摘要:本文梳理了饑餓脅迫在昆蟲(chóng)生理生態(tài)方面的研究現(xiàn)狀,綜述了饑餓對(duì)昆蟲(chóng)生長(zhǎng)發(fā)育和繁殖、消化酶活性、能源物質(zhì)、遷飛和捕食等影響的相關(guān)研究進(jìn)展,以期為深入研究昆蟲(chóng)應(yīng)對(duì)饑餓脅迫的生理機(jī)制提供參考。
關(guān)鍵詞:昆蟲(chóng);饑餓脅迫;生理生態(tài)
中圖分類號(hào):Q968 文獻(xiàn)識(shí)別碼:A 文獻(xiàn)編號(hào):1005-6114(2024)06-001-05
生物在其生命周期中需不斷攝取食物,為運(yùn)動(dòng)、生長(zhǎng)、繁殖等生命活動(dòng)提供物質(zhì)基礎(chǔ)與能量[1]。昆蟲(chóng)作為自然界中最常見(jiàn)的生物,常常會(huì)面臨環(huán)境變化、季節(jié)轉(zhuǎn)變及食物分布不均等挑戰(zhàn),常遭受饑餓脅迫[2],即使在人工飼養(yǎng)環(huán)境下也經(jīng)常受到饑餓脅迫。食物供應(yīng)不足對(duì)昆蟲(chóng)生長(zhǎng)發(fā)育、繁殖能力產(chǎn)生負(fù)面影響[2]。持續(xù)的饑餓脅迫對(duì)生物體構(gòu)成重大挑戰(zhàn),迫使其依賴體內(nèi)儲(chǔ)存的能量以維持生理平衡,通過(guò)減少活動(dòng)量、降低生理生化代謝率、保持關(guān)鍵組織的完整性與功能可提高其生存幾率[3]。鑒于昆蟲(chóng)在生物多樣性和生態(tài)穩(wěn)定中發(fā)揮的重要作用及其可作為有利的生物資源[4],開(kāi)展相關(guān)領(lǐng)域的研究,對(duì)于揭示昆蟲(chóng)如何適應(yīng)饑餓壓力、優(yōu)化昆蟲(chóng)飼養(yǎng)管理、提升生產(chǎn)實(shí)踐水平以及保護(hù)昆蟲(chóng)資源等具有重要的生態(tài)學(xué)意義。
1 饑餓脅迫對(duì)昆蟲(chóng)生長(zhǎng)發(fā)育及繁殖的影響
1.1 昆蟲(chóng)發(fā)育歷期
不同發(fā)育階段的饑餓脅迫能夠影響昆蟲(chóng)的正常生長(zhǎng)發(fā)育。昆蟲(chóng)的早期發(fā)育階段主要包括完全變態(tài)昆蟲(chóng)的幼蟲(chóng)階段和不完全變態(tài)昆蟲(chóng)的若蟲(chóng)階段,幼蟲(chóng)和若蟲(chóng)階段的共同特點(diǎn)是食量大,特別是末齡階段對(duì)食物的需求量較大,需要快速積累營(yíng)養(yǎng)物質(zhì)來(lái)保證自身生長(zhǎng)發(fā)育。因此,食物資源是否充足是影響該階段生長(zhǎng)發(fā)育的關(guān)鍵[5]。
在完全變態(tài)昆蟲(chóng)中,幼蟲(chóng)期饑餓將影響其發(fā)育歷期。有研究發(fā)現(xiàn),稻縱卷葉螟(Cnaphalocrocis medinalis)4齡及5齡幼蟲(chóng)經(jīng)歷24 h和48 h饑餓處理及偏瞳蔽眼蝶(Bicyclus anynana)5齡幼蟲(chóng)饑餓2 d后,幼蟲(chóng)及各齡期之間的歷期均會(huì)延長(zhǎng)[6-8];這說(shuō)明饑餓不僅會(huì)對(duì)幼蟲(chóng)的正常生長(zhǎng)進(jìn)程造成影響,而且會(huì)影響其發(fā)育歷期?;ńq寄甲(Dastarcus helophoroides)幼蟲(chóng)的饑餓時(shí)間越長(zhǎng),幼蟲(chóng)和蛹的發(fā)育歷期就越長(zhǎng),表明饑餓對(duì)昆蟲(chóng)帶來(lái)的負(fù)面效應(yīng)隨饑餓程度增加而加重[9]。
饑餓同樣對(duì)不完全變態(tài)昆蟲(chóng)的發(fā)育歷期產(chǎn)生影響。如盲蝽科(Miridae)若蟲(chóng)階段不提供昆蟲(chóng)卵,會(huì)導(dǎo)致若蟲(chóng)發(fā)育歷期延長(zhǎng)10 d左右[10];螳螂目澳洲芽翅螳螂(Pseudomantis albofimbriata)及水黽(Aquarius remigis)在若蟲(chóng)期饑餓,會(huì)導(dǎo)致個(gè)體發(fā)育時(shí)間延長(zhǎng)、發(fā)育速率減緩[11,12]。
饑餓脅迫下,幼蟲(chóng)發(fā)育期的延長(zhǎng)使其能夠在營(yíng)養(yǎng)不足的情況下生存,昆蟲(chóng)通過(guò)延長(zhǎng)取食活動(dòng)時(shí)間,以獲取足夠的食物資源來(lái)完成生長(zhǎng)所需要的營(yíng)養(yǎng)[13];另外,應(yīng)對(duì)饑餓脅迫,昆蟲(chóng)會(huì)通過(guò)增強(qiáng)自身的耐饑餓性從而抵御饑餓帶來(lái)的不利影響,并且隨著幼蟲(chóng)齡期增大,其耐受性也逐漸增強(qiáng)[14]。
1.2 昆蟲(chóng)繁殖策略
自然界中,大多數(shù)昆蟲(chóng)羽化后的成蟲(chóng)需要獲取足夠的食物才能達(dá)到性成熟,否則無(wú)法成功繁殖[15]。昆蟲(chóng)生命活動(dòng)需要食物提供能量,與其生存繁殖息息相關(guān),昆蟲(chóng)卵巢受到饑餓刺激時(shí)會(huì)對(duì)繁殖產(chǎn)生重要影響[16]。在食物充足、生存環(huán)境良好的情況下,昆蟲(chóng)卵巢可正常發(fā)育并產(chǎn)卵;但在食物匱乏時(shí),昆蟲(chóng)會(huì)吸收卵母細(xì)胞或胚胎,優(yōu)先確保自身存活而非繁殖[17]。
昆蟲(chóng)在面對(duì)饑餓脅迫時(shí),采取的繁殖策略之一是通過(guò)胚胎吸收來(lái)適應(yīng)環(huán)境[18]。有研究表明,在饑餓情況下,大多數(shù)昆蟲(chóng)會(huì)吸收卵母細(xì)胞,包括直翅目、鱗翅目、雙翅目、半翅目、膜翅目、蜚蠊目和鞘翅目等[17-21]。例如,瓢蟲(chóng)在面對(duì)饑餓時(shí)會(huì)吸收卵母細(xì)胞,導(dǎo)致產(chǎn)卵率暫時(shí)下降,但一旦獲得充足營(yíng)養(yǎng),卵巢發(fā)育將重新達(dá)到正常水平,產(chǎn)卵率會(huì)恢復(fù)到較高水平[22,23];與在正常環(huán)境中飼養(yǎng)的蜜蜂相比,意大利蜜蜂工蜂在饑餓狀態(tài)下會(huì)出現(xiàn)卵巢萎縮和卵小管數(shù)量減少的情況,此現(xiàn)象旨在確保種群數(shù)量得以維持,并保證蜜蜂有足夠的食物供應(yīng)[24];對(duì)稻縱卷葉螟的遷飛行為研究發(fā)現(xiàn),羽化后1日齡的蟲(chóng)體經(jīng)歷饑餓會(huì)顯著延長(zhǎng)產(chǎn)卵前期,而羽化初期的饑餓會(huì)延遲雌雄蛾的交配行為[25];饑餓狀態(tài)下,蠋蝽(Arma chinensis)的產(chǎn)卵數(shù)量減少,孵化率下降[26]。但也有例外,絨繭蜂(Cotesia plutellae)早期饑餓階段產(chǎn)生了大量繁殖個(gè)體,隨著饑餓時(shí)間延長(zhǎng),繁殖個(gè)體數(shù)量急劇減少,更趨于后代繁殖,以確保種群生存和繁衍[27]。
1.3 昆蟲(chóng)存活率及壽命
在饑餓脅迫下,昆蟲(chóng)的存活率下降、壽命縮短。有研究發(fā)現(xiàn),對(duì)麥長(zhǎng)管蚜(Sitobion avenae)有翅成蚜進(jìn)行饑餓處理后,其壽命顯著降低[28],隨饑餓程度增加,其壽命顯著縮短[29];小凹黃蕈甲(Dacne picta)4齡幼蟲(chóng)饑餓3 d后出現(xiàn)幼蟲(chóng)化蛹率降低的現(xiàn)象[30];異色瓢蟲(chóng)(Harmonia axyridis)各蟲(chóng)態(tài)存活率均隨饑餓時(shí)間的延長(zhǎng)而下降,飼喂1 d或不飼喂會(huì)影響其4齡幼蟲(chóng)蛻皮,導(dǎo)致幼蟲(chóng)存活率顯著降低[31];甜菜夜蛾(Spodoptera exigua)4齡、5齡幼蟲(chóng)隨饑餓時(shí)間的延長(zhǎng),雌蟲(chóng)壽命縮短[32]。
但也有研究發(fā)現(xiàn),饑餓處理可能對(duì)昆蟲(chóng)存活率和壽命不產(chǎn)生顯著影響甚至導(dǎo)致其壽命延長(zhǎng)。桔小實(shí)蠅(Bactrocera dorsalis)饑餓處理后,雖然其幼蟲(chóng)發(fā)育歷期縮短,但死亡率未顯著上升[33];對(duì)果蠅(Drosophila melanogaster)不斷制造饑餓感反而能延長(zhǎng)其壽命[34]。
昆蟲(chóng)耐饑餓能力與齡期有關(guān)。研究表明,斜紋夜蛾(Spodoptera litura)耐饑餓能力與幼蟲(chóng)發(fā)育階段息息相關(guān),幼蟲(chóng)齡期越大,饑餓狀態(tài)下存活的時(shí)間就越長(zhǎng),最短的存活時(shí)間出現(xiàn)在1齡幼蟲(chóng),僅為64 h,而經(jīng)過(guò)168 h的饑餓后,6齡幼蟲(chóng)依然有部分能夠存活[35]。
2 饑餓對(duì)昆蟲(chóng)消化酶活性的影響
昆蟲(chóng)的消化酶是由消化腺產(chǎn)生,具有消化和吸收功能;消化酶一般包括蛋白酶、脂肪酶、淀粉酶和纖維素蛋白酶等[36]。蛋白酶在昆蟲(chóng)的腸中大量產(chǎn)生,直接影響其利用外界能量的效率,對(duì)昆蟲(chóng)的消化有關(guān)鍵作用[37]。脂肪酶可以催化脂溶性酯類如甘油三酯的多種反應(yīng),將其分解為更易被吸收的游離脂肪酸或其他小分子[38]。這些消化酶參與食物消化和養(yǎng)分吸收,是昆蟲(chóng)消化系統(tǒng)的重要組成部分[39]。在饑餓脅迫下,昆蟲(chóng)的消化酶活力會(huì)降低,如蟋蟀(Gryllidae)饑餓處理后,體內(nèi)消化酶活力是正常水平的50%~60%[40];饑餓會(huì)使美洲大蠊(Periplaneta americana)體內(nèi)蛋白酶活力下降[41]。
3 饑餓對(duì)昆蟲(chóng)能源物質(zhì)的影響
昆蟲(chóng)在饑餓狀態(tài)下,會(huì)減少體內(nèi)碳水化合物消耗、脂類合成等相關(guān)生理調(diào)控進(jìn)程,以儲(chǔ)備能源物質(zhì)來(lái)應(yīng)對(duì)饑餓脅迫。昆蟲(chóng)的主要能量?jī)?chǔ)備包括糖原、海藻糖和葡萄糖,這些物質(zhì)不僅能提高昆蟲(chóng)的耐饑餓能力,還參與其生理活動(dòng)。在饑餓壓力下,糖原會(huì)轉(zhuǎn)化為其他能量物質(zhì)以維持生命活動(dòng)[42]。有研究表明,饑餓后的小地老虎(Agrotis ypsilon)雄蟲(chóng),其甘油酯含量呈現(xiàn)先下降、后上升的趨勢(shì),中期糖元含量較高,而雌蟲(chóng)在饑餓后海藻糖濃度的增加不明顯[43];而粘蟲(chóng)(Mythimna separata)的雌蛾在饑餓后再進(jìn)食可導(dǎo)致海藻糖濃度升高[44]。在不同時(shí)間段的饑餓脅迫后,中華蜜蜂(Apis cerana cerana)的血淋巴蛋白含量先升后降,與對(duì)照組相比有顯著差異,且在饑餓9 h后達(dá)到最高值(76.58±0.60)g/L[45]。在饑餓狀態(tài)下,有翅棉蚜(Aphis gossypii)和無(wú)翅棉蚜的可溶性糖、總脂、可溶性蛋白質(zhì)含量均低于對(duì)照組;而饑餓導(dǎo)致家蠶幼蟲(chóng)48~72 h的血淋巴中海藻糖的濃度提高[46]。非洲果甲蟲(chóng)(Pachnoda sinuata)在饑餓期間,其體重顯著降低,同時(shí)脂肪體血淋巴中的碳水化合物和丙氨酸濃度明顯下降[47];經(jīng)歷饑餓脅迫的麥長(zhǎng)管蚜有翅成蚜個(gè)體,其能量物質(zhì)、可溶性蛋白、可溶性糖和糖原含量均明顯低于同批羽化后的個(gè)體[48]。
海藻糖是昆蟲(chóng)體內(nèi)的重要物質(zhì),對(duì)調(diào)節(jié)昆蟲(chóng)生命活動(dòng)有關(guān)鍵作用[49],2003年首次在昆蟲(chóng)中發(fā)現(xiàn)海藻糖[50]。有研究表明,隨著饑餓程度增加,昆蟲(chóng)體內(nèi)糖原減少,而海藻糖維持相對(duì)穩(wěn)定[51];饑餓緩解后,血淋巴中的葡萄糖增加并轉(zhuǎn)化為海藻糖和糖原儲(chǔ)存。在饑餓狀態(tài)下,意大利蜜蜂幼蟲(chóng)的血糖海藻糖濃度保持穩(wěn)定[52];8 h饑餓脅迫后,異色瓢蟲(chóng)的海藻糖水平和海藻糖酶活性明顯下降,而經(jīng)過(guò)8~24 h的饑餓處理后,海藻糖保持著穩(wěn)定的高濃度水平,與此同時(shí),糖原下降[51]。昆蟲(chóng)在饑餓狀態(tài)下,甘油三酯與脂類的含量也相應(yīng)調(diào)節(jié)[53]。昆蟲(chóng)體內(nèi)的重要脂質(zhì)代謝調(diào)節(jié)機(jī)制是脂動(dòng)激素(AKH)信號(hào)通路。通過(guò)研究灰飛虱(Laodelphax striatellus)的抗逆因素發(fā)現(xiàn),感染W(wǎng)olbachia的成蟲(chóng),在饑餓時(shí)間增加的情況下,甘油三酯含量高于對(duì)照組,3日齡雌雄成蟲(chóng)中LsAKH和LsAKHR的表達(dá)逐漸減少,饑餓48 h后,感染組與對(duì)照組有顯著差異[54]。
4 饑餓對(duì)昆蟲(chóng)遷飛、捕食行為的影響
4.1 昆蟲(chóng)遷飛
遷飛是昆蟲(chóng)適應(yīng)自然環(huán)境、應(yīng)對(duì)環(huán)境變化所產(chǎn)生的一種行為對(duì)策[55],與昆蟲(chóng)生活史的延續(xù)及其后代繁衍息息相關(guān)[56]。在自然界中存在許多環(huán)境脅迫因素,其中饑餓脅迫對(duì)昆蟲(chóng)遷飛的影響作用顯著。
有研究發(fā)現(xiàn),很多昆蟲(chóng)在饑餓脅迫下遷飛能力下降。例如,馬鈴薯甲蟲(chóng)(Leptinotarsa decemlineata)在短時(shí)間的饑餓后,會(huì)導(dǎo)致其遷飛,且長(zhǎng)時(shí)間營(yíng)養(yǎng)不足也會(huì)導(dǎo)致其遷飛能量供給不足,飛行能力下降[57];饑餓影響1日齡粘蟲(chóng)的飛行能力,導(dǎo)致其飛行能力下降,并且影響其發(fā)育方向和重點(diǎn),即由飛行轉(zhuǎn)向生殖[58];在食物不足的情況下,小地老虎成蟲(chóng)期的飛行肌發(fā)育受到抑制,從而影響成蟲(chóng)的遠(yuǎn)距離持續(xù)飛行[43]。
但也有研究發(fā)現(xiàn),饑餓脅迫反而提高昆蟲(chóng)飛行效率,如幼蟲(chóng)階段的短時(shí)饑餓會(huì)誘導(dǎo)甲蟲(chóng)類鞘翅目的擬步甲(Coleoptera)形態(tài)發(fā)生變化,這可能會(huì)提高成蟲(chóng)的飛行效率[59];此外,饑餓脅迫并非對(duì)所有昆蟲(chóng)的飛行能力產(chǎn)生影響,如非洲水果甲蟲(chóng)饑餓15~30 d,其飛行能力沒(méi)有受損[49];饑餓情況下,僅飼喂蜂蜜水和清水的小地老虎成蟲(chóng)在前3日齡的飛行能力并沒(méi)有顯著性差異[60]。
4.2 昆蟲(chóng)捕食能力
天敵昆蟲(chóng)在貯藏、運(yùn)輸或釋放到田間后經(jīng)常遇到食物缺乏的情況而面臨饑餓脅迫[61]。饑餓不僅影響天敵昆蟲(chóng)對(duì)寄主或獵物的搜尋行為和食物消化速率,還會(huì)影響其對(duì)獵物的捕食效率[62]。
對(duì)大多數(shù)捕食性天敵昆蟲(chóng)而言,短時(shí)間的饑餓不僅不會(huì)影響其生長(zhǎng)發(fā)育,并且還能刺激其擴(kuò)散、搜尋以及捕食能力[63]。饑餓處理后,擬小食螨瓢蟲(chóng)[Stethorus (Allosstethorus)parapauperculus]的捕食量增加,且饑餓狀態(tài)下的捕食量顯著高于未饑餓的個(gè)體[64];饑餓也會(huì)影響微小花蝽(Orius minutus)成蟲(chóng)的捕食速率,并且在饑餓后開(kāi)始捕食的4 h內(nèi)速率最高[65]。有研究發(fā)現(xiàn),饑餓后的異色瓢蟲(chóng)在恢復(fù)捕食的初始階段的捕食能力較強(qiáng),其后捕食量逐漸下降[66];在饑餓對(duì)龜紋瓢蟲(chóng)(Propylaea japonica)捕食能力的研究中也發(fā)現(xiàn)這種情況,即在恢復(fù)捕食的初期捕食量增加,隨后逐漸下降[67]。這可能是因?yàn)轲囸I處理后的個(gè)體對(duì)能量需求較高,因此會(huì)提高其取食量和捕食效率[68]。
5 展望
我國(guó)是農(nóng)業(yè)大國(guó),生物防治對(duì)我國(guó)農(nóng)業(yè)發(fā)展極為重要,饑餓脅迫是生物都會(huì)面臨的一種環(huán)境脅迫,對(duì)于生物的影響較為廣泛。本文重點(diǎn)闡述了饑餓脅迫對(duì)昆蟲(chóng)的影響,包括生長(zhǎng)發(fā)育及繁殖、消化酶、能源物質(zhì)以及捕食、遷飛行為。由于昆蟲(chóng)種類不同,饑餓脅迫造成的影響也存在顯著差異。但已有的研究主要關(guān)注于F1代昆蟲(chóng)饑餓脅迫后對(duì)其造成的影響,對(duì)于其饑餓后產(chǎn)生的后代是否會(huì)有影響研究較少,對(duì)于饑餓脅迫導(dǎo)致的昆蟲(chóng)生理生化分子機(jī)制也不是很清晰。因此,未來(lái)的研究應(yīng)注意進(jìn)一步探究饑餓脅迫對(duì)昆蟲(chóng)后代的影響效應(yīng),分析導(dǎo)致這種效應(yīng)的生理生化基礎(chǔ)及相關(guān)的分子機(jī)制,以期為深入了解昆蟲(chóng)應(yīng)對(duì)饑餓脅迫的機(jī)制提供基礎(chǔ),為飼養(yǎng)繁育昆蟲(chóng)和生物防治活動(dòng)的進(jìn)行提供理論支撐。
參考文獻(xiàn)
[1] 范曉騰.饑餓脅迫對(duì)斑馬魚(yú)生殖發(fā)育、細(xì)胞生長(zhǎng)、自噬活動(dòng)及DNA甲基化響應(yīng)機(jī)制的研究[D].陜西:西北農(nóng)林科技大學(xué),2020.
[2] Toshihiko O,Shinji F,Koji H,et al. Microbiota-derived lactate accelerates colon epithelial cell turnover in starvation-refed mice[J].Nature communications,2013,4(1):1654.
[3] Hong J X,Grace L,Hong G F,et al. The intestinal microbiome of fish under starvation[J].BMC Genomics,2014,15(1):266.
[4] 葉俊宏.家蠶羧肽酶抑制劑通過(guò)EGF/EGFR信號(hào)通路抑制胃癌細(xì)胞增殖研究[D].重慶:西南大學(xué),2022.
[5] 劉香亞.饑餓脅迫對(duì)棉鈴蟲(chóng)生殖力及其能源物質(zhì)的影響[D].南昌:江西農(nóng)業(yè)大學(xué),2022.
[6] Saastamoinen M,van der Sterren D,Vastenhout N,et al. Predictive Adaptive Responses:Condition-Dependent Impact of Adult Nutrition and Flight in the Tropical Butterfly Bicyclus anynana[J].The American Naturalist,2010,176(6):686-698.
[7] Yang F,Hu G,Shi J J,et al. Effects of larval density and food stress on life-history traits of Cnaphalocrocis medinalis(Lepidoptera:Pyralidae)[J].Journal of Applied Entomology,2014,139(5):370-380.
[8] Bauerfeind S S,F(xiàn)ischer K. Effects of larval starvation and adult diet-derived amino acids on reproduction in a fruit-feeding butterfly[J].Entomologia Experimentalis et Applicata,2009,130(3):229-237.
[9] 石昊妮.花絨寄甲松褐天牛生物型的人工繁殖技術(shù)優(yōu)化研究[D].南昌:江西農(nóng)業(yè)大學(xué),2020.
[10] Burla J P,Grille G,Lorenzo M E,et al. Effect of Different Diets on the Development,Mortality,Survival,F(xiàn)ood Uptake and Fecundity of Tupiocoris cucurbitaceus(Hemiptera:Miridae)[J].Florida Entomologist,2014,97(4):1816-1824.
[11] Barry K L. You Are What You Eat:Food Limitation Affects Reproductive Fitness in a Sexually Cannibalistic Praying Mantid[J].PLoS ONE,2013,8(10):e78164.
[12] Blanckenhorn W U. Divergent juvenile growth and development mediated by food limitation and foraging in the water striderAquarius remigis(Heteroptera:Gerridae)[J].Journal of Zoology,2005,268(1):17-23.
[13] Shafiei M,Moczek A P,Nijhout H F,et al. Food availability controls the onset of metamorphosis in the dung beetle Onthophagus taurus(Coleoptera:Scarabaeidae)[J].Physiological Entomology,2001,26(2):173-180.
[14] ukowski A,Adamczyk D,et al. Survival and Recovery of the Pine-Tree Lappet Dendrolimus pini When Subjected to Simulated Starvation[J].Insects,2020,11(1):67.
[15] Rusterholz H,Erhardt A. Can nectar properties explain sex-specific flower preferences in the Adonis Blue butterfly Lysandra bellargus?[J].Ecological Entomology,2000,25(1):81-90.
[16] Papaj R D. Ovarian Dynamics and Host Use[J].Annual Review of Entomology,2000,45(1):423-448.
[17] Tomonari N,Kenji M. Oocyte resorption in termite queens:Seasonal dynamics and controlling factors[J].Journal of Insect Physiology,2021,131:104242.
[18] Amaral E S D,Andrade C N,Antonio L C O D,et al. Effect of mating delay on the ovary of Melipona quadrifasciata anthidioides(Hymenoptera:Apidae)queens[J].Micron(Oxford,England:1993),2007,38(5):471-477.
[19] Kotaki T. Oosorption in the stink bug,Plautia crossota stali:induction and vitellogenin dynamics[J].Journal of Insect Physiology,2003,49(2):105-113.
[20] Jervis M A,Heimpel G E,F(xiàn)erns P N,et al. Life-history strategies in parasitoid wasps:a comparative analysis of ‘ovigeny’[J].Journal of Animal Ecology,2001,70:442-458.
[21] Rosenheim J A,Heimpel G E,Mangel M. Egg maturation,egg resorption and the costliness of transient egg limitation in insects[J].Proceedings of the Royal Society of London Series B,2000,267:1565-1573.
[22] Kajita Y,Evans W E. Ovarian dynamics and oosorption in two species of predatory lady beetles(Coleoptera:Coccinellidae)[J].Physiological Entomology,2009,34(2):185-194.
[23] Ohgushi T. A reproductive tradeoff in an herbivorous lady beetle:egg resorption and female survival[J].Oecologia,1996,106:345-351.
[24] Aamidor S E,Cardoso Júnior Carlos A M,Harianto J,et al. Reproductive plasticity and oogenesis in the queen honey bee(Apis mellifera)[J].Journal of Insect Physiology,DOI:10.1016/J.JINSPHYS. 2021.104347.
[25] 郭嘉雯.成蟲(chóng)營(yíng)養(yǎng)對(duì)稻縱卷葉螟遷飛和生殖的影響[D].南京:南京農(nóng)業(yè)大學(xué),2019.
[26] 張海平,潘明真,易忠經(jīng),等.短期饑餓處理對(duì)蠋蝽壽命、繁殖力及捕食量的影響[J].中國(guó)生物防治學(xué)報(bào),2017,33(2):159-164.
[27] 白素芬,陳學(xué)新,程家安,等.寄主齡期、過(guò)寄生和寄主饑餓處理對(duì)菜蛾盤(pán)絨繭蜂幼蜂及畸形細(xì)胞發(fā)育的影響[J].昆蟲(chóng)學(xué)報(bào),2005,48(3):331-336.
[28] 呂楠楠,石棋,仵均祥,等.麥長(zhǎng)管蚜有翅成蚜母代饑餓對(duì)其后代發(fā)育和繁殖的影響[J].昆蟲(chóng)學(xué)報(bào),2018,61(10):1177-1183.
[29] 于飛,曾鑫年,張帥,等.取食量對(duì)昆蟲(chóng)生長(zhǎng)發(fā)育影響的研究[J].廣東農(nóng)業(yè)科學(xué),2004(1):42-44.
[30] Sato T,Suzuki A. Effect of starvation and feeding of larvae during 4th stadia on pupation and adult size inDacne picta(Coleoptera:Erotylidae)[J].Applied Entomology and Zoology,2001,36(2):189-197.
[31] 李陽(yáng),孟玲,李保平.饑餓脅迫對(duì)異色瓢蟲(chóng)幼蟲(chóng)發(fā)育的影響[J].中國(guó)生物防治學(xué)報(bào),2016,32(2):149-154.
[32] 王竑晟,徐洪富,崔峰,等.幼蟲(chóng)期營(yíng)養(yǎng)對(duì)甜菜夜蛾生殖力及卵巢發(fā)育的影響[J].西北農(nóng)業(yè)學(xué)報(bào),2004(2):67-70.
[33] 叢林,蔣玄趙,楊文佳,等.橘小實(shí)蠅蛻皮激素合成通路基因鑒定分析及饑餓對(duì)幼蟲(chóng)發(fā)育的影響[J].中國(guó)農(nóng)業(yè)科學(xué),2015,48(22):4469-4482.
[34] WeaverJ K,Holt R A,Henry E,et al. Effects of hunger on neuronal histone modifications slow aging in Drosophila[J].Science,2023,380:625-632.
[35] 許愷凡.變溫對(duì)斜紋夜蛾生長(zhǎng)發(fā)育繁殖及耐饑餓能力的影響研究[D].雅安:四川農(nóng)業(yè)大學(xué),2018.
[36] Ajamhassani M,Zibaee A,Sendi J,et al. Proteo-lytic activity in the midgut of the crimson speckled moth Utethesia pulchella L.(Lepidoptera:Arctiidae)[J].Journal of Plant Protection Research,2012,52(3):368-373.
[37] Athenstaedt K,Daum G. The life cycle of neutral lipids:synthesis,storage and degradation[J].Cellular and Molecular Life Sciences,2006,63(12):1355-1369.
[38] 胡深強(qiáng),潘志雄,王繼文.脂肪甘油三酯脂肪酶(ATGL)的生物學(xué)功能及調(diào)控機(jī)制[J].中國(guó)生物化學(xué)與分子生物學(xué)報(bào),2011,27(08):721-727.
[39] Arrese L E,Soulages L J. Insect Fat Body:Energy,Metabolism,and Regulation[J].Annual Review of Entomology,2010,55(1):207-225.
[40] Thomas K K,Nation J L. Protease,amylase and lipase activities in the midgut and hindgut of the cricket,Gryllus rubens and mole cricket,Scapteriscus acletus[J].Comparative Biochemistry amp; Physiology Part A Physiology,1984,79(2):297-304.
[41] Mikani A,Wang Q,Takeda M. Brain-midgut short neuropeptide F mechanism that inhibits digestive activity of the American cockroach,Periplaneta americana upon starvation[J].Peptides,2012,34(1):135-144.
[42] ZhangD W,Xiao Z J,Zeng B P,et al. Insect Behavior and Physiological Adaptation Mechanisms Under Starvation Stress[J].Frontiers in Physiology,2019,10:163.
[43] 王偉,尹姣,曹雅忠,等.饑餓和交配對(duì)小地老虎飛行肌發(fā)育的影響[J].應(yīng)用昆蟲(chóng)學(xué)報(bào),2013,50(6):1573-1585.
[44] 張亞玲.補(bǔ)充營(yíng)養(yǎng)對(duì)粘蟲(chóng)性信息素生物合成的影響[D].鄭州:河南農(nóng)業(yè)大學(xué),2020.
[45] 張杏.饑餓及紫外脅迫下中華蜜蜂免疫應(yīng)答反應(yīng)的轉(zhuǎn)錄組分析[D].西安:陜西師范大學(xué),2019.
[46] 孟竹,文茂羽,康曉麗,等.饑餓脅迫對(duì)家蠶糖脂代謝的影響及BmFoxO的作用[J].昆蟲(chóng)學(xué)報(bào),2018,61(8):895-904.
[47] Auerswald L,Gde G. Metabolic changes in the African fruit beetle,Pachnoda sinuata,during starvation[J].J Insect Physiol,2000,46(3):343-351.
[48] 許向利,仵均祥.饑餓脅迫對(duì)麥長(zhǎng)管蚜有翅成蚜能量物質(zhì)含量的影響[J].昆蟲(chóng)學(xué)報(bào),2015,58(6):587-592.
[49] ChenQ F,Haddad Gabreil G. Role of trehalose phosphate synthase and trehalose during hypoxia:from flies to mammals[J].The Journal of Experimental Biology,2004,207(18):3125-3134.
[50] Elbein A D,Pan T Y,Pastuszak I,et al. New insights on trehalose:a multifunctional molecule[J].Glycobiology,2003,13(4):17R-27R.
[51] Shi Z,Wang S,Wang S,et al. Effects of starvation on the carbohydrate metabolism inHarmonia axyridis(Pallas)[J].Biology Open,2017,6(7):1096-1103.
[52] Wang D,Pei X,Zhao W,et al. Steroid hormone 20-hydroxyecdysone promotes higher calcium mobilization to induce apoptosis[J].Cell Calcium,2016,60(1):1-12.
[53] Hibshman J D,Doan A E,Moore B T,et al. daf-16/FoxO promotes gluconeogenesis and trehalose synthesis during starvation to support survival[J].eLife,2017:DOI:10.7554/eLife.3057.
[54] 李國(guó)洋.Wolbachia對(duì)灰飛虱抗逆性及AKH相關(guān)基因表達(dá)的影響[D].重慶:西南大學(xué),2021.
[55] Kennedy J. A Turning Point in the Study of Insect Migration[J].Nature,1961,189:785-791.
[56] 羅禮智,李光博,曹雅忠,等.粘蟲(chóng)幼蟲(chóng)密度對(duì)成蟲(chóng)飛行與生殖的影響[J].昆蟲(chóng)學(xué)報(bào),1995,38(1):38-45.
[57] 郭文超,吐?tīng)栠d,郭利娜,等.營(yíng)養(yǎng)對(duì)馬鈴薯甲蟲(chóng)遷飛能力的影響[J].新疆農(nóng)業(yè)科學(xué),2012,49(3):461-469.
[58] 張蕾,羅禮智,江幸福,等.一日齡饑餓對(duì)粘蟲(chóng)成蟲(chóng)卵巢發(fā)育和飛行能力的影響[J].昆蟲(chóng)學(xué)報(bào),2006(6):895-902.
[59] Angelo M J,F(xiàn)rank S. Body Building by Insects:Trade-Offs in Resource Allocation with Particular Reference to Migratory Species[J].Florida Entomologist,1984,67(1):22-41.
[60] Sappington T W,Showers W B. Influence of Larval Starvation and Adult Diet on Long-Duration Flight Behavior of the Migratory Moth Agrotis ipsilon(Lepidoptera:Noctuidae)[J].Environmental Entomology,1993(1):141-148.
[61] Ghazy N A,Osakabe M,Aboshi T,et al. The effects of prestarvation diet on starvation tolerance of the predatory mite N eoseiulus californicus(A cari:Phytoseiidae)[J].Physiological Entomology,2015,40(4):296-303.
[62] Gui L Y,Boiteau G. Effect of food deprivation on the ambulatory movement of the Colorado potato beetle,Leptinotarsa decemlineata[J].Entomologia Experimentalis et Applicata,2010,134:138-145.
[63] Hénaut Y,Machkour-MRabet S. Interspecific aggregation around the web of the orb spider Nephila clavipes:consequences for the web architecture of Leucauge venusta[J].Ethology Ecology Evolution,2010,22(2):203-209.
[64] 陳俊諭,王建赟,張方平,等.不同饑餓程度擬小食螨瓢蟲(chóng)對(duì)朱砂葉螨的捕食作用[J].環(huán)境昆蟲(chóng)學(xué)報(bào),2020,42(5):1201-1209.
[65] 盧永宏,楊群芳.饑餓對(duì)微小花蝽成蟲(chóng)捕食作用的影響[J].中國(guó)農(nóng)學(xué)通報(bào),2011,27(9):400-402.
[66] 田仲,管德義,劉劍.異色瓢蟲(chóng)耐饑能力及饑餓對(duì)其捕食槐蚜功能的影響[J].植物保護(hù),2007(4):80-83.
[67] 巫厚長(zhǎng),程遐年,鄒運(yùn)鼎.不同饑餓程度的龜紋瓢蟲(chóng)成蟲(chóng)對(duì)煙蚜的捕食作用[J].應(yīng)用生態(tài)學(xué)報(bào),2000(5):749-752.
[68] Lima S L. Nonlethal Effects in the Ecology of Predator-Prey Interactions[J].Bioscience,1998,48(1):25-34.