摘要: 實施“雙碳”戰(zhàn)略是一場影響廣泛而深刻的經(jīng)濟(jì)社會系統(tǒng)性變革,如期實現(xiàn)“碳達(dá)峰、碳中和”目標(biāo)離不開電力行業(yè)重大技術(shù)突破和科技創(chuàng)新支撐.核電憑借高能效、清潔無碳、電量穩(wěn)定等優(yōu)勢,具有明顯的經(jīng)濟(jì)效益,應(yīng)用前景廣闊.核安全是核電發(fā)展的生命線,核主泵作為核島一回路系統(tǒng)中的“心臟”,其能否在長服役壽命周期內(nèi)安全、穩(wěn)定、可靠運行將直接影響整個核電機(jī)組的安全性,因此開展核主泵智能故障診斷與健康管理至關(guān)重要.首先,論述了故障診斷對核主泵安全穩(wěn)定、可靠運行的意義;其次,介紹了核主泵的結(jié)構(gòu)組成與工作原理;再次,闡述了核主泵常見故障類型及機(jī)理;從次,綜述了近年來國內(nèi)外學(xué)者在核主泵故障診斷與故障預(yù)警方面的研究成果;最后,對核主泵故障診斷未來研究方向進(jìn)行了分析與展望.
關(guān)鍵詞: 核主泵;故障診斷;故障預(yù)測;健康管理;智能運維
中圖分類號: S277.9;TM623.7文獻(xiàn)標(biāo)志碼: A文章編號: 1674-8530(2024)11-1081-10
DOI:10.3969/j.issn.1674-8530.23.0048
周濤,朱勇,湯勝楠,等.核主泵故障診斷研究現(xiàn)狀與展望[J]. 排灌機(jī)械工程學(xué)報,2024,42(11):1081-1090.
ZHOU Tao, ZHU Yong, TANG Shengnan, et al. Research status and prospects of fault diagnosis for nuclear main pump[J]. Journal of drainage and irrigation machinery engineering(JDIME), 2024, 42(11): 1081-1090. (in Chinese)
Research status and prospects of fault diagnosis for nuclear main pump
ZHOU Tao1, ZHU Yong1,3, TANG Shengnan2*, WU Qingyi1
(1. National Research Center of Pumps, Jiangsu University, Zhenjiang, Jiangsu 212013, China; 2. Institute of Advanced Manufacturing and Modern Equipment Technology, Jiangsu University, Zhenjiang, Jiangsu 212013, China; 3. Wenling Fluid Machinery Technology Institute of Jiangsu University, Wenling, Zhejiang 317525, China)
Abstract: It is a systematic economic and social transformation with broad and profound impact to implement the ″carbon peaking and carbon neutrality″ strategy. The achievement of the ″carbon peaking and carbon neutrality″ on schedule hinges significantly on substantial technological advancements and robust innovation support within the power industry. Nuclear energy offers substantial economic advantages and extensive potential for application, attributable to its high energy efficiency, environmentally clean and carbonfree characteristics, and reliable power generation capabilities. Nuclear safety is fundamental to the advancement of nuclear power. The nuclear main pump, serving as the core component of the nuclear island′s primary system, plays a critical role in ensuring the safe, stable, and reliable operation of nuclear power units throughout their extended service life. Consequently, the implementation of intelligent fault diagnosis and health management for the nuclear main pump is of paramount importance to maintain the overall safety of the nuclear power unit. Initially, the importance of fault diagnosis in ensuring the safe, stable, and reliable operation of nuclear main pumps was examined. Subsequently, the structural composition and operational principles of the nuclear main pump were introduced. Thirdly, the research accomplishments of both domestic and international scholars concerning the diagnosis and early warning of nuclear main pump faults in recent years were synthesized. Finally, an analysis and projection of future research directions in the field of nuclear main pump fault diagnosis were presented.
Key words: nuclear main pump;fault diagnosis;failure prediction;health management;intelligent operation and maintenance
電力作為中國碳排放最大的行業(yè),約占中國碳排放總量的40%.在確保電力供應(yīng)安全的前提下,加快實現(xiàn)低碳轉(zhuǎn)型,是“雙碳”目標(biāo)能否實現(xiàn)的關(guān)鍵[1].推動電力行業(yè)綠色低碳轉(zhuǎn)型,需要“風(fēng)-光-水-核”等多種清潔能源協(xié)同發(fā)展,核電憑借其高能效、清潔無碳、電量穩(wěn)定等優(yōu)勢,在能源結(jié)構(gòu)中占有十分重要的地位[2-4].
核反應(yīng)堆主冷卻劑泵(簡稱核主泵)是壓水堆核電站一回路的關(guān)鍵裝置,其運行可靠性直接關(guān)系到核電站的安全[5].目前,核主泵故障類型主要有核主泵主冷卻系統(tǒng)故障、失水事故、流量損失事故、卡軸事故、斷電事故、飛輪裂紋、推力盤鎖緊杯斷裂、密封失效、部件磨損等,每種故障都可能造成不可估量的損失.因此,開展核主泵故障診斷研究對于保障核電站的安全可靠運行至關(guān)重要.
核主泵作為反應(yīng)堆一回路冷卻系統(tǒng)中唯一的旋轉(zhuǎn)機(jī)械設(shè)備,其結(jié)構(gòu)復(fù)雜,受多耦合工況且長期處于高溫、高壓的工作環(huán)境影響,對其開展有效、實時、高精度的故障診斷有一定的難度.同時,由于故障案例有限,缺乏高質(zhì)量數(shù)據(jù)樣本,在現(xiàn)有歷史數(shù)據(jù)和少故障樣本情況下用傳統(tǒng)的診斷技術(shù)和故障預(yù)警方法對核主泵故障進(jìn)行快速精準(zhǔn)、智能高效地診斷預(yù)測,有著極大的挑戰(zhàn).
隨著現(xiàn)代科技發(fā)展,核主泵故障診斷技術(shù)由最初的傳統(tǒng)故障診斷發(fā)展為智能故障診斷,同時也衍生出多種故障預(yù)測和預(yù)警方法.目前,試驗與數(shù)值模擬相結(jié)合、小樣本概率計算、專家系統(tǒng)、模糊理論、神經(jīng)網(wǎng)絡(luò)、多級流模型、支持向量機(jī)等方法在核主泵故障診斷領(lǐng)域中應(yīng)用較為廣泛,尤其基于不同機(jī)器學(xué)習(xí)方法的故障診斷技術(shù)不斷發(fā)展[6-7].在未來,核主泵故障診斷技術(shù)在提升診斷預(yù)測算法精度的同時,將發(fā)展為多種故障診斷技術(shù)的融合應(yīng)用.
文中以核主泵為研究對象,以面向先進(jìn)壓力堆核電站建設(shè)的國家重大需求為出發(fā)點,對近年來國內(nèi)外學(xué)者在核主泵故障診斷方面的成果及應(yīng)用進(jìn)行綜述,并對其發(fā)展趨勢進(jìn)行分析,為核主泵的健康管理提供一定參考.
1核主泵結(jié)構(gòu)組成及工作原理
核主泵位于一回路的反應(yīng)堆與蒸汽發(fā)生器之間,是壓水堆核電站的核安全 Ⅰ 級設(shè)備.核主泵按照密封結(jié)構(gòu)形式分為軸封型和屏蔽型(見圖1)[8].中國研制的“華龍一號”HPR1000采用軸封型的核主泵,“國和一號”CAP1400采用屏蔽型的核主泵[9].
按照設(shè)計準(zhǔn)則,核主泵主要由承壓邊界、功能部件、支撐系統(tǒng)、密封系統(tǒng)、輔助系統(tǒng)等組成[10].軸封型核主泵總體結(jié)構(gòu)分為3個部分,分別為水力機(jī)械部分、軸封系統(tǒng)、電動機(jī)部分,其中水力機(jī)械部分包括泵殼、葉輪、導(dǎo)葉、水導(dǎo)軸承、熱屏組件等,軸封系統(tǒng)采用三級串聯(lián)密封件和停車密封,電動機(jī)部分包括電動機(jī)部件(定子和轉(zhuǎn)子)、惰轉(zhuǎn)飛輪、防逆轉(zhuǎn)裝置、止推軸承、徑向軸承和油提升系統(tǒng)等[11].屏蔽型核主泵總體結(jié)構(gòu)分為2個部分,分別為水力機(jī)械和屏蔽電動機(jī),其中水力部件包括泵殼、葉輪、導(dǎo)葉等,葉輪直接安裝在電動機(jī)軸上,屏蔽電動機(jī)上下裝有2個大質(zhì)量飛輪,整個主軸由2個徑向軸承和1個雙向推力軸承支撐.
核主泵工作原理:泵殼內(nèi)的反應(yīng)堆冷卻劑沿葉輪軸線流管進(jìn)入葉輪,導(dǎo)葉體內(nèi)的壓力能主要由葉輪旋轉(zhuǎn)產(chǎn)生的動能提供,泵由電動機(jī)驅(qū)動,使核主泵連續(xù)不斷地將堆芯中產(chǎn)生的熱量傳輸?shù)秸羝l(fā)生器并轉(zhuǎn)化為內(nèi)能.
2核主泵故障診斷研究現(xiàn)狀
近年來,隨著第三代自主核電品牌投入商用,核主泵故障引起國內(nèi)外學(xué)者廣泛關(guān)注.核主泵事故工況根據(jù)其發(fā)生頻率主要分為4類[12],如圖2所示.
2.1第Ⅰ類事故工況
2.1.1反應(yīng)堆冷卻劑失流
反應(yīng)堆冷卻劑失流事故在核電安全分析中被認(rèn)為是一類非常重要的事故,受到國內(nèi)外學(xué)者廣泛關(guān)注[13].失流事故是指在一回路中冷卻劑系統(tǒng)發(fā)生故障導(dǎo)致反應(yīng)堆冷卻劑流量部分減少或完全中斷,屬于中等發(fā)生頻率事故[14].對于失流事故的故障診斷,一是經(jīng)常性對設(shè)備進(jìn)行維護(hù)以發(fā)現(xiàn)故障;二是基于熱工水力參數(shù),通過對反應(yīng)堆的控制來避免該故障的發(fā)生[15-17].傳統(tǒng)的故障診斷與預(yù)測方法在失流事故的應(yīng)用已獲得不錯的效果[18-19].隨著人工智能領(lǐng)域技術(shù)水平的不斷提升,多種故障診斷技術(shù)融合方法應(yīng)用于失流事故的故障診斷和預(yù)警.SUN等[20]提出一種神經(jīng)網(wǎng)絡(luò)與模糊系統(tǒng)相結(jié)合的故障診斷方法,模擬了冷卻劑損失事故、單泵故障、給水損失等,結(jié)果表明,該方法比基于單一神經(jīng)網(wǎng)絡(luò)和單一模糊系統(tǒng)的診斷方法收斂精度更高、收斂速度更快.佘兢克等[21]使用基于深度學(xué)習(xí)的卷積神經(jīng)網(wǎng)絡(luò)和長短期記憶模型對核電站失水事故進(jìn)行預(yù)警仿真,該方法集成了基于深度學(xué)習(xí)的卷積神經(jīng)網(wǎng)絡(luò)和卷積長短期記憶網(wǎng)絡(luò)對失水事故趨勢進(jìn)行的預(yù)測仿真,得到最終預(yù)警模型,經(jīng)多種方式驗證,該模型判定準(zhǔn)確率高且適應(yīng)性強(qiáng).QIN等[22]以失流事故為例,建立3層故障模型預(yù)測方法,引入反事實推理,并與貝葉斯網(wǎng)絡(luò)診斷方法、傳統(tǒng)數(shù)據(jù)驅(qū)動方法進(jìn)行了比較,結(jié)果表明,該方法優(yōu)于貝葉斯網(wǎng)絡(luò)診斷方法且能夠準(zhǔn)確地識別故障,為事故處理提供決策支持,以確保反應(yīng)堆安全.
2.1.2斷水工況
斷水工況引起的主泵故障屬于中等發(fā)生頻率事故,主要為推力軸承磨損故障.在核電站斷水工況下,核主泵失去設(shè)備冷卻水源,使得主泵溫度不斷上升,并伴隨發(fā)生較復(fù)雜的熱瞬態(tài)工況[23],同時潤滑介質(zhì)黏度會隨著溫度升高而下降,使得推力軸承潤滑液油膜厚度嚴(yán)重減小,進(jìn)而引發(fā)摩擦副的部分接觸磨損[24].
對于斷水工況下核主泵推力軸承的磨損問題,不同石墨化程度的石墨水潤滑推力軸承磨損質(zhì)量損失不同,合適的石墨化程度可以減少磨損質(zhì)量損失[25].王瑞等[26]建立了核主泵石墨水潤滑可傾瓦推力軸承模型,量化了極端工況下核主泵推力軸承的起飛轉(zhuǎn)速及磨損情況,研究結(jié)果可為推力軸承剩余壽命評估提供數(shù)據(jù)支持.杜鵬程等[27]采用魚骨圖根本原因分析方法對“華龍一號”某機(jī)組核主泵推力軸承磨損潛在的6種原因進(jìn)行了分析,基于排查分析結(jié)果提出了推力軸承結(jié)構(gòu)改進(jìn)方法,提升了核主泵的安全性和可靠性.軸承早期故障特征較微弱,經(jīng)常淹沒在強(qiáng)背景噪聲中[28].通過使用一些自適應(yīng)信號分解方法,可以去除噪聲帶來的影響,對核主泵推力軸承磨損檢測預(yù)警有一定的指導(dǎo)和借鑒意義[29].
2.2第Ⅱ類事故工況
第Ⅱ類事故工況主要為小破口失水事故.在核主泵正常運行時,堆芯產(chǎn)生的熱量大部分通過二回路系統(tǒng)載出,當(dāng)發(fā)生破口后,裂變產(chǎn)物的衰變不能瞬間停止,如果不及時將這部分熱量載出,堆芯將存在被燒毀的危險[30-31].
作為較安全的核電技術(shù),現(xiàn)有的第三代核電站完全有能力去應(yīng)對小破口事故,國內(nèi)外的學(xué)者也做了一些證明研究[32-33].張俊杰[34]提出一種基于信息流的小破口失水事故預(yù)測方法,使用梁氏-克里曼信息流方法對破口事故進(jìn)行預(yù)測,保證核電安全.MWANGI等[35]提出一種自適應(yīng)神經(jīng)模糊推理系統(tǒng),探討了該系統(tǒng)方法的4種不同配置,并對秦山一號核電站小破口失水事故瞬態(tài)特征進(jìn)行了建模,結(jié)果表明,所提模型不僅在早期故障檢測中具有高靈敏度,而且具有較高的預(yù)測能力.
2.3第Ⅲ類事故工況
2.3.1卡軸事故
卡軸事故是最為嚴(yán)重的反應(yīng)堆冷卻劑系統(tǒng)流量減小事故,屬于極限事故[36].卡軸事故指在額定工況點滿功率運行時轉(zhuǎn)子意外卡住或受到極大阻力,使得轉(zhuǎn)子部件的轉(zhuǎn)速急劇降低,堆芯冷卻劑流量減小,從而未能及時帶走堆芯熱量,可能導(dǎo)致燃料棒表面發(fā)生偏離泡核沸騰[37].WANG等[38-39]探究了核主泵卡軸工況下的瞬態(tài)過渡過程、泵內(nèi)部流動規(guī)律以及葉片的變形和應(yīng)力分布,通過模擬試驗獲得了壓力脈動響應(yīng)規(guī)律,并進(jìn)一步探究了核主泵小破口失水事故對卡軸事故的影響,發(fā)現(xiàn)失水程度越高,影響越顯著.LU等[40]探究了核主泵卡軸事故狀態(tài)下葉輪的徑向和軸向載荷以及典型的區(qū)域應(yīng)力分布、瞬態(tài)應(yīng)力等變化規(guī)律.以上研究揭示了當(dāng)發(fā)生卡軸事故時,核主泵的一些瞬態(tài)特性,對后續(xù)卡軸事故故障診斷具有指導(dǎo)、借鑒意義.
2.3.2大破口失水事故
大破口失水事故與小破口事故機(jī)理相似,均是反應(yīng)堆冷卻劑系統(tǒng)壓力邊界破裂導(dǎo)致冷卻劑流失的事故,嚴(yán)重威脅反應(yīng)堆的安全[41].AN等[42]探究了核主泵大破口失水事故逆泵模式工況下的空化性能,結(jié)果表明,空化會對水力部件造成劇烈的機(jī)械振動和侵蝕,甚至導(dǎo)致嚴(yán)重事故.
2.4其他事故工況
2.4.1斷電事故
在斷電事故工況下,核主泵轉(zhuǎn)速、流量和揚(yáng)程等參數(shù)都呈非線性變化,而核主泵惰轉(zhuǎn)特性是否達(dá)到安全評價標(biāo)準(zhǔn)對于核電安全至關(guān)重要[43].惰轉(zhuǎn)特性如果未達(dá)到安全評價標(biāo)準(zhǔn),可能會導(dǎo)致主泵事故停機(jī)、軸承座振動異常等,嚴(yán)重時會發(fā)生軸承燒瓦.LU等[44]研究了斷電事故工況下核主泵惰轉(zhuǎn)過渡過程的能量轉(zhuǎn)換過程,試驗發(fā)現(xiàn),導(dǎo)流葉片的轉(zhuǎn)向延長了惰轉(zhuǎn)過渡時間,使堆芯獲得更充足的冷卻劑.因此,結(jié)構(gòu)優(yōu)化有時可以避免故障的發(fā)生.
2.4.2飛輪裂紋
核主泵飛輪的主要作用是保證主泵在發(fā)生斷電事故時,使核主泵有足夠的惰轉(zhuǎn)時間,減慢流量降低速率,同時增大轉(zhuǎn)動部件的轉(zhuǎn)動慣量,維持一回路冷卻劑所需慣性流量,將堆芯殘余熱量帶走[45].
針對飛輪裂紋問題,劉昺軼等[46]通過有限元法計算出飛輪裂紋的應(yīng)力強(qiáng)度因子,得到應(yīng)力強(qiáng)度因子與轉(zhuǎn)速、裂紋深度及長度的變化關(guān)系,修正了應(yīng)力強(qiáng)度因子的計算公式,并結(jié)合Paris公式對飛輪裂紋進(jìn)行壽命評估.陰宏宇等[47]采用權(quán)函數(shù)法快速求解在同等結(jié)構(gòu)下不同載荷條件、不同長度裂紋的應(yīng)力強(qiáng)度因子,得到了精確度更高的應(yīng)力強(qiáng)度因子變化規(guī)律,便于對飛輪結(jié)構(gòu)進(jìn)行評估,確保飛輪設(shè)計的可靠性.ZHONG等[48]針對核電站旋轉(zhuǎn)機(jī)械裂紋故障,提出了一種集成學(xué)習(xí)方法來減輕現(xiàn)場故障數(shù)據(jù)缺乏和設(shè)備測量高噪聲背景等負(fù)面影響,研究表明,在含有噪聲和小數(shù)據(jù)的情況下,集成學(xué)習(xí)模型比單個模型具有更好的診斷效果.
2.4.3推力盤鎖緊杯斷裂
鎖緊杯在制造過程中采用低于最終淬火溫度的低熱處理溫度方法,該方法使鎖緊杯強(qiáng)度升高,但韌性降低.細(xì)微的初始缺陷會隨著核主泵的運行不斷被放大,最終引發(fā)主泵故障.主泵局部共振也會導(dǎo)致推力盤鎖緊杯斷裂,導(dǎo)致主泵故障停運[49-50].因此,對鎖緊杯制造后的表面缺陷診斷是有必要的.
2.4.4密封失效
近年來,核主泵密封失效導(dǎo)致的事故主要包括軸封低壓泄漏流量超標(biāo)、三級密封腔壓力下降甚至為零[51].軸封系統(tǒng)發(fā)生密封失效可能的原因有部件表面磨損、O形圈老化或發(fā)生摩擦氧化產(chǎn)生裂紋等.
針對核主泵機(jī)械密封失效問題,董富第等[52]通過對二維、三維和多維平面度分析,滿足對核主泵機(jī)械密封高精度檢測,為核主泵機(jī)械密封后續(xù)檢修、維護(hù)、優(yōu)化提供了豐富的分析數(shù)據(jù).文學(xué)等[53]針對核主泵機(jī)械密封健康檢測問題,提出一種基于概率模型的分析算法,并進(jìn)行試驗驗證,結(jié)果表明,該方法可以有效對核主泵機(jī)械密封進(jìn)行健康監(jiān)測和預(yù)警.
2.4.5部件磨損
在長達(dá)60 a服役壽命周期內(nèi),除了在斷水工況和斷電事故下引發(fā)的推力軸承磨損,水力部件的磨損不可避免.核主泵關(guān)鍵水力部件有泵殼、葉輪、導(dǎo)葉.水力部件帶動一回路循環(huán)水不斷運轉(zhuǎn),將熱量從壓力容器帶到蒸汽發(fā)生器與二回路進(jìn)行熱量交換,其質(zhì)量關(guān)系到核蒸汽系統(tǒng)是否可以健康運行[54].同時,口環(huán)磨損也不可避免,葉輪口環(huán)可能會出現(xiàn)間隙[55].長期高溫環(huán)境導(dǎo)致的熱變形、高速旋轉(zhuǎn)的離心力和軸承磨損等影響,使核主泵葉輪口環(huán)間隙大小發(fā)生改變,導(dǎo)致主泵水力性能和水動力特性發(fā)生變化[56].
核主泵結(jié)構(gòu)復(fù)雜,部件磨損問題在所難免.針對部件磨損問題,劉子銘等[57]結(jié)合卷積神經(jīng)網(wǎng)絡(luò)和頻域數(shù)據(jù)注意力機(jī)制方法,構(gòu)建了一種故障模式識別模型,利用泵殼加速度信號的頻域數(shù)據(jù),實現(xiàn)了核電站水泵導(dǎo)軸承磨損、止推軸承磨損、口環(huán)刮磨以及轉(zhuǎn)子偏心等故障狀態(tài)的分類.楊瑞峰[58]結(jié)合數(shù)值模擬和振動試驗,構(gòu)建了神經(jīng)網(wǎng)絡(luò)預(yù)測模型,對核主泵換熱管振動碰撞力進(jìn)行了預(yù)測分析,研究了碰撞處換熱管的應(yīng)力應(yīng)變和磨損情況,該方法對部件磨損剩余壽命預(yù)測具有啟示意義.
在核主泵長周期運行中,核主泵水力部件一直在高溫高壓及強(qiáng)輻射的極端環(huán)境中運行,經(jīng)受近萬次循環(huán),對核主泵水力部件安全可靠性和健康管理提出了極其嚴(yán)苛的要求.由于國內(nèi)外對于核主泵關(guān)鍵水力部件的技術(shù)封鎖,對于水力部件故障診斷方面的公開研究文獻(xiàn)較少,但一般泵廠都有早期的預(yù)測方法,比如性能監(jiān)測法、殼體振動監(jiān)測法、壓力脈動分析法等,但在核電站還未采用.
2.4.6主泵振動
由于核主泵結(jié)構(gòu)復(fù)雜、體積龐大,所處高溫、高壓、高輻射環(huán)境,發(fā)生故障或更換故障部件時,都有可能引發(fā)主泵振動異常問題,且對于主泵振動問題控制難度較大[59].在一些極端工況下,結(jié)構(gòu)不平衡也會導(dǎo)致振動偏大.在2019年10月28日的田灣核電站5機(jī)組和6機(jī)組調(diào)試期間也檢測到主泵振動,研究發(fā)現(xiàn),可能是轉(zhuǎn)子不對中和軸瓦間隙導(dǎo)致[60].
侯修群等[61]針對現(xiàn)場報警門限值僅能定位對少量振動異常問題,提出一種基于相關(guān)系數(shù)的振動異常定位方法,對比檢測數(shù)據(jù),該方法可以有效檢測數(shù)據(jù)的波動異?,F(xiàn)象并對振動異常點進(jìn)行定位,為主泵振動問題研究提供了大量有效數(shù)據(jù),針對核主泵故障案例數(shù)據(jù)少且報警數(shù)據(jù)稀疏的問題,該方法也可用于主泵振動預(yù)警模型的開發(fā)和驗證[62].
2.5其他故障的診斷及預(yù)警方法
對于核電站主冷卻系統(tǒng)關(guān)鍵設(shè)備故障診斷與預(yù)警方法的研究現(xiàn)狀在文中已列出,還有一些其他故障預(yù)警方法如下:在數(shù)據(jù)驅(qū)動技術(shù)中,主成分分析(PCA)和Fisher判別分析(FDA)已成功應(yīng)用于許多工業(yè)過程.JAMIL等[63]將數(shù)據(jù)驅(qū)動技術(shù)應(yīng)用于巴基斯坦研究堆2號(PARR-2)的故障檢測和故障隔離,試驗結(jié)果表明,PCA在故障檢測中的應(yīng)用是有效的,F(xiàn)DA不僅檢測到故障,而且還成功地隔離/定位了PARR-2中的故障.LI等[64]提出了一種多維經(jīng)驗?zāi)J椒纸獾姆椒?,用于提取軸承外圈早期故障微弱特征,結(jié)果表明,該方法能夠有效地處理旋轉(zhuǎn)機(jī)械的早期多通道故障信息,對核主泵故障的早期診斷具有理論指導(dǎo)意義.WANG等[65]提出了一種融合深度學(xué)習(xí)和遷移學(xué)習(xí)的故障診斷方法,以解決不同功率水平下概率分布不一致導(dǎo)致的泛化性能差的問題,在提高核電廠故障診斷泛化能力方面具有一定應(yīng)用價值.WANG等[66]提出將核主成分分析和相似度聚類方法用于核主泵的故障檢測,通過核主成分分析進(jìn)行特征提取,然后用相似度聚類方法進(jìn)行故障評估并進(jìn)行可視化處理,結(jié)果表明,該方法具有較好的可視化精度,誤差較小且易操作.LI等[67]基于預(yù)先訓(xùn)練的CNN模型,提出了一種具有多種遷移策略的遷移學(xué)習(xí)框架,以解決目標(biāo)任務(wù)中標(biāo)記數(shù)據(jù)有限的問題,結(jié)果表明,所提出的遷移學(xué)習(xí)框架顯著提高了診斷性能,能夠用于有限標(biāo)記數(shù)據(jù)的核電站故障診斷.NGUYEN等[68]提出一種結(jié)合總體平均經(jīng)驗?zāi)B(tài)分解和長短期記憶神經(jīng)網(wǎng)絡(luò)的預(yù)測方法,并利用核主泵的實時序列數(shù)據(jù)對所提方法進(jìn)行驗證,所提方法具有較好的性能.WU等[69]基于核電站發(fā)生故障時會釋放放射性物質(zhì),提出一種將五級閾值、定性趨勢分析和有符號有向圖推斷相結(jié)合的在線監(jiān)測和故障診斷方法,模擬了5個典型故障,試驗結(jié)果表明,該方法優(yōu)于傳統(tǒng)的符號有向圖推斷方法,能夠更快速、準(zhǔn)確地診斷典型故障.趙慶兵等[70]基于多維度時序數(shù)據(jù)參數(shù)自回歸算法,研發(fā)了一種核電廠關(guān)鍵設(shè)備早期預(yù)警方法,并利用AP1000型壓水堆核電機(jī)組核主泵進(jìn)行了驗證,為核主泵等關(guān)鍵設(shè)備的故障診斷提供了重要借鑒.JIN等[71]開發(fā)了基于深度學(xué)習(xí)和紅外熱成像的診斷技術(shù),以熱圖像為樣本,通過深度學(xué)習(xí)卷積神經(jīng)網(wǎng)絡(luò)模型的訓(xùn)練,獲得最優(yōu)模型,并對部件和系統(tǒng)進(jìn)行快速準(zhǔn)確的狀態(tài)監(jiān)測、診斷和事故分類,該診斷技術(shù)有望應(yīng)用于核電站的安全綜合狀態(tài)監(jiān)測.RAWASHDEH等[72]開展了反應(yīng)堆主冷卻系統(tǒng)中所有泵故障事件的保守分析和試驗研究.QIAN等[73]提出了一種基于輕量級條件生成對抗網(wǎng)絡(luò)(conditional generative adversarial nets, CGAN)的故障診斷方法,CGAN的生成器、鑒別器以及故障分類器均采用3層神經(jīng)網(wǎng)絡(luò)構(gòu)造,該方法顯著改善了幾種常見故障分類器的性能,提供了高質(zhì)量的多類故障樣本,為核電站系統(tǒng)故障小樣本問題提供了良好的數(shù)據(jù)集.WANG等[74]針對不同功率水平下不一致的數(shù)據(jù)概率分布限制傳統(tǒng)旋轉(zhuǎn)機(jī)械故障診斷方法應(yīng)用的問題,提出基于混合領(lǐng)域?qū)箤W(xué)習(xí)策略的深度遷移學(xué)習(xí)方法,以增強(qiáng)模型泛化能力并減少特征差異,從而在目標(biāo)功率下實現(xiàn)故障診斷,所提方法可以全面捕捉典型故障的一般特征,對比試驗和特征可視化驗證了該方法的優(yōu)越性,證明了該方法在核主泵旋轉(zhuǎn)機(jī)械方面的研究價值.
3總結(jié)與展望
核主泵作為核電發(fā)展的核心設(shè)備,其安全可靠運行極為重要.在核主泵長期運行周期內(nèi),一方面,高溫高壓的多工況耦合環(huán)境以及復(fù)雜多變的工況會導(dǎo)致各種部件級損壞甚至發(fā)生重大事故的概率增大,另一方面,核主泵因結(jié)構(gòu)復(fù)雜、環(huán)環(huán)相扣,各部件耦合程度高,一部件的損壞可能導(dǎo)致另一部件的損壞,因輕微故障引發(fā)重大故障甚至停機(jī)的風(fēng)險不斷提高.文中對核主泵故障診斷國內(nèi)外研究成果及應(yīng)用現(xiàn)狀進(jìn)行了梳理,系統(tǒng)分析了核主泵多種故障類型與機(jī)理,并且總結(jié)了近年來包括核主泵冷卻劑失流、失水事故、卡軸事故、斷電事故、飛輪裂紋、推力盤鎖緊杯斷裂、密封失效、部件磨損、主泵振動等故障的解決方法和健康狀態(tài)評估方法,為核主泵的診斷運維與健康管理提供了理論借鑒.
目前,核主泵故障診斷在故障機(jī)理、智能化、小樣本、多源信息融合、早期高精度等方面仍需要進(jìn)一步深入研究和探索.
1) 核主泵運行維護(hù)多采用事后維修和定期維護(hù)的方式,存在故障特征關(guān)聯(lián)機(jī)理不明晰、早期故障診斷能力差、事后維修成本高、定期過度維修誘發(fā)次生故障等不足.通過加強(qiáng)和完善智能狀態(tài)監(jiān)測軟、硬件,改進(jìn)智能故障診斷算法,開發(fā)智能故障識別和預(yù)測模型,使得核主泵由事后維修、定期維修轉(zhuǎn)變?yōu)橛媱澬跃S修、精準(zhǔn)維修,提高核電機(jī)組的可靠性和可用率.
2) 在故障數(shù)據(jù)的獲取方面,多數(shù)研究數(shù)據(jù)都是基于經(jīng)驗、概率等模型進(jìn)行模擬,通過增加模擬樣本的方法開展研究.未來可考慮基于數(shù)字孿生技術(shù),在提高事故模擬預(yù)測可靠性的同時,探索基于少故障樣本的智能診斷方法,減少診斷模型對大數(shù)據(jù)樣本的依賴.
3) 在健康評估方法方面,傳統(tǒng)方法或單一的基于數(shù)據(jù)、概率驅(qū)動方法面對非線性、自適應(yīng)特征提取要求時,評估結(jié)果往往準(zhǔn)確度不高.針對核主泵復(fù)雜運行健康狀態(tài)的綜合評估,可向多源信息融合的方向發(fā)展,基于振動、壓力、聲音等多源異構(gòu)狀態(tài)信息,提高目前健康狀態(tài)評估方法在不同工況上的適用性和準(zhǔn)確度.
4) 國內(nèi)外關(guān)于核主泵關(guān)鍵水力部件故障的智能診斷研究還相對較少,特別是核主泵水力故障早期智能診斷研究較為鮮見.水力故障早期特征易被淹沒、故障樣本稀缺、正常與故障狀態(tài)存在嚴(yán)重的數(shù)據(jù)不均衡現(xiàn)象,導(dǎo)致狀態(tài)數(shù)據(jù)價值密度低、診斷模型故障識別精度欠佳、早期故障難以被及時發(fā)現(xiàn).未來可探究利用流-固-熱多場耦合、微弱特征數(shù)據(jù)挖掘、故障狀態(tài)自適應(yīng)學(xué)習(xí)等新思路、新方法,深入探究核主泵水力故障早期高精度智能診斷方法.
參考文獻(xiàn)(References)
[1]ZHEN B, WANG S, XU J X. A review on the CO2 emission reduction scheme and countermeasures in China′s energy and power industry under the background of carbon peak[J]. Sustainability, 2022, 14(2): 879.
[2]譚馨怡. 淺析中國核能發(fā)展?fàn)顩r及展望[J]. 中國設(shè)備工程, 2021 (19): 235-236.
TAN Xinyi. Analysis on the development status and prospect of nuclear energy in China[J]. China plant engineering, 2021(19): 235-236. (in Chinese)
[3]趙帥,盛麗媛,陸程,等. 旋啟式止回閥關(guān)閉過程瞬態(tài)流固耦合特性研究[J]. 機(jī)電工程,2023,40(10):1502 -1510.
ZHAO Shuai, SHENG Liyuan, LU Cheng, et al. Transient fluid-structure interaction characteristics of the swing check valve closing process[J]. Journal of mechanical & electrical engineering, 2023,40(10):1502 -1510.(in Chinese)
[4]吳玉珍, 胡承煒, 陳乃鏑. 泵系統(tǒng)能耗評估與節(jié)能建議的探討[J]. 化工設(shè)備與管道, 2022, 59(3): 59-65.
WU Yuzhen, HU Chengwei, CHEN Naidi. Discussion of assessment of energy consumption in pump system and energy saving proposal[J]. Process equipment amp; piping, 2022, 59(3): 59-65. (in Chinese)
[5]蔡龍,陳安,徐堅,等.中小型高溫高壓核主泵試驗臺設(shè)計[J].排灌機(jī)械工程學(xué)報,2022,40(4): 325-331.
CAI Long,CHEN An,XU Jian,et al. Design of hightemperature and highpressure RCP test bench[J]. Journal of drainage and irrigation machinery engineering,2022,40(4): 325-331.(in Chinese)
[6]DEBASHISH M, BIDYADHAR S, RAJU D. Realtime sensor fault detection in Tokamak using different machine learning algorithms[J]. Fusion engineering and design, 2020, 151(2): 111401.
[7]吉日格勒,劉暢,蔡志欽,等. 基于隨機(jī)森林回歸的管狀帶式輸送機(jī)用托輥優(yōu)化設(shè)計[J]. 機(jī)電工程,2023,40(2) : 299 - 306.
JIRI Gele,LIU Chang,CAI Zhiqin,et al. Optimization design of roller for tubular belt conveyor based on RFR[J]. Journal of mechanical & electrical engineering,2023,40(2) : 299 - 306.(in Chinese)
[8]李偉楠. 核主泵導(dǎo)葉與葉輪及蝸殼的匹配性研究[D]. 大連: 大連理工大學(xué), 2020.
[9]陳鑫. 軸流核主泵內(nèi)部非定常流動特性與水力激振抑制研究[D]. 杭州: 浙江大學(xué), 2021.
[10]馮曉東, 王磊, 雷宇升, 等. “華龍一號”核主泵質(zhì)保等級與安全分級的劃分[J]. 流體機(jī)械, 2021, 49(5): 41-46.
FENG Xiaodong, WANG Lei, LEI Yusheng, et al. Division of quality assurance level and safety classification for HPR1000 reactor coolant pump[J]. Fluid machinery, 2021, 49(5): 41-46. (in Chinese)
[11]袁壽其, 朱榮生, 龍云,等. 核主泵內(nèi)部流動基礎(chǔ)理論與技術(shù)[M]. 鎮(zhèn)江: 江蘇大學(xué)出版社, 2021: 46-59.
[12]龍云, 袁壽其, 朱榮生, 等. 核主泵內(nèi)部流動研究現(xiàn)狀與技術(shù)發(fā)展綜述[J]. 排灌機(jī)械工程學(xué)報, 2020, 38(11): 1081-1097.
LONG Yun, YUAN Shouqi, ZHU Rongsheng, et al. Review on research status of internal flow and technological development of reactor coolant pump[J]. Journal of drainage and irrigation machinery engineering, 2020, 38(11): 1081-1097. (in Chinese)
[13]ISHIWATARI Y. Safety of super LWR, (Ⅱ) safety analysis at supercritical pressure[J]. Nuclear science and techniques, 2005, 42(11): 935-948.
[14]黎義斌,張帆,郭艷磊,等. 反應(yīng)堆一回路對核主泵葉輪入流特性的影響[J]. 排灌機(jī)械工程學(xué)報, 2023,41(10) : 973-980.
LI Yibin,ZHANG Fan,GUO Yanlei,et al. Influence of reactor primary circuit on inflow characteristics of reactor coolant pump impeller[J]. Journal of drainage and irrigation machinery engineering,2023,41(10): 973-980.(in Chinese)
[15]黃樹亮, 馮進(jìn)軍, 陳巧艷, 等. AP1000全失流事故DNBR計算分析[J]. 核動力工程, 2015, 36(2): 33-36.
HUANG Shuliang, FENG Jinjun, CHEN Qiaoyan, et al. AP1000 DNBR calculation and analysis of complete loss of flow accident[J]. Nuclear power engineering, 2015, 36(2): 33-36. (in Chinese)
[16]李劍. AP1000核電廠冷卻劑流量喪失事故分析[D]. 哈爾濱: 哈爾濱工程大學(xué), 2014.
[17]和思宏, 蔡杰進(jìn). 反應(yīng)性負(fù)反饋效應(yīng)事故緩解能力研究——以壓水堆全失流事故為例[C]//第十六屆全國反應(yīng)堆熱工流體學(xué)術(shù)會議, 2019: 167-177.
[18]GONG Y J, SU X Y, QIAN H, et al. Research on fault diagnosis methods for the reactor coolant system of nuclear power plant based on D-S evidence theory[J]. Annals of nuclear energy, 2018, 112: 395-399.
[19]劉毅,王秀勇,董峰,等. 時間步長對核主泵非定常計算精度的影響機(jī)理[J]. 機(jī)電工程,2022,39(9) : 1250-1255.
LIU Yi,WANG Xiuyong,DONG Feng,et al. Influence mechanism of time step on unsteady calculation accuracy of nuclear main pump[J]. Journal of mechanical & electrical engineering,2022,39(9): 1250 -1255.(in Chinese)
[20]SUN P, LIU Y, WU G, et al. Research on fault diagnosis of reactor coolant accident in nuclear power plant based on radial basis function and fuzzy neural network[C]//Proceedings of the 2020 International Conference on Nuclear Engineering,2020.
[21]佘兢克, 施天姿, 唐鈺淇, 等. 核電站失水事故的智能預(yù)警及仿真方法研究[J]. 儀器儀表用戶, 2021, 28(12): 35-40.
SHE Jingke, SHI Tianzi, TANG Yuqi, et al. Research on intelligent early warning and simulation methods for loss of water accidents in nuclear power plants[J]. Electronic instrumentation customer, 2021, 28(12): 35-40. (in Chinese)
[22]QIN L, YANG X, LIU J, et al. Research on diagnosis of loss of flow accidents in nuclear reactor coolant system[J]. Journal of physics (conference series), 2022, 2242: 012032.
[23]ZHENG M G, YAN J Q, JUN S T, et al. The general design and technology innovations of CAP1400[J]. Engineering, 2016, 2(1): 97-102.
[24]蔡龍, 王偉光, 雷明凱, 等. 核主泵推力軸承斷冷卻水工況磨損機(jī)理研究[J]. 核動力工程, 2021, 42(4): 214-221.
CAI Long, WANG Weiguang, LEI Mingkai, et al. Study on wear mechanism of thrust bearing of nuclear main pump in cooling water loss condition[J]. Nuclear power engineering, 2021, 42(4): 214-221. (in Chinese)
[25]WANG J L, CHEN Z, YUN L, et al. Preparation and experimental study of graphite material for water lubricated thrust bearing of nuclear main pump[J]. Materials science forum, 2018, 93(2): 102-106.
[26]王瑞, 賈謙, 袁小陽. 石墨水潤滑動壓推力軸承的起飛轉(zhuǎn)速及磨損的量化研究[J]. 中國機(jī)械工程, 2021, 32(3): 269-274.
WANG Rui, JIA Qian, YUAN Xiaoyang. Quantitative research of takeoff speeds and wear of graphite waterlubricated hydrodynamic thrust bearings[J]. Chinese mechanical engineering, 2021, 32(3): 269-274. (in Chinese)
[27]杜鵬程, 費冬冬, 文學(xué). 華龍一號某機(jī)組主泵推力軸承優(yōu)化改進(jìn)分析[J]. 核動力工程, 2021, 42(5): 218-221.
DU Pengcheng, FEI Dongdong, WEN Xue. Analysis of reactor coolant pump thrust bearing modification of an HPR1000 Unit[J]. Nuclear power engineering, 2021, 42(5): 218-221. (in Chinese)
[28]LIU Z W, XIAO L, BAO J S, et al. Bearing incipient fault detection method based on stochastic resonance with triplewell potential system[J]. Journal of Shanghai Jiaotong University, 2021, 26(4): 482-487.
[29]FILATOV V P, GRISHIN S G, PEDUNENKO P S, et al. Technical means of lowerlevel equipment of the Hindukush-F in reactor monitoring system for NPP with VVER-1200[J]. Atomic energy, 2018, 125(1): 23-27.
[30]楊曉敏, 陳玉清, 蔡琦, 等. 小型壓水堆小破口失水事故[J]. 兵器裝備工程學(xué)報, 2022, 43(4): 86-91.
YANG Xiaomin, CHEN Yuqing, CAI Qi, et al. SBLOCA of small pressurized water reactor[J]. Journal of ordnance equipment engineering, 2022, 43(4): 86-91. (in Chinese)
[31]XIONG Q, GOU J, SHAN J. Parameter importance ranking for SBLOCA of CPR1000 with moment independent sensitivity analysis[J]. Nuclear engineering and technology, 2020, 52(12): 2821-2835.
[32]SADEGHI H, TAVOULARIS S. Computational analysis of gas-liquid flow in anidealised CANDU reactor header under conditions that are relevant to smallbreak lossofcoolant and lossofflow accidents[J]. Nuclear engineering and design, 2021, 378: 111054.
[33]陳昊, 黃亞平, 唐濤, 等. M310電廠小破口失水事故最佳估算加不確定性分析研究[J]. 電工技術(shù), 2022(9): 174-176.
CHEN Hao, HUANG Yaping, TANG Tao, et al. Best estimation plus uncertainty analysis of small break superposition loss with offsite power accident in M310 power plant[J]. Electric engineering, 2022(9): 174-176. (in Chinese)
[34]張俊杰. 基于信息流的小破口失水事故預(yù)測方法研究[D]. 衡陽: 南華大學(xué), 2021.
[35]MWANGI M A, LIU Y K, OCHIENG A S. Small break loss of coolant accident (SB-LOCA) fault diagnosis using adaptive neurofuzzy inference system (ANFIS)[J]. Earth and environmental science, 2021, 675(1): 012034.
[36]張曉華, 鄭強(qiáng), 張舒, 等. 秦山核電二期長燃料循環(huán)主泵卡軸事故分析[J]. 科技視界, 2015(22): 270-271.
ZHANG Xiaohua, ZHENG Qiang, ZHANG Shu, et al. Analysis on shaft jamming accident of main pump of Qinshan Nuclear Power Phase Ⅱ long fuel cycle[J]. Science amp; technology vision, 2015(22): 270-271. (in Chinese)
[37]高燈,孫見君. 基于灰色預(yù)測理論和最優(yōu)置信限法的核主泵機(jī)械密封可靠性分析[J]. 流體機(jī)械,2023,51(5):84-91.
GAO Deng,SUN Jianjun. Reliability analysis of mechanical seals for nuclear main pump based on grey prediction theory and optimum confidence limit method[J].Fluid machinery,2023,51(5):84-91. (in Chinese)
[38]WANG X L, LIU Y, ZHU R S. Study on shaftblock under small break loss of coolant accident of nuclear main pump[J]. Annals of nuclear energy, 2019, 131: 344-352.
[39]WANG X L, LU Y G, ZHONG W Y. Experimental study on transient characteristics of reactor coolant pump under rotor seizure accident[J]. Annals of nuclear energy, 2020, 136: 107039.
[40]LU Y G, LONG Y, ZHU R S, et al. Transient structural load characteristics of reactor coolant pump rotor system in rotor seizure accident[J]. Annals of nuclear energy, 2021, 164: 108631.
[41]楊靈均, 冷潔, 畢樹茂, 等. 先進(jìn)壓水堆大破口失水事故耦合特性研究[J]. 核科學(xué)與工程, 2020, 40(3): 426-430.
YANG Lingjun, LENG Jie, BI Shumao, et al. Study on coupling characteristics of large break LOCA in advanced PWR[J]. Nuclear science and engineering, 2020, 40(3): 426-430. (in Chinese)
[42]AN C, ZHU R S, LONG Y, et al. The cavitation performance analysis of the RCP under LBLOCA at inlet[J]. Annals of nuclear energy, 2020, 148: 107605.
[43]劉夏杰. 斷電事故下核主泵流動及振動特性研究[D]. 上海: 上海交通大學(xué), 2008.
[44]LU Y G, ZHU R S, WANG X L, et al. Experimental study on transient performance in the coasting transition process of shutdown for reactor coolant pump[J]. Nuclear engineering and design, 2019, 346: 192-199.
[45]劉昺軼. 屏蔽式核主泵飛輪結(jié)構(gòu)完整性評價及其裂紋壽命評估[D]. 上海: 上海交通大學(xué), 2018.
[46]劉昺軼, 張繼革, 王德忠, 等. 屏蔽式核主泵飛輪裂紋壽命評估[J]. 上海交通大學(xué)學(xué)報, 2019, 53(3): 315-320.
LIU Minyi, ZHANG Jige, WANG Dezhong, et al. Crack life evaluation of flywheel for canned main pump[J]. Journal of Shanghai Jiaotong University, 2019, 53(3): 315-320. (in Chinese)
[47]陰宏宇, 王躍方, 王俊杰, 等. 基于權(quán)函數(shù)法的核主泵飛輪應(yīng)力強(qiáng)度因子研究[J]. 應(yīng)用力學(xué)學(xué)報, 2020, 37(2): 573-579.
YIN Hongyu, WANG Yuefang, WANG Junjie, et al. Research on stress intensity factors of reactor coolant pump flywheel based on weight functions[J]. Journal of applied mechanics, 2020, 37(2): 573-579. (in Chinese)
[48]ZHONG X, BAN H. Crack fault diagnosis of rotating machine in nuclear power plant based on ensemble learning[J]. Annals of nuclear energy, 2022, 168: 108909.
[49]譚俊哲, 姚景文, 張玉金, 等. 不同成型方式的奧氏體不銹鋼鎖緊杯變形區(qū)硬度及殘余應(yīng)力的研究[C]//第十八屆沈陽科學(xué)學(xué)術(shù)年會論文集, 2021: 93-97.
[50]范福平, 陸智勇. 在役AP1000主泵鎖緊杯斷裂故障原因分析[J]. 核動力工程, 2021, 42(4): 176-181.
FAN Fuping, LU Zhiyong. Root cause analysis of insitu AP1000 reactor coolant pump lock cup failure[J]. Nuclear power engineering, 2021, 42(4): 176-181. (in Chinese)
[51]鄭嘉榕, 文學(xué), 楊全超, 等. 核主泵機(jī)械密封輔助O形密封圈摩擦學(xué)特性試驗研究[J]. 潤滑與密封, 2021, 46(4): 147-151.
ZHENG Jiarong, WEN Xue, YANG Quanchao, et al. Experimental research on tribological properties of secondary Oring in nuclear main pump mechanical seal[J]. Lubrication engineering, 2021, 46(4): 147-151. (in Chinese)
[52]董富弟, 李天斌, 金樂. “華龍一號”核主泵機(jī)械密封平面度的檢測方法及分析[J]. 水泵技術(shù), 2022(1): 49-52.
DONG Fudi, LI Tianbin, JIN Le. Detection method and analysis of mechanical seal flatness of HPR1000 reactor coolant pump [J]. Pump technology, 2022(1): 49-52. (in Chinese)
[53]文學(xué), 楊全超, 尹源, 等. 核主泵機(jī)械密封故障溯源方法與驗證[J]. 原子能科學(xué)技術(shù), 2022, 56(S1): 179-188.
WEN Xue, YANG Quanchao, YIN Yuan, et al. Abnormity attribution method and verification for mechanical seal of reactor coolant pump[J]. Atomic energy science and technology, 2022, 56(S1): 179-188. (in Chinese)
[54]張芷模, 劉世輝, 郭鵬. AP1000核主泵葉輪典型質(zhì)量問題及監(jiān)造預(yù)防措施[J]. 水泵技術(shù), 2016(3): 31-36.
ZHANG Zhimo, LIU Shihui, GUO Peng. Typical quality problems of AP1000 nuclear main pump impeller and preventive measures for manufacturing supervision[J]. Pump technology, 2016(3): 31-36. (in Chinese)
[55]SALVADORI S, MARINI A, MARTELLI F. Methodology for the residual axial thrust evaluation in multistage centrifugal pumps[J]. Engineering applications of computational fluid mechanics, 2012, 6(2): 271-284.
[56]馬波, 翟斌, 朱俊. 多級離心泵性能下降的動力學(xué)特性分析與診斷[J]. 北京化工大學(xué)學(xué)報(自然科學(xué)版), 2016, 43(6): 114-120.
MA Bo, ZHAI Bin, ZHU Jun.Analysis of dynamic characteristics and diagnosis of the performance degradation of a multistage centrifugal pump[J]. Journal of Beijing University of Chemical Technology (natural science), 2016, 43(6): 114-120. (in Chinese)
[57]劉子銘, 羅能, 艾瓊. 基于頻域數(shù)據(jù)注意力機(jī)制的核電廠水泵故障模式識別模型研究[J]. 核動力工程, 2021, 42(6): 203-208.
LIU Ziming, LUO Neng, AI Qiong.Research on fault pattern recognition model of nuclear power plant water pump based on frequencydomain data attention mechanism[J]. Nuclear power engineering, 2021, 42(6): 203-208. (in Chinese)
[58]楊瑞峰. 基于深度學(xué)習(xí)的核主泵換熱管動力接觸在線預(yù)測與碰磨分析[D]. 大連: 大連理工大學(xué), 2021.
[59]劉安林,葉道星,羅逸民,等. 基于小波變換的核主泵惰轉(zhuǎn)過程葉輪壓力脈動及泵內(nèi)部流動規(guī)律[J]. 排灌機(jī)械工程學(xué)報,2023,41(11) : 1088-1095.
LIU Anlin,YE Daoxing,LUO Yimin,et al. Impeller pressure pulsation and internal flow law of reactor coolant pump during idling process based on wavelet transform[J].Journal of drainage and irrigation machinery engineering,2023,41(11) : 1088-1095.(in Chinese)
[60]王祥, 杜召瑞, 付德威, 等. 田灣核電站三期主泵振動問題分析研究與治理[J]. 水泵技術(shù), 2022(4): 1-7.
WANG Xiang, DU Zhaorui, FU Dewei, et al.Analysis research and treatment of main pump vibration problem of Tianwan Nuclear Power Station Phase Ⅲ[J]. Pump technology, 2022(4): 1-7. (in Chinese)
[61]侯修群, 蔣慶磊, 包彬彬, 等. 基于相關(guān)系數(shù)的核電主泵振動異常定位方法研究[J]. 核科學(xué)與工程, 2021, 41(5): 920-928.
HOU Xiuqun, JIANG Qinglei, BAO Binbin, et al. Study on abnormal vibration localization method of nuclear main pump based on correlation coefficient[J]. Nuclear science and engineering, 2021, 41(5): 920-928. (in Chinese)
[62]侯修群, 蔣慶磊, 李振, 等. 基于DPMM的核主泵振動狀態(tài)預(yù)警方法研究[J]. 原子能科學(xué)技術(shù), 2021, 55(S2): 342-349.
HOU Xiuqun, JIANG Qinglei, LI Zhen, et al.Research on nuclear main pump vibration status warning method based on DPMM[J]. Atomic energy science and technology, 2021, 55(S2): 342-349. (in Chinese)
[63]JAMIL F, ABID M, HAQ I, et al. Fault diagnosis of Pakistan Research Reactor-2 with datadriven techniques[J]. Annals of nuclear energy, 2016, 90: 433-440.
[64]LI S, MA J. Early fault feature extraction of nuclear main pump based on MEMD-1.5 dimensional Teager Energy Spectrum[C]//Proceedings of the 9th IEEE Data Driven Control and Learning Systems Conference, 2020.
[65]WANG Z, XIA H, ZHANG J, et al. A deep transfer learning method for systemlevel fault diagnosis of nuclear power plants under different power levels[J]. Annals of nuclear energy, 2022, 166: 108771.
[66]WANG H, PENG M J, YU Y, et al. Fault identification and diagnosis based on KPCA and similarity clustering for nuclear power plants[J]. Annals of nuclear energy, 2021, 150: 107786.
[67]LI J, LIN M, LI Y, et al.Transfer learning with limited labeled data for fault diagnosis in nuclear power plants[J]. Nuclear engineering and design, 2022, 390: 111690.
[68]NGUYEN H P, BARALDI P, ZIO E. Ensemble empirical mode decomposition and long shortterm memory neural network for multistep predictions of time series signals in nuclear power plants[J]. Applied energy, 2021, 283: 116346.
[69]WU G, YUAN D, YIN J, et al. A framework for monitoring and fault diagnosis in nuclear power plants based on signed directed graph methods[J]. Frontiers in energy research, 2021, 9: 641545.
[70]趙慶兵, 魏士源, 翟小飛, 等. 基于參數(shù)自回歸算法的核電廠關(guān)鍵設(shè)備早期預(yù)警方法研究[J]. 核動力工程, 2021, 42(6): 209-214.
ZHAO Qingbing, WEI Shiyuan, ZHAI Xiaofei, et al. Parameter autoregression algorithmbased early warning method for critical equipment in nuclear power plants[J]. Nuclear power engineering, 2021, 42(6): 209-214. (in Chinese)
[71]JIN I J, LIM D Y, BANG I C. Deeplearningbased systemscale diagnosis of a nuclear power plant with multiple infrared cameras[J].Nuclear engineering and technology, 2023,55:493-505.
[72]RAWASHDEH A A, CONG T L, ALI M M. Conservative analytical and experimental investigation of all pumps failure event in the primary cooling system for a 5 MW research reactor[J]. Progress in nuclear energy, 2022, 143: 104041.
[73]QIAN G S, LIU J Q. Fault diagnosis based on conditional generative adversarial networks in nuclear power plants[J]. Annals of nuclear energy, 2022, 176: 109267.
[74]WANG Z, XIA H, YIN W, et al. An improved generative adversarial network for fault diagnosis of rotating machine in nuclear power plant[J]. Annals of nuclear energy, 2023, 180: 109434.
(責(zé)任編輯陳建華)
收稿日期: 2023-03-16; 修回日期: 2023-07-27; 網(wǎng)絡(luò)出版時間: 2024-11-08
網(wǎng)絡(luò)出版地址: https://link.cnki.net/urlid/32.1814.TH.20241108.0950.022
基金項目: 國家自然科學(xué)基金資助項目(52205057);江蘇省高等學(xué)校自然科學(xué)研究項目(22KJB460002);臺州市科技計劃項目(22gyb42)
第一作者簡介: 周濤(1999—),男,江蘇揚(yáng)州人,博士研究生(zhoutao@stmail.ujs.edu.cn),主要從事流體機(jī)械智能故障診斷研究.
通信作者簡介: 湯勝楠(1988—),女,河南商丘人,講師,博士(tangsn@ujs.edu.cn),主要從事流體機(jī)械智能故障診斷研究.