摘要:為進(jìn)一步提高短期負(fù)荷預(yù)測(cè)精度,提出了一種基于變分模態(tài)分解(VMD)并考慮VMD殘差量和改進(jìn)北方蒼鷹算法(INGO)優(yōu)化雙向長(zhǎng)短時(shí)記憶(BiLSTM)網(wǎng)絡(luò)的短期負(fù)荷預(yù)測(cè)方法。首先利用VMD將歷史負(fù)荷數(shù)據(jù)分解為多個(gè)本征模分量(IMFs)和一個(gè)殘差量。再將各IMF和殘差量以及相關(guān)氣象參數(shù)分別構(gòu)建BiLSTM模型進(jìn)行預(yù)測(cè)。為避免因超參數(shù)選取不佳對(duì)預(yù)測(cè)精度的影響,采用INGO對(duì)BiLSTM的隱含層節(jié)點(diǎn)、訓(xùn)練次數(shù)、學(xué)習(xí)率進(jìn)行優(yōu)化。最后將預(yù)測(cè)結(jié)果疊加得出最終結(jié)果。通過(guò)具體算例分析,將本文采用方法與其他方法對(duì)比,具有較高的預(yù)測(cè)精度,驗(yàn)證了本文方法的有效性。
關(guān)鍵詞:短期負(fù)荷預(yù)測(cè);變分模態(tài)分解;北方蒼鷹算法;雙向長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)
中圖分類(lèi)號(hào): TM715;O224文獻(xiàn)標(biāo)識(shí)碼: A
收稿日期:2023-06-01;修回日期:2023-07-06
基金項(xiàng)目:天津市自然科學(xué)基金重點(diǎn)項(xiàng)目(08JCZDJC18600);天津市教委重點(diǎn)基金項(xiàng)目(2006ZD32)
第一作者:謝煜軒(1998-),男,河南鞏義人,碩士,主要研究方向?yàn)閺?fù)雜系統(tǒng)智能控制理論及應(yīng)用。
通信作者:王紅君(1963-),女,天津人,碩士,教授,主要研究方向?yàn)閺?fù)雜系統(tǒng)智能控制理論及應(yīng)用。
Short-term Load Forecasting Considering VMD Residuals and Optimizing BiLSTM
XIE Yuxuan,WANG Hongjun,YUE Youjun,ZHAO Hui
(School of Automation Tianjin Complex Control Theory and Application of Key Laboratory,
Tianjin University of Technology, Tianjin 300384, China)
Abstract:This study proposes a new method to improve short-term load forecasting accuracy. The method is based on Variational Modal Decomposition (VMD) with consideration of VMD residuals and an Improved Northern Eagle Algorithm (INGO) optimized Bi-directional Long Short Term Memory (BiLSTM) network. The VMD is used to decompose historical load data into multiple eigenmode components (IMFs) and a residual quantity. The BiLSTM model is then constructed separately for each IMF and residual, as well as the associated meteorological parameters. To avoid the impact of poorly selected hyperparameters on prediction accuracy, the INGO algorithm optimizes the implied layer nodes, training times, and learning rates of the BiLSTM. Last but not least, the prediction results are superimposed to obtain the final results. By analyzing specific cases, this paper′s method has demonstrated a higher prediction precision when compared to alternative methods. This validation confirms the effectiveness of the method presented in this article.
Keywords: short-term load forecasting; variational mode decomposition; northern goshawk optimization; bi-directional long short-trem memory
0 引言
由于當(dāng)前國(guó)家供電需求量日益增大。短期負(fù)荷預(yù)測(cè)在保證供電工作與安全管理當(dāng)中有著重要意義。精確的預(yù)測(cè)是提升發(fā)電設(shè)備效益和經(jīng)濟(jì)運(yùn)行調(diào)節(jié)效益的主要保障。而且,它對(duì)于系統(tǒng)的優(yōu)化組合、經(jīng)濟(jì)運(yùn)行調(diào)節(jié)、最優(yōu)趨勢(shì)、電能價(jià)格交易都有著重大作用[1]。
長(zhǎng)久以來(lái),大量研究人員對(duì)于提高短期負(fù)荷預(yù)測(cè)的精確度采用了各種方法,一般可分為傳統(tǒng)方法和現(xiàn)代智能方法[2]。然而,如線(xiàn)性回歸[3]這種傳統(tǒng)類(lèi)方法在線(xiàn)性問(wèn)題上雖有成熟研究,但無(wú)法處理非線(xiàn)性問(wèn)題[4]。另一種是現(xiàn)代智能方法,對(duì)非線(xiàn)性問(wèn)題有高效處理能力,如BP神經(jīng)網(wǎng)絡(luò)[5]、長(zhǎng)短期記憶(LSTM)網(wǎng)絡(luò)[6]等。XIA等[7]利用BP神經(jīng)網(wǎng)絡(luò)來(lái)進(jìn)行電力消耗預(yù)測(cè),但BP神經(jīng)網(wǎng)絡(luò)存在泛化能力差的問(wèn)題。WANG等[8]利用LSTM模型進(jìn)行負(fù)荷預(yù)測(cè),有效解決了序列預(yù)測(cè)過(guò)程當(dāng)中產(chǎn)生梯度消失的問(wèn)題。通過(guò)使用LSTM可以獲得比BP更好的效果。經(jīng)研究表明,LSTM可以在時(shí)序預(yù)測(cè)問(wèn)題上實(shí)現(xiàn)比其他方法更好的性能[9]。為了更好地?cái)M合模型并獲得更高的預(yù)測(cè)精度,混合模型越來(lái)越受到重視。呂海燦等[10]將小波分解(WT)與LSTM結(jié)合進(jìn)行預(yù)測(cè)。KOUHI等[11]提出了一種基于WT和特征選擇的短期負(fù)荷預(yù)測(cè)模型。但WT缺乏自適應(yīng)。劉建華等[12]在傳統(tǒng)LSTM的基礎(chǔ)上加入了經(jīng)驗(yàn)?zāi)B(tài)分解(EMD),提高了預(yù)測(cè)精確度。王子樂(lè)等[13]提出了一種基于互補(bǔ)集合經(jīng)驗(yàn)?zāi)B(tài)分解(CEEMD)與LSTM混合的短期電力負(fù)荷預(yù)測(cè)模型。然而EMD和CEEMD易產(chǎn)生模態(tài)混疊和噪聲干擾問(wèn)題。HE等[14]使用變分模態(tài)分解(VMD)和LSTM的混合方法來(lái)預(yù)測(cè)電力負(fù)荷,結(jié)果表明VMD可以成功提高預(yù)測(cè)的準(zhǔn)確性。李秀昊等[15]將VMD與LSTM相結(jié)合,利用VMD可以有效地將非線(xiàn)性時(shí)序序列分解為平穩(wěn)規(guī)律子序列的能力,一定程度上緩解了模態(tài)混疊問(wèn)題。但是LSTM存在參數(shù)選取困難的問(wèn)題。顧乾暉等[16]在此基礎(chǔ)上使用粒子群算法(PSO)優(yōu)化LSTM的參數(shù),進(jìn)一步提高了預(yù)測(cè)精度。但忽略了VMD分解出來(lái)的殘差量,會(huì)導(dǎo)致預(yù)測(cè)準(zhǔn)確性降低。同時(shí)PSO存在收斂速度慢等缺陷。北方蒼鷹算法(NGO)是一種具有結(jié)構(gòu)簡(jiǎn)單、收斂精度高等優(yōu)點(diǎn)的智能優(yōu)化算法,可以用來(lái)優(yōu)化模型的參數(shù),但是NGO算法在后期容易出現(xiàn)陷入局部最優(yōu)和收斂速度慢等問(wèn)題[17]。因此提出一種改進(jìn)北方蒼鷹算法(INGO)提高對(duì)模型參數(shù)的優(yōu)化能力。
鑒于此,提出一種考慮VMD殘差量和INGO優(yōu)化雙向長(zhǎng)短時(shí)記憶(BiLSTM)網(wǎng)絡(luò)的短期負(fù)荷預(yù)測(cè)方法。將經(jīng)過(guò)VMD分解后的各本征模態(tài)分量(IMF)和殘差量(Res)以及相關(guān)氣象因素分別建立BiLSTM預(yù)測(cè)模型。同時(shí)引入SPM映射初始化北方蒼鷹種群,使種群均勻分布;結(jié)合正余弦策略和曲線(xiàn)自適應(yīng)策略增強(qiáng)北方蒼鷹的迭代尋優(yōu)能力,避免陷入最優(yōu)的缺陷,同時(shí)增強(qiáng)算法的尋優(yōu)精度和效率。利用改進(jìn)后的北方蒼鷹算法INGO優(yōu)化BiLSTM的超參數(shù)。BiLSTM是雙向LSTM,相較于單向LSTM更能挖掘負(fù)荷序列的特征。最后通過(guò)具體算例分析,表明了本文方法可以獲得更高的預(yù)測(cè)精度,達(dá)到更好的預(yù)測(cè)效果。
1 基本原理分析
1.1 變分模態(tài)分解
VMD是一種能夠完全自適應(yīng)地分解復(fù)雜信號(hào)為一系列簡(jiǎn)單模態(tài)分量信號(hào)的分解方法[18]。步驟如下:
1)VMD將原始信號(hào)分解為若干個(gè)帶寬有限的模態(tài)分量,在各分量值相等于原始信號(hào)的基礎(chǔ)上確保最小帶寬值。公式如式(1):
分析結(jié)果如表1所示。通過(guò)負(fù)荷與氣象數(shù)據(jù)的pearson相關(guān)系數(shù)可知,最高溫度與最低溫度系數(shù)值在0.4,1之間有較強(qiáng)相關(guān)性,相對(duì)濕度與降雨量系數(shù)值在0,0.4之間有較弱相關(guān)性,為提高預(yù)測(cè)精度,將這些氣象因素均作為特征輸入。
按照本文所述方法進(jìn)行實(shí)驗(yàn)仿真,設(shè)置INGO的種群數(shù)量為50,最大迭代次數(shù)為50。INGO對(duì)BiLSTM的兩個(gè)隱含層節(jié)點(diǎn)、訓(xùn)練次數(shù)、學(xué)習(xí)率的尋優(yōu)范圍分別為[1,100]、[1,100]、[0.001,0.01]。按照同樣方法設(shè)置PSO和NGO,各算法的具體參數(shù)設(shè)置如表2所示。三者適應(yīng)度曲線(xiàn)如圖5所示。
由圖5可知,INGO相較于PSO、NGO收斂速度更快,得到最佳適應(yīng)度值時(shí)所用迭代次數(shù)更少,驗(yàn)證了INGO具有更強(qiáng)的尋優(yōu)能力和收斂速度。經(jīng)實(shí)驗(yàn)可得經(jīng)過(guò)INGO尋優(yōu)得到的BiLSTM最優(yōu)參數(shù)取值分別為:隱含層節(jié)點(diǎn)1為93,隱含層節(jié)點(diǎn)2為93,訓(xùn)練次數(shù)為81次,學(xué)習(xí)率為0.007。
為充分驗(yàn)證本文方法的有效性,將LSTM(模型1)、BiLSTM(模型2)、VMD-BiLSTM(模型3)、PSO-BiLSTM(模型4)、NGO-BiLSTM(模型5)、INGO-BiLSTM(模型6)、VMD-PSO-BiLSTM(模型7)、VMD-NGO-BiLSTM(模型8)、VMD-INGO-BiLSTM(模型9)與本文方法(模型10)進(jìn)行比較分析。各模型預(yù)測(cè)結(jié)果如圖6所示,相對(duì)誤差如圖7所示,評(píng)價(jià)指標(biāo)如表3所示。
從圖6和圖7來(lái)看。本文所提預(yù)測(cè)模型相較于其他模型,短期負(fù)荷預(yù)測(cè)的效果最好。從局部放大圖以及相對(duì)誤差圖看,預(yù)測(cè)曲線(xiàn)與真實(shí)負(fù)荷曲線(xiàn)最貼近,擬合程度最高且誤差最小,驗(yàn)證了本文方法的優(yōu)越性。從表3來(lái)看。BiLSTM克服了傳統(tǒng)LSTM不能進(jìn)行雙向傳播訓(xùn)練的缺陷,更能挖掘負(fù)荷序列的特征。采用SPM映射、正余弦策略和曲線(xiàn)自適應(yīng)策略改進(jìn)后的北方蒼鷹算法INGO優(yōu)化BiLSTM的參數(shù),彌補(bǔ)了NGO、PSO易陷入全局最優(yōu)和收斂速度慢的缺陷,提高了預(yù)測(cè)精度。相較于只對(duì)負(fù)荷序列分解后預(yù)測(cè)的VMD-BiLSTM模型以及只對(duì)模型參數(shù)優(yōu)化后預(yù)測(cè)的PSO-BiLSTM、NGO-BiLSTM和INGO-BiLSTM兩兩組合模型,將負(fù)荷序列進(jìn)行分解后再輸入到優(yōu)化過(guò)后的模型中能夠進(jìn)一步提升預(yù)測(cè)精度。通過(guò)考慮VMD的殘差量,本文所用方法的RMSE、MAE、MAPE和R2分別為11.324 5MW、6.423 7MW、0.268 1%和0.999 1,各項(xiàng)評(píng)價(jià)指標(biāo)明顯優(yōu)于其他模型,表現(xiàn)出更強(qiáng)的學(xué)習(xí)能力。驗(yàn)證了本文方法在短期負(fù)荷預(yù)測(cè)方面的有效性。
為驗(yàn)證本文方法的普適性,采用第九屆電工杯比賽中2013年5月11日至5月18日的負(fù)荷數(shù)據(jù)集,采樣間隔為15 min,共有768個(gè)數(shù)據(jù)點(diǎn),將前7 d共計(jì)672個(gè)數(shù)據(jù)點(diǎn)作為訓(xùn)練集,后1 d共計(jì)96個(gè)數(shù)據(jù)點(diǎn)作為測(cè)試集。按照本文方法進(jìn)行實(shí)驗(yàn),預(yù)測(cè)結(jié)果如圖8所示。
由圖8可以看出,采用本文方法所得到的負(fù)荷預(yù)測(cè)曲線(xiàn)與真實(shí)曲線(xiàn)高度貼近,并且?guī)缀趺總€(gè)數(shù)據(jù)點(diǎn)的預(yù)測(cè)準(zhǔn)確率都在98%以上,具有較高的預(yù)測(cè)精度。驗(yàn)證了本文方法具有較好的普適性。
4 總結(jié)與展望
本文提出了一種考慮變分模態(tài)分解后的殘差量和改進(jìn)北方蒼鷹算法優(yōu)化雙向長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)的短期負(fù)荷預(yù)測(cè)方法。考慮VMD的殘差量,有助于提高預(yù)測(cè)精度。通過(guò)引入SPM映射、正余弦策略和曲線(xiàn)自適應(yīng)策略得到改進(jìn)的北方蒼鷹算法INGO彌補(bǔ)了傳統(tǒng)PSO、NGO算法易陷入最優(yōu)局面的缺陷,提高了算法的尋優(yōu)效率。建立INGO對(duì)BiLSTM的超參數(shù)進(jìn)行尋優(yōu)后的模型,使得預(yù)測(cè)精度進(jìn)一步提升。對(duì)比其他預(yù)測(cè)方法,本文所提出的方法應(yīng)用于短期負(fù)荷預(yù)測(cè),可以高精度地?cái)M合實(shí)際負(fù)荷曲線(xiàn),獲得更好的預(yù)測(cè)效果。未來(lái)可以進(jìn)一步完善改進(jìn)算法,提高預(yù)測(cè)精確度,同時(shí)可以考慮電價(jià)等相關(guān)因素對(duì)于負(fù)荷預(yù)測(cè)方面的影響。
參考文獻(xiàn):
[1]BOZORG M, BRACALE A, CARAMIA P, et al. Bayesian bootstrap quantile regression for probabilistic photovoltaic power forecasting[J]. Protection and Control of Modern Power Systems, 2020, 5(3):218-229.
[2]SHA B, YNA C, MN A, et al. A comparative study of predictive approaches for load forecasting in smart buildings[J]. Procedia Computer Science, 2019, 160:173-180.
[3]HE F F, ZHOU J Z, MO L, et al. Day-ahead short-term load probability density forecastingmethod with a decomposition based quantile regression forest[J]. Applied Energy, 2020, 262(9):234-246.
[4]JUAN F, RENDON S.Structural combination of seasonal exponential smoothing forecasts applied to load forecasting[J]. European Journal of Operational Research, 2019, 275(3):916-924.
[5]YU F, XU X. A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network[J]. Applied Energy, 2014, 134:102-113.
[6]KIM Y, SON H, KIM S G. Short term electricity load forecasting for institutional buildings[J]. Energy Reports, 2019, 5:1270-1280.
[7]XIA P P, XUE A H, LIAN T. Analysis and prediction regional electricity consumption based on BP neural network[J]. Journal of Quantum, 2020, 2(1):25-32.
[8]WANG Y, GAN D, SUN M, et al. Probabilistic individual load forecasting using pinball loss guided LSTM[J]. Applied Energy, 2019, 235:10-20.
[9]劉亞琿,趙倩.基于聚類(lèi)經(jīng)驗(yàn)?zāi)B(tài)分解的CNN-LSTM超短期電力負(fù)荷預(yù)測(cè)[J].電網(wǎng)技術(shù), 2021, 45(11):4444-4451.
LIU Y H, ZHAO Q. Ultra-short-term power load forecasting based on cluster empirical mode decomposition of CNN-LSTM[J]. Power System Technology, 2021, 45(11):4444-4451.
[10] 呂海燦,王偉峰,趙兵,等.基于Wide amp; Deep-LSTM模型的短期臺(tái)區(qū)負(fù)荷預(yù)測(cè)[J].電網(wǎng)技術(shù), 2020, 44(2):428-436.
Lü H C, WANG W F, ZHAO B, et al. Short-term stationload forecasting based on Wide amp; Deep-LSTM model[J]. Power System Technology, 2020, 44(2):428-436.
[11] S.KOUHI, F.KEYNIA. A new cascade NN based method to short-trem load forecast in deregulated electricity market[J]. Energ Convers Mange, 2013, 71:76-83.
[12] 劉建華,李錦程,楊龍?jiān)?,?基于EMD-SLSTM的家庭短期負(fù)荷預(yù)測(cè)[J].電力系統(tǒng)保護(hù)與控制, 2019, 47(6):40-47.
LIU J H, LI J C, YANG L Y, et al. Short-term household load forecasting based on EMD-SLSTM[J]. Power System Protection and Control, 2019, 47(6):40-47.
[13] 王子樂(lè),王子謀,蔡瑩,等.基于長(zhǎng)短期記憶神經(jīng)網(wǎng)絡(luò)組合算法的短期電力負(fù)荷預(yù)測(cè)[J].現(xiàn)代電力, 2023, 40(2):201-209.
WANG Z Y, WANG Z M, CAI Y, et al. Short-term load forecasting based on long short-term memory network combination algorithm[J]. Modern Electric Power, 2023, 40(2):201-209.
[14] HE F F, ZHOU J Z,F(xiàn)ENG Z K, et al. A hybrid short-term load forecasting model based on variational mode decomposition and long short-term memory networks considering relevant factors with Bayesian optimization algorithm[J]. Appl Energy, 2019,237:103-116.
[15] 李秀昊,劉懷西,張智勇,等.基于VMD-LSTM的超短期風(fēng)向多步預(yù)測(cè)[J].南方能源建設(shè), 2023, 10(1):29-38.
LI X H, LIU H X, ZHANG Z Y, et al. Very short-term wind direction multistep forecast based on VMD-LSTM[J]. Southern Energy Construction, 2023, 10(1):29-38.
[16] 顧乾暉,曾斌,涂振宇.基于VMD-PSO-LSTM水質(zhì)預(yù)測(cè)模型的應(yīng)用研究[J].南昌工程學(xué)院學(xué)報(bào), 2021,40(4):23-29.
GU Q H, ZENG B, TU Z Y. Research on application of water quality prediction model based on VMD-PSO-LSTM[J]. Journal of Nanchang Institute of Technology, 2021,40(4):23-29.
[17] ELDABAH M A, ELSEHIEMY R A, HASANIEN H M, et al. Photovoltaic model parameters identification using Northern Goshawk Optimization algorithm[J]. Energy, 2023, 262(5):125522-125540.
[18] DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactionson Signal Processing, 2014, 62(3):531-544.
[19] DEHGHANI M, HUBALOVSKY S, TROJOVSKY P. Northerngoshawk optimization: a new swarm-based algorithm for solving optimi-zation problems[J]. IEEE Access, 2021, 9:162059-162080.
[20] 班多晗,呂鑫,王鑫元.基于一維混沌映射的高效圖像加密算法[J].計(jì)算機(jī)科學(xué), 2020, 47(4):278-284.
BAN D H, Lü X, WANG X Y. Efficient lmage encryption algorithm based on 1d chaotic map[J]. Computer Science, 2020, 47(4):278-284.
[21] MIRJALILI S. SCA:a sine cosine algorithm for solving optimization problems[J]. Knowledge-Based Systems, 2016, 96(5):120-133.
[22] WANG JIESHENG. Improved whale optimization algorithm based on nonlinear adaptive weight and golden sine operator[J]. IEEE Access, 2020, 8:77013-77048.
[23] CHEN B, WANG Y. Short-term electric load forecasting of integrated energy system considering nonlinear synergy between different loads[J]. IEEE Access, 2021, 9:43562-43573.
[24] ZHANG H X, CHENG L L, DING T, et al. Hybrid method for short-term photovoltaic power forecasting based on deep convolutio-nal neural network[J]. IET Generation, Tran-smission amp; Distribution, 2018, 12(20), 4557-4567.
(責(zé)任編輯 耿金花)