摘要:為探索無窮多共存吸引子是否存在公共Wada域邊界的問題,推廣Nusse-Yorke的有限Wada域定理到無窮多Wada域?;跀?shù)值實驗,在一類非線性振蕩器發(fā)現(xiàn)了無窮多共存吸引子具有公共的吸引域邊界,且這些吸引子在空間分布上呈現(xiàn)周期性。進(jìn)一步分析了吸引子復(fù)雜的Wada吸引域結(jié)構(gòu),通過推廣的Nusse-Yorke關(guān)于Wada域的判定定理,證實了這些連通的Wada域具有公共邊界。最后指出這種類型的Wada域邊界表現(xiàn)出了非常復(fù)雜的非線性動力學(xué)特性,可能導(dǎo)致高度的不確定性以及對初始條件的極端敏感依賴性。
關(guān)鍵詞:Wada域;吸引域;共存吸引子;超穩(wěn)態(tài)
中圖分類號: N93; O193文獻(xiàn)標(biāo)識碼: A
收稿日期:2023-05-10;修回日期:2023-08-27
基金項目:山東省自然科學(xué)基金(ZR2021MA095);國家自然科學(xué)基金重點項目(11732014)
第一作者:王敬偉(1998-),男,山東青島人,碩士研究生,主要研究方向為非線性動力學(xué),復(fù)雜系統(tǒng)等。
Complex Wada Basin Analysis of Infinite Coexisting Attractors in a Class of Oscillators
WANG Jingwei
(School of Mathematics and Statistics, Qingdao University, Qingdao 266071, China)
Abstract:To explore the question of whether there exist common Wada basin boundaries among an infinite number of coexisting attractors, we extended Nusse-Yorke′s theorem for finite Wada basins to the scenario of infinite Wada basins. Through numerical experiments conducted on a class of nonlinear oscillators, we discovered that within this class, there are infinite coexisting attractors that share common basin boundaries, and these attractors exhibit periodic spatial distributions. Further analysis of the intricate Wada basin structures associated with these attractors, employing a generalized version of Nusse-Yorke′s theorem concerning Wada basins, confirmed the presence of common boundaries among these interconnected Wada basins. Finally, it is essential to note that this type of Wada basin boundary exhibits highly complex nonlinear dynamical characteristics, potentially leading to significant uncertainty and extreme sensitivity to initial conditions.
Keywords: wada basin; basin of attraction; coexisting attractors; megastability0 引言
非線性振蕩器可能具有多個共存的吸引子,每個吸引子都有對應(yīng)的吸引域[1],這個吸引域邊界可能是光滑的或分形的[2-3]。如果一個吸引域邊界上的點的每個開鄰域在平面內(nèi)至少包含3個域,則稱其為Wada域[4]。Wada域邊界通常是指在平面內(nèi)同時分隔3個或更多個吸引域的邊界。Wada域包括連通的Wada域和不連通的Wada域[5-7]。對于連通的Wada域,Wada域邊界具有連續(xù)邊界的屬性,自Kennedy和Yorke[4]首次提出Wada域的概念以來,Wada域已經(jīng)在不同類型的系統(tǒng)中被發(fā)現(xiàn),例如離散映射[8-9],非線性振蕩器[10-13],生態(tài)模型[14]等。Wada域呈現(xiàn)出終態(tài)不可預(yù)測性和不確定性,對于Wada域邊界上的任意微小的噪聲擾動,都會將系統(tǒng)的最終狀態(tài)驅(qū)動到任何可能的吸引子,因此對吸引域的研究能夠為我們提供非線性系統(tǒng)的動態(tài)演化和全局信息。
國內(nèi)外學(xué)者開發(fā)了眾多Wada理論與數(shù)值算法,Nusse等[8]基于域胞理論提出了域胞方法,Zhang[15]擴(kuò)展了域胞方法并將其命名為廣義域胞方法,Miguel等[16]綜述了Wada域的數(shù)值算法。到目前為止,在動力系統(tǒng)中,有限數(shù)量的連通Wada域已被證實可以存在于非線性系統(tǒng)中。最近,我們首次在非線性震蕩器中證實了無窮多連通的Wada域的存在[17]。非線性系統(tǒng)的無窮多吸引子共存現(xiàn)象使得系統(tǒng)的動力學(xué)更加復(fù)雜[18-20]。Newhouse[21]于1974年通過二維微分同胚的研究預(yù)測了無限多吸引子的共存,Chawanya[22-23]也在具有異宿軌網(wǎng)絡(luò)的動力系統(tǒng)中證實了無限多周期和混沌吸引子的共存。最近,在二維離散映射中發(fā)現(xiàn)的同宿正切理論解釋了無限多周期解的共存原因[24-25]。本文通過吸引域方法從全局結(jié)構(gòu)信息的角度發(fā)現(xiàn)并研究無窮多吸引子共存問題,將以往對有限的Wada域的研究[27-36]擴(kuò)展到了無窮多Wada域。最后用域胞方法驗證了可數(shù)無窮多共存吸引子的Wada域的存在,并揭示了周期性Wada域的分布規(guī)律性。該動力學(xué)現(xiàn)象有助于解釋系統(tǒng)在特定的參數(shù)下終態(tài)的不可預(yù)測性。
1 非線性振蕩器的數(shù)學(xué)模型及理論方法
本文研究非線性振蕩器(1)[26],
其中,α為系數(shù),Asin(ωt)為一個周期性驅(qū)動力??梢钥吹皆撓到y(tǒng)在(kπ/α,0)處有無窮多個平衡點(k為任意整數(shù))。
為方便構(gòu)建電路,由基爾霍夫電路規(guī)律,將式(1)寫為
該模型的構(gòu)建比較簡單,僅基于線性項和三角函數(shù)項構(gòu)建,可以由普通的電子元件來實現(xiàn)。其電路設(shè)計如圖1所示。該系統(tǒng)的電路設(shè)計采用2個電容器(C1,C2),6個電阻(R1,…,R6),以及2個運算放大器。X,Y是電容器C1,C2處的電壓。
對于有限數(shù)量的共存吸引子,Wada吸引域的復(fù)雜特性可以通過兩個定理來驗證[8,15]。第1個定理是基于Nusse-Yorke提出的域胞定理,如果1個周期性的鞍點形成了1個域胞,且鞍點的不穩(wěn)定流形至少穿過3個吸引域,則該吸引域為Wada域。第2個定理是由張推廣的Nusse-Yorke方法(廣義域胞定理)[15],如果某些周期性鞍點形成廣義域胞,且鞍點的不穩(wěn)定流形至少穿過3個吸引域,則該吸引域為Wada域。本文將這兩個定理推廣到無窮多個吸引域的情況[17],應(yīng)用定理1來驗證可數(shù)無窮多Wada域的存在性。
定理1 設(shè)Pk(k∈N)為無數(shù)個同類雙曲鞍點且每一個Pk可以生成同類域胞Ck(k∈N)。若Bk(k∈N)為不連通吸引域,其中Bk為Ck對應(yīng)的吸引域。若存在鞍點P1的不穩(wěn)定流形Wu(P1)與至少3個吸引域相交,則吸引域Bk(k∈N)的邊界?B-k是Wada域邊界。
注釋1:由于共存吸引子和域胞的性質(zhì),當(dāng)不穩(wěn)定流形Wu(P1)至少與3個域相交(例如B1,B2和B3),則Ws(P1)=Ws(P2)=Ws(P3)=?B-1=?B-2=?B-3。假設(shè)有?B-n=?B-n+1,則?B-n+1=?B-n+2。由數(shù)學(xué)歸納法,所有的吸引域共有同一個邊界。
本文的研究思路如圖2所示。研究參數(shù)對系統(tǒng)動力學(xué)行為的影響是非常關(guān)鍵的,參數(shù)的變化會致系統(tǒng)的動力學(xué)行為發(fā)生突變。參數(shù)不同可能導(dǎo)致吸引子類型和共存吸引子數(shù)量不同等復(fù)雜的動力學(xué)現(xiàn)象。本文的目標(biāo)是探尋該系統(tǒng)是否存在無窮多共存吸引子的Wada域這一特殊現(xiàn)象,因此首先通過大量數(shù)值實驗,選取不同的參數(shù)探尋到這種Wada域的現(xiàn)象。確定參數(shù)后探尋其所有的共存吸引子,然后計算并繪制其對應(yīng)的吸引域,計算吸引域邊界上的可達(dá)鞍點,繪制鞍點的不穩(wěn)定流形并繪制域胞,最終通過判定定理進(jìn)行證明。
本文研究的模型表現(xiàn)出了無窮多周期吸引子共存現(xiàn)象。表1和表2給出了系統(tǒng)在給定參數(shù)及Poincaré映射(2π/ω)下的共存周期吸引子。針對二維周期驅(qū)動系統(tǒng),本文使用的Nusse-Yorke提出的成熟的檢測吸引子的RP方法,該方法已廣泛應(yīng)用于各種系統(tǒng),也可用成熟的Dynamics軟件進(jìn)行驗證。Miguel教授等[16]對比了各種檢測Wada域的方法,幾種方法均可證明二維系統(tǒng)的有限數(shù)量共存吸引子的Wada域,而對于無窮吸引子Wada域情況,這些數(shù)值方法無法證實這些吸引域具有公共邊界,因此本文選用了上述域胞流形法進(jìn)行證實。針對無窮多吸引子情況,先根據(jù)此方法計算給定區(qū)域內(nèi)共存吸引子情況,因吸引子分布的周期規(guī)律性,進(jìn)而總結(jié)出可數(shù)無窮多吸引子分布情況。
2 無窮多共存吸引子及復(fù)雜Wada域結(jié)構(gòu)
在沒有周期性驅(qū)動力Asin(ωt)的情況下,系統(tǒng)(1)在(kπ/α,0)處有無限個平衡點,k為任意整數(shù)。將周期性驅(qū)動力應(yīng)用于系統(tǒng)(1),數(shù)值上可以得到無窮多個共存吸引子,且它們的坐標(biāo)位置仍具有周期性。參數(shù)取α=0.6,A=0.6,ω=0.6時,在一定初始條件下,在x-y平面上分布有無限個共存吸引子,且對應(yīng)的吸引域均為Wada域。所有共存吸引子都在2π/ω-Poincaré映射中被檢測到,如表1所示。
表1給出了在X軸坐標(biāo)區(qū)間[-80,110]中6個共存的周期一吸引子,所有的周期吸引子(10nπ-62.94,-2.279)。表2給出了在X軸坐標(biāo)區(qū)間[-80,110]中6個位于吸引域邊界上的可達(dá)的周期一鞍點,所有的可達(dá)周期鞍點(10nπ-60.189,-0.233)。每相鄰兩個周期吸引子或鞍點的橫坐標(biāo)相差10π。我們分別稱X軸坐標(biāo)區(qū)間[-80,110]中的6個周期吸引子為P1A1,P1A2,P1A3,P1A4,P1A5和P1A6。圖3給出了X軸坐標(biāo)區(qū)間[-80,110]內(nèi)6個共存吸引子的吸引域??梢钥吹竭@6個吸引域的結(jié)構(gòu)完全相同。事實上,所有這些無窮多的吸引域的結(jié)構(gòu)都完全相同。因此,所有檢測到的共存吸引子均為同類吸引子。
本文首先驗證在X軸坐標(biāo)區(qū)間[-40,40]內(nèi)的這3個共存吸引域為Wada域。在這3個吸引域上,我們得到3個可達(dá)的周期鞍點。繪制出它們的穩(wěn)定流形和不穩(wěn)定流形組成的典型的域胞,這些域胞的結(jié)構(gòu)如圖4所示。圖5a~5f表示所繪制的這些鞍點的不穩(wěn)定流形??梢园l(fā)現(xiàn),鞍點的不穩(wěn)定流形至少與3個吸引域相交,并且這3個吸引域(P1A2,P1A3,P1A4)邊界上的鞍點的不穩(wěn)定流形還可形成域胞。因此,這3個吸引域(P1A2,P1A3,P1A4)均為Wada域。因此,根據(jù)定理1所有的這些吸引域都具有Wada域邊界。用類似的方法還可證明圖1中的其它的3個域(P1A1,P1A5和P1A6)也是Wada吸引域,根據(jù)注釋1,所有的Wada域都共享相同的邊界。
3 結(jié)論
本文證實了一個非線性振蕩器中存在無窮多數(shù)量的連通域,且每個域都是Wada吸引域。每個Wada域均通過域胞方法進(jìn)行了證明。首先研究了該振蕩器中共存的無窮多數(shù)量的吸引子,在給定的X軸坐標(biāo)區(qū)間內(nèi),域胞的結(jié)構(gòu)是完全相同的。然后應(yīng)用域胞法對其Wada性質(zhì)進(jìn)行了驗證。而且驗證了所有吸引域可以擁有相同的吸引域邊界。研究發(fā)現(xiàn),當(dāng)時間跨度逐漸增大時,每個吸引域內(nèi)的可達(dá)鞍點的不穩(wěn)定流形可以跨越更多吸引域。這意味著如果時間趨于無窮大,鞍點的不穩(wěn)定流形可以跨越無窮多個吸引域。Wada域存在的主要后果是難以預(yù)測最終狀態(tài),如果在Wada域邊界上有任何初始條件的微小擾動,就會出現(xiàn)高度的不確定性和對初始條件的極端敏感依賴性,它可以驅(qū)使系統(tǒng)的最終狀態(tài)至任何可能的結(jié)果(吸引子)。本文的不足之處在于僅僅給出了一類系統(tǒng)存在無窮多Wada域的實例,在未來的工作中,我們將進(jìn)一步證實這類吸引域是否具有普遍性。Wada域的實驗驗證在未來仍然是一個具有挑戰(zhàn)性的問題。
參考文獻(xiàn):
[1]NUSSE H E, YORKE J A. Basins of attraction [J]. Science, 1996, 271(5254): 1376-1380.
[2]MCDONALD S W, GREBOGI C, OTT E, et al. Fractal basin boundaries [J]. Physica D: Nonlinear Phenomena, 1985, 17(2): 125-153.
[3]AGUIRRE J, VIANA R L, SANJUáN M A F. Fractal structures in nonlinear dynamics [J]. Reviews of Modern Physics, 2009, 81(1): 333.
[4]KENNEDY J, YORKE J A. Basins of wada [J]. Physica D: Nonlinear Phenomena, 1991, 51(1-3): 213-225.
[5]EPUREANU B I, GREENSIDE H S. Fractal basins of attraction associated with a damped Newton′s method [J]. SIAM review, 1998, 40(1): 102-109.
[6]SWEET D, OTT E, YORKE J A. Topology in chaotic scattering [J]. Nature, 1999, 399(6734): 315-316.
[7]AGUIRRE J, VALLEJO J C, SANJUáN M A F. Wada basins and chaotic invariant sets in the Hénon-Heiles system [J]. Physical Review E, 2001, 64(6): 066208.
[8]NUSSE H E, YORKE J A. Wada basin boundaries and basin cells [J]. Physica D: Nonlinear Phenomena, 1996, 90(3): 242-261.
[9]ZHANG Y, LUO G. Wada bifurcations and partially Wada basin boundaries in a two-dimensional cubic map [J]. Physics Letters A, 2013, 377(18): 1274-1281.
[10] NUSSE H E, YORKE J A. Fractal basin boundaries generated by basin cells and the geometry of mixing chaotic flows [J]. Physical Review Letters, 2000, 84(4): 626.
[11] AGUIRRE J, SANJUáN M A F. Unpredictable behavior in the duffing oscillator: wada basins [J]. Physica D: Nonlinear Phenomena, 2002, 171(1/2): 41-51.
[12] ZHANG Y, ZHANG H, GAO W. Multiple Wada basins with common boundaries in nonlinear driven oscillators [J]. Nonlinear Dynamics, 2015, 79(4): 2667-2674.
[13] ZHANG Y, XIE X, LUO G. Multiple nested basin boundaries in nonlinear driven oscillators [J]. Communications in Nonlinear Science and Numerical Simulation, 2017, 44: 220-228.
[14] VANDERMEER J. Wada basins and qualitative unpredictability in ecological models: a graphical interpretation [J]. Ecological modelling, 2004, 176(1/2): 65-74.
[15] ZHANG Y. Wada basin boundaries and generalized basin cells in a smooth and discontinuous oscillator [J]. Nonlinear Dynamics, 2021, 106(40): 2879-2891.
[16] WAGEMAKERS A, DAZA A, SANJUáN M A F. How to detect Wada basins [J]. Discrete and Continuous Dynamical Systems B, 2021, 26(1): 717-739.
[17] WANG J, ZHANG Y. Infinite number of Wada basins in a megastable nonlinear oscillator [J]. Nonlinear Dynamics, 2023, 111(11): 10601-10615.
[18] PISARCHIK A N, HRAMOV A E. Multistability in Physical and Living Systems [M]. Berlin: Springer, 2022: 185-189.
[19] HENS C, DANA S K, FEUDEL U. Extreme multistability: attractor manipulation and robustness [J]. Chaos: an Interdisciplinary Journal of Nonlinear Science, 2015, 25(5): 053112.
[20] LOUODOP P, TCHITNGA R, FAGUNDES F F, et al. Extreme multistability in a Josephson-junction-based circuit [J]. Physical Review E, 2019, 99(4): 042208.
[21] NEWHOUSE S E. Diffeomorphisms with infinitely many sinks [J]. Topology, 1974, 13(1): 9-18.
[22] CHAWANYA T. Infinitely many attractors in game dynamics system [J]. Progress of Theoretical Physics, 1996, 95(3): 679-684.
[23] CHAWANYA T. Coexistence of infinitely many attractors in a simple flow [J]. Physica D: Nonlinear Phenomena, 1997, 109(3/4): 201-241.
[24] MUNI S S, MCLACHLAN R I, SIMPSON D. Homoclinic tangencies with infinitely many asymptotically stable single-round periodic solutions [J]. Discrete and Continuous Dynamical Systems A, 2021, 41(8): 3629-3650
[25] MUNI S S, MCLACHLAN R I, SIMPSON D. Unfolding globally resonant homoclinic tangencies [J]. Discrete and Continuous Dynamical Systems, 2022, 42(8):4013-4030.
[26] WANG Z, ABDOLMOHAMMADI H R, ALSAADI F E, et al. A new oscillator with infinite coexisting asymmetric attractors [J]. Chaos, Solitons amp; Fractals, 2018, 110: 252-258.
[27] SINGH J P, KOLEY J, LOCHAN K, et al. Presence of megastability and infinitely many equilibria in a periodically and quasi-periodically excited single-link manipulator [J]. International Journal of Bifurcation and Chaos, 2021,31(2): 2130005.
[28] KARAMI M, RAMAKRISHNAN B, Hamarash II, et al. Investigation of the simplest megastable chaotic oscillator with spatially triangular wave damping [J]. International Journal of Bifurcation and Chaos, 2022,32(7): 2230016.
[29] RAJAGOPAL K, CIMEN M E, JAFARI S, et al. A family of circulant megastable chaotic oscillators, its application for the detection of a feeble signal and PID controller for time-delay systems by using chaotic SCA algorithm [J]. Chaos, Solitons amp; Fractals, 2021, 148: 110992.
[30] RAMAKRISHNAN B, NATIQ H, RAJAGOPAL K, et al. A novel megastable system: cloud, kite, and arrow-like attractors and their dynamics [J]. International Journal of Bifurcation and Chaos, 2022, 32(10): 2250152.
[31] Li R, DONG E, TONG J, et al. A new autonomous memristive megastable oscillator and its Hamiltonian-energy-dependent megastability [J]. Chaos: an Interdisciplinary Journal of Nonlinear Science, 2022,32(3): 039901.
[32] ZHANG K, VIJAYAKUMAR M, JAMAL S S, et al. A novel megastable oscillator with a strange structure of coexisting attractors: design, analysis, and FPGA implementation [J]. Complexity, 2021: 2594965.
[33] ALEXANDER P, EMIROGˇLU S, KANAGARAJ S, et al. Infinite coexisting attractors in an autonomous hyperchaotic megastable oscillator and linear quadratic regulator-based control and synchronization [J]. The European Physical Journal B, 2023, 96(1): 12.
[34] LU H, RAJAGOPAL K, NAZARIMEHR F, et al. A new multi-scroll megastable oscillator based on the sign function [J]. International Journal of Bifurcation and Chaos, 2021, 31(8): 2150140.
[35] RAMAKRISHNAN B, FAGHANI Z, NATIQ H, et al. A megastable oscillator with two types of attractors [J]. Scientia Iranica, 2022, 32(10): 2250152.
[36] KARAMI M, RAMAMOORTHY R, ALI A, et al. Jagged-shape chaotic attractors of a megastable oscillator with spatially square-wave damping [J]. The European Physical Journal Special Topics, 2022, 231(11/12): 2445-2454.
(責(zé)任編輯 李 進(jìn))