA-665752的聯(lián)合治療逆轉(zhuǎn)了HGF/c-MET誘導(dǎo)的耐藥性,從而提高了c-MET高表達(dá)的HCC細(xì)胞的侖伐替尼的抗腫瘤作用。Xu等[39]研究也發(fā)現(xiàn)c-Met的過表達(dá)和激活有助于HCC細(xì)胞對侖伐替尼產(chǎn)生耐藥性,并且進一步發(fā)現(xiàn)負(fù)向調(diào)節(jié)c-Met表達(dá)的上游microRNA——miR-128-3p。miR-128-3p/c-Met軸通過調(diào)節(jié)耐侖伐替尼HCC細(xì)胞的增殖和凋亡相關(guān)信號通路參與侖伐替尼耐藥。c-Met 不僅在肝癌進展中,而且在侖伐替尼耐藥中也發(fā)揮作用。
10"" 鐵死亡
鐵死亡是一種鐵依賴性的細(xì)胞程序性死亡形式,已被證明在多種疾病中發(fā)揮重要作用,包括癌癥、神經(jīng)退行性變和缺血性器官損傷。越來越多的證據(jù)還表明其在腫瘤抑制和免疫方面的潛在生理功能[40]。這個過程的特點是脂質(zhì)ROS的鐵依賴性積累。一項研究[41]表明,侖伐替尼通過抑制FGFR4從而抑制胱氨酸/谷氨酸逆向轉(zhuǎn)運蛋白和谷胱甘肽過氧化物酶4表達(dá),誘導(dǎo)脂質(zhì)ROS積累,并引起鐵死亡。核因子E2相關(guān)因子2(nuclear factor erythroid derived 2-like 2,Nrf2)過表達(dá)的HCC細(xì)胞表現(xiàn)出低脂質(zhì)ROS水平,抑制侖伐替尼引起的鐵死亡,產(chǎn)生對侖伐替尼的耐藥性。在使用侖伐替尼治療期間,抑制鐵死亡的發(fā)生可能會導(dǎo)致治療效果的降低,因而可能增加腫瘤細(xì)胞對侖伐替尼的耐藥性。這為闡明侖伐替尼在HCC中耐藥機制提供了新的思路。
11"" 非編碼RNA(non-coding RNA,ncRNA)
ncRNA是指由基因組轉(zhuǎn)錄而成的不編碼蛋白質(zhì)的RNA分子。近年來,因ncRNA參與了胚胎發(fā)育、細(xì)胞增殖、分化、凋亡、感染以及免疫應(yīng)答等幾乎所有生理或病理過程的調(diào)控而受到廣泛關(guān)注。Duan等[42]通過RNA測序發(fā)現(xiàn)lncRNA XIST在侖伐替尼不敏感的HCC細(xì)胞中上調(diào)。且lncXIST在HCC細(xì)胞中通過激活EZH2/NOD2/ERK軸促進侖伐替尼耐藥,靶向lncXIST/EZH2/NOD2/ERK軸可能是增強侖伐替尼對HCC細(xì)胞療效的一種有前途的策略。另一項研究[43]表明,lncRNA AC026401.3與有機陽離子轉(zhuǎn)運蛋白1(organic cation transporter 1,OCT1)相互作用,促進OCT1在E2F轉(zhuǎn)錄因子2啟動子區(qū)域的募集,通過激活E2F轉(zhuǎn)錄因子2 的轉(zhuǎn)錄,增強肝癌對侖伐替尼的耐藥性。Yu等[44]研究發(fā)現(xiàn)lncRNA MT1JP通過調(diào)節(jié)miR-24-3p/BCL2L2軸來抑制細(xì)胞凋亡,從而參與肝癌侖伐替尼耐藥的發(fā)生。Zhang等[45]研究表明circRNA circMED27能夠作為ceRNA海綿吸附miR-655-3p上調(diào)泛素特異性肽酶28(ubiquitin specific peptidase 28,USP28)的表達(dá),從而增強HCC細(xì)胞對侖伐替尼的耐藥。近年來,RNA表觀遺傳學(xué)修飾在腫瘤的發(fā)生和發(fā)展中扮演著關(guān)鍵的調(diào)控角色,成為研究的熱點。以上研究結(jié)果均突顯了ncRNA在肝癌中侖伐替尼耐藥機制中的重要性,可能成為克服此耐藥性的重要靶點。
12"" 結(jié)語
侖伐替尼對于晚期肝癌效果顯著,但在靶向治療過程中,耐藥性往往是不可避免的。其耐藥機制涉及的分子、信號通路多種多樣(表1,圖1)。但大多只從體外實驗或體內(nèi)小鼠實驗進行耐藥機制的闡述,其結(jié)果是否適用于真實患者有待考證。隨著類器官、液體活檢等新技術(shù)的應(yīng)用,有望在克服腫瘤異質(zhì)性的同時準(zhǔn)確識別侖伐替尼敏感性的生物標(biāo)志物,同時對腫瘤進行動態(tài)監(jiān)測,為患者提供個體化、精準(zhǔn)化治療。
參考文獻(xiàn):
[1] SUNG H,F(xiàn)ERLAY J,SIEGEL RL,et al. Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin,2021,71(3):209-249. DOI: 10.3322/caac.21660.
[2] REHMAN O,JAFERI U,PADDA I,et al. Overview of lenvatinib as a targeted therapy for advanced hepatocellular carcinoma[J]. Clin Exp Hepatol,2021,7(3):249-257. DOI: 10.5114/ceh.2021.109312.
[3] KUDO M,F(xiàn)INN RS,QIN SK,et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carci-noma:A randomised phase 3 non-inferiority trial[J]. Lancet,2018,391(10126):1163-1173. DOI: 10.1016/S0140-6736(18)30207-1.
[4] MATSUKI M,HOSHI T,YAMAMOTO Y,et al. Lenvatinib inhibits an-giogenesis and tumor fibroblast growth factor signaling pathways in human hepatocellular carcinoma models[J]. Cancer Med,2018,7 (6):2641-2653. DOI: 10.1002/cam4.1517.
[5] OGASAWARA S,MIHARA Y,KONDO R,et al. Antiproliferative effect of lenvatinib on human liver cancer cell lines in vitro and in vivo[J]. Anti-cancer Res,2019,39(11):5973-5982. DOI: 10.21873/anticanres.13802.
[6] JIN HJ,SHI YP,LV YY,et al. EGFR activation limits the response of liver cancer to lenvatinib[J]. Nature,2021,595(7869):730-734. DOI:10.1038/s41586-021-03741-7.
[7] HE XP,HIKIBA Y,SUZUKI Y,et al. EGFR inhibition reverses resis-tance to lenvatinib in hepatocellular carcinoma cells[J]. Sci Rep,2022,12(1):8007. DOI: 10.1038/s41598-022-12076-w.
[8] WANG LN,YANG QX,ZHOU QY,et al. METTL3-m6A-EGFR-axis drives lenvatinib resistance in hepatocellular carcinoma[J]. Cancer Lett,2023,559:216122. DOI: 10.1016/j.canlet.2023.216122.
[9] HUANG ML,LONG JT,YAO ZJ,et al. METTL1-mediated m7G tRNA modification promotes lenvatinib resistance in hepatocellular carci- noma[J]. Cancer Res,2023,83(1):89-102. DOI:10.1158/0008-5472. CAN-22-0963.
[10] ZHAO ZW,ZHANG DK,WU FZ,et al. Sophoridine suppresses len- vatinib-resistant hepatocellular carcinoma growth by inhibiting RAS/ MEK/ERK axis via decreasing VEGFR2 expression[J]. J Cell Mol Med,2021,25(1):549-560. DOI: 10.1111/jcmm.16108.
[11] BYRON SA,CHEN HB,WORTMANN A,et al. The N550K/H muta-tions in FGFR2 confer differential resistance to PD173074,dovitinib,and ponatinib ATP-competitive inhibitors[J]. Neoplasia,2013,15(8):975-988. DOI: 10.1593/neo.121106.
[12] ZHAO ZW,SONG JJ,ZHANG DK,et al. Oxysophocarpine sup-presses FGFR1-overexpressed hepatocellular carcinoma growth and sensitizes the therapeutic effect of lenvatinib [J]. Life Sci,2021,264:118642. DOI: 10.1016/j.lfs.2020.118642.
[13] WANG JQ,WU ZX,YANG YQ,et al. ATP-binding cassette (ABC)transporters in cancer:A review of recent updates[J]. J Evid Based Med,2021,14(3):232-256. DOI: 10.1111/jebm.12434.
[14] SHUMAKER RC,ALURI J,F(xiàn)AN J,et al. Effect of rifampicin on the pharmacokinetics of lenvatinib in healthy adults[J]. Clin Drug Inves- tig,2014,34(9):651-659. DOI: 10.1007/s40261-014-0217-y.
[15] SHUMAKER R,ALURI J,F(xiàn)AN J,et al. Effects of ketoconazole on the pharmacokinetics of lenvatinib (E7080)in healthy participants[J]. Clin Pharmacol Drug Dev,2015,4(2):155-160. DOI: 10.1002/cpdd.140.
[16] SUN DW,LIU J,WANG YF,et al. Co-administration of MDR1 and BCRP or EGFR/PI3K inhibitors overcomes lenvatinib resistance in hepatocellular carcinoma[J]. Front Oncol,2022,12:944537. DOI:10.3389/fonc.2022.944537.
[17] ONORATI AV,DYCZYNSKI M,OJHA R,et al. Targeting autophagy in cancer[J]. Cancer,2018,124(16):3307-3318. DOI: 10.1002/ cncr.31335.
[18] HU FQ,SONG D,YAN YM,et al. IL-6 regulates autophagy and chemo-therapy resistance by promoting BECN1 phosphorylation[J]. Nat Com- mun,2021,12(1):3651. DOI: 10.1038/s41467-021-23923-1.
[19] XU WP,LIU JP,F(xiàn)ENG JF,et al. MiR-541 potentiates the response of human hepatocellular carcinoma to sorafenib treatment by inhibiting autophagy[J]. Gut,2020,69(7):1309-1321. DOI:10.1136/gutjnl-2019- 318830.
[20] PAN JM,ZHANG M,DONG LQ,et al. Genome-Scale CRISPR screen identifies LAPTM5 driving lenvatinib resistance in hepatocel-lular carcinoma[J]. Autophagy,2023,19(4):1184-1198. DOI: 10.1080/ 15548627.2022.2117893.
[21] ZHANG YX,ZHANG YJ,TAO HS,et al. Targeting LINC01607 sensi-tizes hepatocellular carcinoma to lenvatinib via suppressing mi- tophagy[J]. Cancer Lett,2023,576:216405. DOI: 10.1016/j. can- let.2023.216405.
[22] FERNANDEZ-PALANCA P,PAYO-SERAFIN T,SAN-MIGUEL B,et al. Hepatocellular carcinoma cells loss lenvatinib efficacy in vitro through autophagy and hypoxia response-derived neuropilin-1 deg- radation[J]. Acta Pharmacol Sin,2023,44(5):1066-1082. DOI:10. 1038/s41401-022-01021-2.
[23] WANG BJ,TIAN T,KALLAND KH,et al. Targeting Wnt/β-catenin sig-naling for cancer immunotherapy[J]. Trends Pharmacol Sci,2018,39(7):648-658. DOI: 10.1016/j.tips.2018.03.008.
[24] RUSSELL JO,MONGA SP. Wnt/β-catenin signaling in liver develop-ment,homeostasis,and pathobiology[J]. Annu Rev Pathol,2018,13:351-378. DOI: 10.1146/annurev-pathol-020117-044010.
[25] GUO YR,XU J,DU Q,et al. IRF2 regulates cellular survival and Len- vatinib-sensitivity of hepatocellular carcinoma (HCC)through regu-lating β-catenin[J]. Transl Oncol,2021,14(6):101059. DOI:10. 1016/j.tranon.2021.101059.
[26] WANG JH,YU HM,DONG W,et al. N6-methyladenosine-mediated up-regulation of FZD10 regulates liver cancer stem cells’properties and lenvatinib resistance through WNT/B -catenin and hippo signal-ing pathways[J]. Gastroenterology,2023,164(6):990-1005. DOI:10. 1053/j.gastro.2023.01.041.
[27] LEUNG CON,YANG Y,LEUNG RWH,et al. Broad-spectrum kinome profiling identifies CDK6 upregulation as a driver of lenvatinib resis-tance in hepatocellular carcinoma[J]. Nat Commun,2023,14(1):6699. DOI: 10.1038/s41467-023-42360-w.
[28] VENKATESH V,NATARAJ R,THANGARAJ GS,et al. Targeting Notch signalling pathway of cancer stem cells[J]. Stem Cell Inves- tig,2018,5:5. DOI: 10.21037/sci.2018.02.02.
[29] TAKEBE N,MIELE L,HARRIS PJ,et al. Targeting Notch,Hedgehog,and Wnt pathways in cancer stem cells:Clinical update[J]. Nat Rev Clin Oncol,2015,12(8):445-464. DOI: 10.1038/nrclinonc.2015.61.
[30] ZHANG XY,SU TH,WU YF,et al. N6-methyladenosine reader YTHDF1 promotes stemness and therapeutic resistance in hepato-cellular carcinoma by enhancing NOTCH1 expression[J]. Cancer Res,2024,84(6):827-840. DOI: 10.1158/0008-5472.CAN-23-1916.
[31] FENG WQ,ZHANG HX,YU Q,et al. Study on the mechanism of Notch pathway mediates the role of lenvatinib-resistant hepatocellu-lar carcinoma based on organoids[J]. Curr Mol Med,2024. DOI:10. 2174/0115665240268201231213095302. [Online ahead of print]
[32] YANG SB,ZHOU ZH,LEI J,et al. TM4SF1 upregulates MYH9 to acti-vate the NOTCH pathway to promote cancer stemness and lenva- tinib resistance in HCC[J]. Biol Direct,2023,18(1):18. DOI: 10.1186/ s13062-023-00376-8.
[33] MOON H,RO SW. MAPK/ERK signaling pathway in hepatocellular carcinoma[J]. Cancers,2021,13(12):3026. DOI: 10.3390/can- cers13123026.
[34] HUANG SZ,MA ZY,ZHOU Q,et al. Genome-wide CRISPR/Cas9 li-brary screening identified that DUSP4 deficiency induces lenvatinib resistance in hepatocellular carcinoma[J]. Int J Biol Sci,2022,18 (11):4357-4371. DOI: 10.7150/ijbs.69969.
[35] CHEN HF,CHUANG HC,TAN TH. Regulation of dual-specificity phosphatase (DUSP)ubiquitination and protein stability[J]. Int J Mol Sci,2019,20(11):2668. DOI: 10.3390/ijms20112668.
[36] LU YG,SHEN HM,HUANG WJ,et al. Genome-scale CRISPR-Cas9 knockout screening in hepatocellular carcinoma with lenvatinib resistance[J]. Cell Death Discov,2021,7(1):359. DOI: 10.1038/ s41420-021-00747-y.
[37] MOOSAVI F,GIOVANNETTI E,SASO L,et al. HGF/MET pathway ab-errations as diagnostic,prognostic,and predictive biomarkers in hu-man cancers[J]. Crit Rev Clin Lab Sci,2019,56(8):533-566. DOI:10.1080/10408363.2019.1653821.
[38] FU RD,JIANG ST,LI JY,et al. Activation of the HGF/c-MET axis pro-motes lenvatinib resistance in hepatocellular carcinoma cells with high c-MET expression[J]. Med Oncol,2020,37(4):24. DOI: 10.1007/ s12032-020-01350-4.
[39] XU X,JIANG WJ,HAN P,et al. MicroRNA-128-3p mediates lenva- tinib resistance of hepatocellular carcinoma cells by downregulating c-met[J]. J Hepatocell Carcinoma,2022,9:113-126. DOI: 10.2147/ JHC.S349369.
[40] JIANG XJ,STOCKWELL BR,CONRAD M. Ferroptosis:Mechanisms,biology and role in disease[J]. Nat Rev Mol Cell Biol,2021,22(4):266-282. DOI: 10.1038/s41580-020-00324-8.
[41] ISEDA N,ITOH S,TOSHIDA K,et al. Ferroptosis is induced by len- vatinib through fibroblast growth factor receptor-4 inhibition in hepa-tocellular carcinoma[J]. Cancer Sci,2022,113(7):2272-2287. DOI:10.1111/cas.15378.
[42] DUAN AQ,LI H,YU WL,et al. Long noncoding RNA XIST promotes resistance to lenvatinib in hepatocellular carcinoma cells via epigen-etic inhibition of NOD2[J]. J Oncol,2022,2022:4537343. DOI:10.1155/2022/4537343.
[43] WANG Y,TAN K,HU W,et al. LncRNA AC026401.3 interacts with OCT1 to intensify sorafenib and lenvatinib resistance by activating E2F2 signaling in hepatocellular carcinoma[J]. Exp Cell Res,2022,420(1):113335. DOI: 10.1016/j.yexcr.2022.113335.
[44] YU T,YU JJ,LU L,et al. MT1JP-mediated miR-24-3p/BCL2L2 axis promotes Lenvatinib resistance in hepatocellular carcinoma cells by inhibiting apoptosis[J]. Cell Oncol,2021,44(4):821-834. DOI:10. 1007/s13402-021-00605-0.
[45] ZHANG PF,SUN HX,WEN PH,et al. circRNA circMED27 acts as a prognostic factor and mediator to promote lenvatinib resistance of hepatocellular carcinoma[J]. Mol Ther Nucleic Acids,2022,27:293-303. DOI: 10.1016/j.omtn.2021.12.001.