摘要:針對隨機振動環(huán)境下的多機械臂系統(tǒng),設(shè)計了一種快速有限時間包含控制策略。有限時間濾波器的加入避免了用傳統(tǒng)反步策略對虛擬控制信號微分時出現(xiàn)的“計算爆炸”問題,并通過有限時間控制提高了系統(tǒng)的收斂速度。通過建立誤差補償機制,消除了濾波誤差對控制系統(tǒng)的干擾。采用相對閾值-事件觸發(fā)機制有效地減少了資源浪費和通信負擔。研究結(jié)果表明閉環(huán)系統(tǒng)是實際快速有限時間均方穩(wěn)定的,給出的MATLAB仿真結(jié)果也證明了控制策略的有效性。
關(guān)鍵詞:多機械臂;隨機振動;有限時間控制;包含控制
中圖分類號: TP273文獻標識碼: A
收稿日期:2023-06-21;修回日期:2023-07-20
基金項目:國家自然科學基金(61603204,61973179)
第一作者:宋月偉(1998-),男,山東東營人,碩士研究生,主要研究方向為隨機系統(tǒng)控制。
通信作者:趙林(1985-),男,山東青島人,博士,教授,主要研究方向為機器人控制方面的教學與科研。
Finite-time Containment Control for Stochastic Multiple Manipulator Systems
SONG Yuewei, ZHAO Lin
(School of Automation, Qingdao University, Qingdao 266071, China)
Abstract:A fast finite time containment control strategy is designed for multi-manipulator systems in random vibration environment. The addition of finite-time filter avoids the problem of ‘computation explosion’ when differentiating the virtual control signals by traditional backstepping and improves the convergence speed of the systems by finite-time. By establishing the error compensation mechanism, the influence of filter errors to the control systems is eliminated. Using the relative threshold-event-triggered mechanism effectively reduces resource waste and communication burden. It proves that closed-loop systems are actually fast and finite time stable in mean square. The MATLAB simulation results show the effectiveness of the control strategy.
Keywords: multi-manipulator; random vibration; finite-time control; containment control
4 結(jié)論
本文針對隨機拉格朗日多機械臂系統(tǒng),設(shè)計了一種基于命令濾波反步的自適應(yīng)模糊有限時間控制策略,克服了傳統(tǒng)反步面臨的復(fù)雜度爆炸問題,并保證跟蹤誤差在均方上是有限時間收斂的。在設(shè)計過程中,利用模糊邏輯系統(tǒng)近似非線性動態(tài),應(yīng)用有限時間控制使系統(tǒng)具有更快的收斂速度,利用事件觸發(fā)機制減少了控制器和執(zhí)行器之間的通信負擔。公式推導過程在理論上證明了控制器的可實現(xiàn)性,也通過仿真過程展示了其在實踐中的控制效果。在未來,將繼續(xù)研究隨機機械臂系統(tǒng)的輸出反饋控制問題,擴大其應(yīng)用范圍。
參考文獻:
[1]ZHANG Z, KAYACAN E, THOMPSON B, et al. High precision control and deep learning-based corn stand counting algorithms for agricultural robot[J]. Autonomous Robots, 2020,44(7):1289-1302.
[2]楊怡澤, 楊洪勇, 劉凡. 離散時間多智能體系統(tǒng)群集運動的快速收斂[J]. 復(fù)雜系統(tǒng)與復(fù)雜性科學, 2018,15(1):56-61.
YANG Y Z, YANG H Y,LIU F. Fast convergence for flocking motion of discrete time multi-agent systems[J]. Complex Systems and Complexity Science, 2018,15(1):56-61.
[3]MEI J, REN W,MA G F. Distributed containment control for Lagrangian networks with parametric uncertainties under a directed graph[J]. Automatica, 2012,48(4):653-659.
[4]RIGOTTI-THOMPSON M, TORRES-TORRITI M, AUAT CHEEIN F A, et al. H∞-based terrain disturbance rejection for hydraulically actuated mobile manipulators with a nonrigid link[J]. IEEE/ASME Transactions on Mechatronics, 2020,25(2):2523-2533.
[5]ZHAI J, LI Z. Fast-exponential sliding mode control of robotic manipulator with super-twisting method[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022,69(2):489-493.
[6]ZHAO L, JIA Y. Distributed adaptive containment control for second-order multi-agent systems via NTSM[J]. Journal of the Franklin Institute, 2015,352(11):5327-5341.
[7]ZHAO L, YU J, LIN C,et al. Adaptive neural consensus tracking for nonlinear multiagent systems using finite-time command filtered backstepping[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018,48(11):2003-2012.
[8]CHEN Z, HUANG F, YANG C N, et al. Adaptive fuzzy backstepping control for stable nonlinear bilateral teleoperation manipulators with enhanced transparency performance[J]. IEEE Transactions on Industrial Electronics, 2020,67(1):746-756.
[9]孫玉嬌, 楊洪勇, 于美妍. 基于領(lǐng)航跟隨的多機器人系統(tǒng)有限時間一致性控制研究[J]. 復(fù)雜系統(tǒng)與復(fù)雜性科學, 2020,17(4):66-72.
SUN Y J, YANG H Y, YU M Y. The finite time consistency control of multi-robot systems based on leader-following systems based on leader-following[J]. Complex Systems and Complexity Science, 2020,17(4):66-72.
[10] LI C, ZHAO L, XU Z G.Finite-time adaptive event-triggered control for robot manipulators with output constraints[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022,69(9):3824-3828.
[11] ZHAO L, YU J, WANG Q G. Adaptive finite-time containment control of uncertain multiple manipulator systems[J]. IEEE Transactions on Cybernetics, 2022,52(1):556-567.
[12] CUI M Y, XIE X J, WU Z J. Dynamics modeling and tracking control of robot manipulators in random vibration environment[J]. IEEE Transa-ctions on Automatic Control,2013,58(6):1540-1545.
[13] CUI M Y, WU Z J, XIE X J, et al. Modeling and adaptive tracking for a class of stochastic lagrangian control systems[J]. Automatica, 2013,49(3):770-779.
[14] CUI M Y, WU Z J, XIE X J. Output feedback tracking control of stochastic lagrangian systems and its application[J]. Automatica, 2014,50(5):1424-1433.
[15] CUI M Y, YANG C, WU Z J. Global trajectory tracking of a class of manipulators without velocity measurements in random surroundings[J]. International Journal of Control, 2022,95(11):3127-3136.
[16] WANG H, CHEN B, LIU X P,et al. Robust adaptive fuzzy tracking control for pure-feedback stochastic nonlinear systems with input constraints[J]. IEEE Transactions on Cybernetics, 2013,43(6):2093-2104.
[17] QIAN C, LIN W. A continuous feedback approach to global strong stabilization of nonlinear systems[J]. IEEE Transactions on Automatic Control, 2001,46(7):1061-1079.
[18] WANG F, YOU Z, LIU Z,et al. A fast finite-time neural network control of stochastic nonlinear systems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023,34(10):7443-7452.
[19] GUO J, BO Y, JU H P, et al. Adaptive neural control for nonlinear systems with actuator faults and unknown control directions via command filter[J]. International Journal of Robust and Nonlinear Control, 2022,32(4):2100-2118.
[20] YU J, ZHAO L, YU H S,et al. Fuzzy finite-time command filtered control of nonlinear systems with input saturation[J]. IEEE Transactions on Cybernetics, 2017,48(8):2378-2387.
[21] LEVANT A. Higher-order sliding modes, differentiation and out-put-feedback control[J]. International Journal of Control, 2003,76(9/10):924-941.
[22] SONG X Y, ZHAO L.Adaptive fuzzy finite-time consensus tracking for high-order stochastic multi-agent systems with input saturation[J]. International Journal of Fuzzy Systems, 2022,24(8):3781-3795.
(責任編輯 李 進)