• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    含鋯二氧化硅微粉漿料的流變性

    2024-11-27 00:00:00覃慧清夏雨峰黃青員文杰
    中國(guó)粉體技術(shù) 2024年6期
    關(guān)鍵詞:微粉氧化鋯二氧化硅

    摘要:【目的】充分發(fā)揮含鋯二氧化硅微粉漿料在改善澆注料施工性能方面的潛力,探究分散劑對(duì)含鋯二氧化硅微粉漿料的作用機(jī)制及影響因素,旨在為澆注料中含鋯二氧化硅微粉原料和分散劑的選用提供依據(jù),優(yōu)化澆注料的綜合性能并降低成本?!痉椒ā坎捎昧髯儍x分別測(cè)試含三聚磷酸鈉(sodium tripolyphosphate,STPP)、六偏磷酸鈉(sodium hexameta?phosphate,SHMP)、FS20型聚羧酸鹽分散劑的質(zhì)量分?jǐn)?shù)分別為0. 2%、0. 2%、0. 1%的含鋯二氧化硅微粉漿料的流變性能;利用灰色關(guān)聯(lián)度分析方法,研究含鋯二氧化硅微粉特性與漿料流變參數(shù)的關(guān)聯(lián)性;結(jié)合Herschel-Bulkey模型,探究分散劑對(duì)含鋯二氧化硅微粉漿料流變性的影響?!窘Y(jié)果】在剪切速率為0. 13 s-1的情況下,漿料的pH和含鋯二氧化硅微粉的D50與含鋯二氧化硅微粉漿料流變性的關(guān)聯(lián)度分別是0. 9753、0. 9427;添加3種分散劑后,漿料均呈現(xiàn)剪切變稀的特性,表明所選的3種分散劑對(duì)含鋯二氧化硅微粉漿料的流變性有改善效果?!窘Y(jié)論】漿料的流變性受漿料pH、含鋯二氧化硅微粉的D50粒徑及微粉粒徑分布和表面羥基含量的共同影響,這些因素不僅決定漿料的基本流變特性,而且對(duì)分散劑的效能發(fā)揮起著重要作用;添加離子型表面活性分散劑STPP、SHMP相對(duì)于FS20型聚羧酸鹽分散劑更有助于降低含鋯二氧化硅微粉漿料的黏度;粒徑分布范圍較寬和表面羥基更多的含鋯二氧化硅微粉在STPP作用下漿料的分散效果最好,pH略大的含鋯二氧化硅微粉因?qū)α姿岣奈绞艿揭种?,則需要添加SHMP才能獲得黏度最小的漿料。

    關(guān)鍵詞:含鋯二氧化硅微粉;分散劑;流變性;灰色關(guān)聯(lián)度分析;Herschel-Bulkey模型中圖分類號(hào):TQ175.4;TB4文獻(xiàn)標(biāo)志碼:A引用格式:

    覃慧清,夏雨峰,黃青,等. 含鋯二氧化硅微粉漿料的流變性[J]. 中國(guó)粉體技術(shù),2024,30(6):119-129.

    QIN Huiqing,XIA Yufeng,HUANG Qing,et al. Rheological properties of zirconia-containing micro silica slurries[J]. China Powder Science and Technology,2024,30(6):119?129.

    澆注料等不定形耐火材料具有易于生產(chǎn)、施工簡(jiǎn)便、無(wú)需燒成、接縫較少等優(yōu)點(diǎn),在冶金窯爐等熱工設(shè)備應(yīng)用領(lǐng)域,優(yōu)勢(shì)明顯[1-2],然而,如何在施工過(guò)程中維持澆注料的優(yōu)良流動(dòng)性仍是一個(gè)核心挑戰(zhàn)。將少量膠體級(jí)別的超細(xì)粉末摻入至澆注料中,能有效降低漿料的表觀黏度,顯著改善澆注料的流動(dòng)性。二氧化硅微粉是冶煉硅或硅鐵的副產(chǎn)品,主要由細(xì)小的非晶態(tài)二氧化硅和其他氧化物組成,因具有微米級(jí)粒徑、活性高、球形結(jié)構(gòu)等特點(diǎn),能夠改善澆注料的流動(dòng)性,廣泛應(yīng)用于不定形耐火材料中[3-5]。含鋯二氧化硅微粉在鋯英石生產(chǎn)脫硅鋯時(shí)獲得,含鋯二氧化硅微粉漿料的流變性優(yōu)于二氧化硅微粉漿料,同時(shí),微粉中的氧化鋯有助于促進(jìn)耐火材料固相反應(yīng)和燒結(jié),提高耐火材料的力學(xué)性能,具有良好的應(yīng)用前景[6-11]。在含鋯二氧化硅微粉中,氧化鋯納米顆粒會(huì)嵌入二氧化硅顆粒間隙形成團(tuán)聚體,并且二氧化硅顆粒表面的豐富羥基易于與漿料成分中的羧基和醚鍵相互作用,引發(fā)絮凝現(xiàn)象,這2個(gè)現(xiàn)象均會(huì)影響含鋯二氧化硅微粉漿料的流變性,因此須選擇適宜種類的分散劑以改善含鋯二氧化硅微粉漿料的流變性[12-13]。

    聚羧酸鹽分散劑的分子質(zhì)量和電荷密度較大且為短鏈結(jié)構(gòu),因此聚羧酸鹽分散劑具有空間位阻效應(yīng)和高效遷移性,并通過(guò)強(qiáng)化靜電排斥力有效提升了漿料的流變性[14]。六偏磷酸鈉(sodium hexametaphosphate,SHMP)與三聚磷酸鈉(sodium tripolyphosphate,STPP)分散劑則通過(guò)擴(kuò)大漿料中的雙電層來(lái)提升漿料流變性[15]。在特定高性能澆注料配方中,含鋯二氧化硅微粉為關(guān)鍵組分,為了確保澆注料呈現(xiàn)較好的流動(dòng)性并發(fā)揮含鋯二氧化硅微粉功能,必須均勻分散微粉漿料,因此,深入分析含鋯二氧化硅微粉漿料的流變行為,有助于于理解含鋯二氧化硅微粉漿料的分散效率以及優(yōu)化選擇分散劑。

    本文中利用圓筒式同軸旋轉(zhuǎn)流變儀開(kāi)展實(shí)驗(yàn),研究含鋯二氧化硅微粉的物相組成、微觀形貌、粒徑分布以及可溶物含量、pH和Zeta電位等顆粒特性對(duì)漿料流變性的影響;利用灰色關(guān)聯(lián)度分析方法探討含鋯二氧化硅微粉特性與漿料流變參數(shù)的關(guān)聯(lián)性,用Herschel-Bulkey模型探究添加不同分散劑對(duì)漿料流變性的影響規(guī)律,旨在為澆注料中硅微粉原料和分散劑的選用提供依據(jù),更經(jīng)濟(jì)、高效地選擇含鋯二氧化硅微粉原料與分散劑,優(yōu)化澆注料的綜合性能與降低成本。

    1材料與方法

    1.1試劑材料和儀器設(shè)備

    試劑材料:三聚磷酸鈉(純度(質(zhì)量分?jǐn)?shù),下同)為98%,上海麥克林生化科技股份有限公司),六偏磷酸鈉(純度為98%,上海麥克林生化科技股份有限公司),F(xiàn)S20型聚羧酸鹽(分析純,巴斯夫公司);含鋯二氧化硅微粉A、B、C(英格瓷電熔礦產(chǎn)(營(yíng)口)有限公司)。

    3種含鋯二氧化硅微粉的化學(xué)成分如表1所示。微粉中主要成分是二氧化硅,質(zhì)量分?jǐn)?shù)為92.76%~93.91%;其次是氧化鋯,質(zhì)量分?jǐn)?shù)為3.22%~3.90%。由于獲得含鋯二氧化硅微粉的冶煉原料和工藝的不同,因此微粉中還存在氧化鋁、氧化鎂和堿金屬氧化物等雜質(zhì)。

    儀器設(shè)備:Bruker D8型X射線衍射儀(荷蘭帕納科公司);9900 series型X射線熒光光譜儀、Nicolet iS50型紅外光譜儀(Thermo Fisher Scientific-CN);TG18M型離心機(jī)(湖南平凡科技有限公司);Zeta Probe型電位儀、pH計(jì)(美國(guó)Colloidal Dynamics公司);JEM-2100型透射電子顯微鏡(捷歐路科貿(mào)有限公司);Mastersizer 2000G型激光粒徑分析儀(英國(guó)馬爾文儀器公司);MCR301型旋轉(zhuǎn)流變儀(安東帕股份有限公司)。

    1.2含鋯二氧化硅微粉漿料的制備

    參考王超等[6]對(duì)二氧化硅微粉漿料流變性的研究經(jīng)驗(yàn),本實(shí)驗(yàn)中選取體積分?jǐn)?shù)為30%的含鋯二氧化硅微粉漿料作為研究對(duì)象,并確定針對(duì)此漿料使用的3種分散劑(STPP、SHMP、FS20分散劑)的具體添加量。

    稱量適量去離子水(電導(dǎo)率σ=0.2 μS/cm),將16 g的含鋯二氧化硅微粉A、B、C加入稱量好的去離子水中,使用磁力攪拌器攪拌3 min后,在不添加任何分散劑的情況下,對(duì)3類含鋯二氧化硅微粉漿料SIF-A、SIF-B、SIF-C各自進(jìn)行3 min的超聲波處理,制備基礎(chǔ)參照漿料,分別標(biāo)示為SIF-A1、SIF-B1、SIF-C1。3種含鋯二氧化硅微粉漿料分別添加3種分散劑后超聲分散3 min制成漿料。STPP摻量(質(zhì)量分?jǐn)?shù),下同)為0.2%的3種漿料標(biāo)示為SIF-A2、SIF-B2、SIF-C2;SHMP摻量為0.2%的3種漿料標(biāo)示為SIF-A3、SIF-B3、SIF-C3;FS20型聚羧酸鹽分散劑摻量為0. 1%的3種漿料標(biāo)示為SIF-A4、SIF-B4、SIF-C4。

    分別在5 g的含鋯二氧化硅微粉A、B、C中加入500 mL去離子水,攪拌均勻,并靜置24 h后,取上層清液在離心機(jī)中以轉(zhuǎn)速10000 r/min處理5 min制成漿料SIF-A5、SIF-B5、SIF-C5后,測(cè)定3種漿料的pH。配制含鋯二氧化硅微粉質(zhì)量分?jǐn)?shù)為5%的漿料,超聲分散9 min后制成漿料SIF-A6、SIF-B6、SIF-C6,測(cè)定3種漿料在不同pH下的Zeta電位,用NaOH溶液(濃度為1 mol/L)調(diào)節(jié)含鋯二氧化硅微粉漿料的pH,設(shè)置攪拌速率為280 r/s。

    2結(jié)果與分析

    2.1粉末特征

    為了探究3種含鋯二氧化硅微粉中的二氧化鋯賦存狀態(tài),對(duì)3種含鋯二氧化硅微粉進(jìn)行X射線衍射分析(X-ray diffraction,XRD)和透射電鏡分析(transmission electron microscopy,TEM),結(jié)果如圖1和圖2所示。由圖1可知,3種含鋯二氧化硅微粉均存氧化鋯衍射峰,證實(shí)除非晶相以外存在氧化鋯晶體t-ZrO2和m-ZrO2。對(duì)比氧化鋯衍射峰的相對(duì)強(qiáng)度可得,含鋯二氧化硅微粉A中的m-ZrO2多于其他2個(gè)樣品。

    圖2所示為3種含鋯二氧化硅微粉A、B、C的TEM圖像。由圖2(a)可見(jiàn),較大的球形顆粒周圍團(tuán)聚著小顆粒。由于晶化和密度的差異,因此可以觀察到黑色的氧化鋯小顆粒被包裹在球形大顆粒之中。從圖2(b)中清晰可見(jiàn)晶格條紋,這與XRD的結(jié)果一致,可判斷微小的晶體為氧化鋯,根據(jù)含鋯二氧化硅微粉A含有更多密度較小的單斜相,可知在含鋯二氧化硅微粉A中的氧化鋯晶粒數(shù)更多,這給表面羥基化和吸附提供了活性位點(diǎn)。相比之下,含鋯二氧化硅微粉B、C中的氧化鋯晶體尺寸略大,而且有凸出于大顆粒表面的晶粒,如圖2(d)、(f)。

    表2所示為3種含鋯二氧化硅微粉的粒徑分析結(jié)果。由表可知,含鋯二氧化硅微粉A的中值粒徑D50大于微粉B、C的,而微粉B、C的粒徑參數(shù)D50、D75和D90更接近。含鋯二氧化硅微粉A的粒徑分布范圍的分級(jí)精度D75/D25是三者中最大的,說(shuō)明含鋯二氧化硅微粉A的粒徑分布較寬。

    2.2含鋯二氧化硅微粉漿料的紅外光譜

    為了探究3種含鋯二氧化硅微粉中特征官能團(tuán)的種類,對(duì)3種含鋯二氧化硅微粉進(jìn)行傅里葉紅外光譜分析,結(jié)果如圖3所示。由圖可知,波數(shù)為3435 cm-1處對(duì)應(yīng)為Si—OH和Zr—OH的反對(duì)稱伸縮振動(dòng)峰,波數(shù)為810 cm-1處對(duì)應(yīng)Si—OH的拉伸振動(dòng)峰,波數(shù)為1116 cm-1處對(duì)應(yīng)Si—O—Si的不對(duì)稱拉伸振動(dòng)峰,波數(shù)為477 cm-1處對(duì)應(yīng)的是Si—O—Si鍵的振動(dòng)峰,波數(shù)為1612 cm-1處為水分子的振動(dòng)吸收峰,波數(shù)為1579 cm-1歸屬于樣品表面羥基的吸附,波數(shù)為1353 cm-1處的吸收峰歸屬于配位水,波數(shù)為1364 cm-1則對(duì)應(yīng)與CO2反應(yīng)形成的甲酸鹽。由圖3可知,波數(shù)分別為810、1579 cm-1處,3種含鋯二氧化硅微粉的吸收峰強(qiáng)度依次遞減,表明3種含鋯二氧化硅微粉表面的羥基含量依次遞減。

    2.3含鋯二氧化硅微粉漿料的pH和Zeta電位

    漿料SIF-A5、SIF-B5、SIF-C5的pH分別為2.33、2.40、2.51。漿料Zeta電位影響漿料的分散程度,Zeta電位絕對(duì)值越大,代表漿料流變性越好,Zeta電位值會(huì)受到漿料pH的影響,而含鋯二氧化硅微粉漿料中的可溶物種類及含量會(huì)改變漿料pH。

    圖4所示為3種含鋯二氧化硅微粉漿料的Zeta電位隨pH的變化。由圖可知,3種含鋯二氧化硅微粉漿料均呈電負(fù)性,且pH對(duì)含鋯二氧化硅微粉的電位影響較大。這是因?yàn)殡S著pH增大,漿料中的H+濃度減小,堿金屬離子K+、Na+的濃度增大,堿金屬離子的正電性較大,導(dǎo)致Zeta電位絕對(duì)值增大,漿料流變性變好。當(dāng)pHgt;8時(shí),OH-離子濃度的上升會(huì)中和部分堿金屬陽(yáng)離子電性,使得Zeta電位變化緩慢。

    2.4微粉特性對(duì)流變性的影響

    為了進(jìn)一步探明含鋯二氧化硅微粉特性對(duì)流變性的影響,使用灰色關(guān)聯(lián)度分析方法分析微粉特性對(duì)流變學(xué)參數(shù)的影響,表3所示為未添加分散劑的漿料流變學(xué)參數(shù)與含鋯二氧化硅微粉特性的關(guān)聯(lián)度。由表3可知,與流變學(xué)參數(shù)關(guān)聯(lián)度最大的粉末特性是漿料的pH和D50。漿料顆粒粒徑越大,pH越小,漿料的Zeta電位絕對(duì)值越大,漿料流動(dòng)性越好。含鋯二氧化硅微粉漿料A的粒徑最大、pH最小,流變性最好。隨著剪切速率的增大,關(guān)聯(lián)度變小(ri≤0.85),這是因?yàn)榧羟兴俾试龃蠛?,微粉?nèi)部特性對(duì)漿料流變性的影響隨之減小。

    圖5所示為未添加分散劑的3種含鋯二氧化硅微粉的切應(yīng)力和黏度。3種漿料黏度值均隨剪切速率的增大而減小,且都存在剪切變稀現(xiàn)象;同一剪切速率下,SIF-A1的切應(yīng)力和黏度均最小,流動(dòng)性最好;在同一剪切速率下,3種含鋯二氧化硅微粉漿料的黏度從大到小的排序是Bgt;Cgt;A。這是因?yàn)楹喍趸栉⒎跘顆粒中值粒徑D50較大,且粒徑分布較寬時(shí),本應(yīng)填充在孔隙中的自由水進(jìn)入到漿料中,導(dǎo)致漿料表觀黏度下降,從而改善了漿料的流變性。二氧化鋯在二氧化硅表面的吸附主要由范德華能主導(dǎo),隨著二氧化鋯吸附量的增大,范德華能也隨之變強(qiáng),導(dǎo)致顆粒間吸附能增大,在一定加水量的情況下漿料中的自由水含量更多,漿料的分散性更好[16]。

    2.5分散劑對(duì)含鋯二氧化硅微粉漿料流變性的影響

    流變性是指流體在外力作用下的變形和流動(dòng)。對(duì)于不同黏度的流體,施加的切應(yīng)力與剪切速率的關(guān)系也不同。圖6—8所示分別為添加不同分散劑后3種含鋯二氧化硅微粉漿料的切應(yīng)力與黏度。由圖可知,3種分散劑都起到了改善漿料流變性的作用,且STPP和SHMP的改善效果強(qiáng)于FS20型聚羧酸鹽分散劑。STPP對(duì)漿料SIF-A的流變性改善效果最好,SHMP則對(duì)漿料SIF-B和漿料SIF-C流變性的改善效果最好,這是因?yàn)镾TPP和SHMP均為離子型表面活性劑,在水中會(huì)發(fā)生部分電離并產(chǎn)生PO43-和P3O105-基團(tuán),陰離子被迫進(jìn)入吸附層,改變雙電層厚度,使Zeta電位絕對(duì)值增大,達(dá)到靜電穩(wěn)定。分散劑的陰離子在顆粒表面吸附也在一定程度上減少了顆粒間的碰撞,發(fā)揮了空間位阻的優(yōu)勢(shì)。FS20型聚羧酸分散劑具有梳型結(jié)構(gòu),分散效果取決于主鏈上陰離子在顆粒表面的吸附程度,以及實(shí)現(xiàn)空間位阻效應(yīng)的側(cè)鏈的長(zhǎng)度和數(shù)量[13]。漿料在一定的剪切速率下獲得切應(yīng)力后,漿料中顆粒間的微弱作用力被破壞,降低了FS20型聚羧酸分散劑高分子結(jié)構(gòu)的吸附作用,導(dǎo)致漿料的分散效果下降[17]。STPP溶液是弱酸強(qiáng)堿鹽,溶液呈堿性;SHMP在溶液中一般以HPO42-形式存在,溶液呈酸性。含鋯二氧化硅微粉粒子以氫鍵的方式吸附分散劑,漿料SIF-A中的表面活性基團(tuán)羥基含量更高,因此,漿料SIF-A的分散效果最好。

    采用Herschel-Bulkley(H-B)模型對(duì)漿料SIF-A1、SIF-B1、SIF-C1、SIF-A2、SIF-B2、SIF-C2、SIF-A3、SIF-B3、SIF-C3、SIF-A4、SIF-B4、SIF-C4切應(yīng)力與剪切速率的關(guān)系進(jìn)行擬合,得到4種含鋯二氧化硅微粉漿料的流變學(xué)參數(shù)如表4所示。流變指數(shù)n越接近1,說(shuō)明含鋯二氧化硅微粉漿料在流變環(huán)境中的切應(yīng)力與剪切速率越接近線性函數(shù)關(guān)系,漿料越接近牛頓流體。由表4可見(jiàn),漿料SIF-A2、SIF-B2、SIF-C2、SIF-A3、SIF-B3、SIF-C3的H-B模型擬合n值大于漿料SIF-A1、SIF-B1、SIF-C1和漿料SIF-A4、SIF-B4、SIF-C4,表明添加STPP和SHMP的含鋯二氧化硅微粉的漿料更加接近于牛頓流體。

    不添加分散劑和外加FS20型聚羧酸分散劑時(shí),3種含鋯二氧化硅微粉漿料屈服應(yīng)力均為0;而添加STPP和SHMP分散劑后,3種含鋯二氧化硅微粉漿料均呈現(xiàn)較小的屈服應(yīng)力。漿料SIF-A2的稠度系數(shù)K在漿料SIF-A中是最小的,說(shuō)明分散劑STPP對(duì)A種含鋯二氧化硅微粉漿料流變性的改善效果最好。漿料SIF-B3和SIF-C3的稠度系數(shù)K在漿料SIF-B和SIF-C中是最小的,說(shuō)明分散劑SHMP對(duì)B種和C種含鋯二氧化硅微粉漿料流變性的改善效果最好。這是因?yàn)樵诹姿岣淖饔孟?,含鋯二氧化硅微粉表面的羥基與水分子更加有效的作用,但是磷酸根的量要合適[18]。STPP的磷酸根含量比SHMP的低。對(duì)于表面羥基更多的A種含鋯二氧化硅微粉而言STPP是最佳的分散劑,而對(duì)于含表面羥基較少的B、C樣品而言,SHMP提供較多磷酸根才使得分散效果更好。另外,pH的增大也會(huì)抑制磷酸根的吸附[19],pH略大的含鋯二氧化硅微粉則需要添加磷酸根含量更多的SHMP才能獲得黏度最小的漿料。

    3結(jié)論

    1)含鋯二氧化硅微粉的微粉粒徑和表面羥基含量,對(duì)漿料的流變性和分散劑作用效果有重要影響。含鋯二氧化硅微粉中的氧化鋯顆粒吸附在氧化硅表面,或被包裹進(jìn)入氧化硅顆粒中,導(dǎo)致二氧化硅顆粒粒徑增大,漿料pH排序?yàn)锳lt;Blt;C。

    2)利用灰色關(guān)聯(lián)度分析方法分析含鋯二氧化硅微粉特性對(duì)流變性的影響,漿料pH及漿料顆粒D50對(duì)流變性影響最大,顆粒粒徑越大、漿料pH越小,漿料流變性越好。

    3)添加不同分散劑后,含鋯二氧化硅微粉漿料黏度都隨剪切速率增加而減小,呈現(xiàn)剪切變稀的特性。添加分散劑STPP和SHMP使含鋯二氧化硅微粉漿料在流變環(huán)境中的切應(yīng)力與剪切速率更接近線性函數(shù)關(guān)系,漿料更加接近于牛頓流體。離子型表面活性分散劑STPP和SHMP相對(duì)于FS20型聚羧酸鹽分散劑更有助于降低含鋯二氧化硅微粉漿料的黏度,對(duì)含鋯二氧化硅微粉漿料流變性的改善效果好于FS20型聚羧酸鹽分散劑。粒徑分布范圍較寬和表面羥基更多的含鋯二氧化硅微粉在磷酸根含量更少的STPP作用下漿料的分散效果最好。pH略大的含鋯二氧化硅微粉對(duì)磷酸根的吸附受到抑制,則須要添加磷酸根含量更多的SHMP才能獲得黏度最小的漿料。

    利益沖突聲明(Conflict of Interests)

    所有作者聲明不存在利益沖突。

    All authors disclose no relevant conflict of interests.

    作者貢獻(xiàn)(Authors’Contributions)

    覃慧清、夏雨峰、黃青、員文杰參與了實(shí)驗(yàn)設(shè)計(jì)。論文的寫(xiě)作和修改由覃慧清和員文杰完成。所有作者均閱讀并同意了最終稿件的提交。

    The study was designed by QIN Huiqing,XIA Yufeng,HUANG Qing,and YUAN Wenjie. The manuscript was drafted and revised by QIN Huiqing and YUAN Wenjie. All authors have read the last version of the paper and consented to its submission.

    參考文獻(xiàn)(References)

    [1]SARKARR. Binders for refractory castables:an overview[J]. Interceram International CeramicReview,2020,69(4):44-53.

    [2]BEZERRABP,LUZAP,PANDOLFELLIVC. Novel drying additivesand their evaluation for self-flowing refractory castables[J]. Ceramics International,2020,46(3):3209-3217.

    [3]HABIB AO,AIAD I,EL-HOSINY FI,et al. Development of the fire resistance and mechanical characteristics of silica fume-blended cement pastes using some chemical admixtures[J]. Construction and Building Materials,2018,181:163-174.

    [4]SENFF L,HOTZA D,REPETTE WL,et al. Rheological characterisation of cement pastes with nano silica,silica fume and superplasticiser additions[J]. Advances in Applied Ceramics,2010,109(4):213-218.

    [5]LIANG Y,ZHANG H,DING H,et al. Amorphous silica:prepared by byproduct micro silica in the ferrosilicon production andappliedin amorphous silica-TiO2composite with favorablepigmentproperties[J]. JournalofMaterials Research and Technology,2023,26:235-245.

    [6]王超,石穎恒,瞿玲,等. 分散劑對(duì)含鋯二氧化硅微粉漿料流變性的影響[J]. 陶瓷學(xué)報(bào),2020,41(5):678-685.

    WANG C,SHI YH,QU L,et al. Effects of dispersants on rheological properties of silica fume slurries[J]. Journal of Cera-mics,2020,41(5):678-685.

    [7]JIANG Q,XIE YL,JING LQ,et al. Low-temperature sintering of aporous SiC ceramic filter using water glass and zirconia as sintering aids[J]. Ceramics International,2021,47(18):26125-26133.

    [8]LIJ G,CAIQ W,LUO GQ,et al. Zirconia toughened alumina ceramics via forming intragranular structure[J]. Materials,2024,17(6):1309.

    [9]CHEN YG,TAN JL,SUN JX,et al. Effect of sintering temperature on the microstructures and mechanical properties of ZrO2ceramics fabricated by additive manufacturing[J]. Ceramics International,2024,50(7):11392-11399.

    [10]JIN ED,ZOU C,DING DH,etal. Enhanced mechanical properties and thermal shock resistance of magnesia refractories via in situ formation of tetragonal zirconia[J]. Ceramics International,2024,50(9):14968-14979.

    [11]ZADOROZHNAYA OY,KHABAS TA,TIUNOVA OV,et al. Effect of grain size and amount of zirconia on the physicaland mechanical properties and the wear resistance of zirconia-toughened alumina[J]. Ceramics International,2020,46(7):9263-9270.

    [12]GUN’KO VM,BORYSENKO MV,PISSIS P,et al. Polydimethylsiloxane at the interfaces of fumed silica and zirconia/fumed silica[J]. Applied Surface Science,2007,253(17):7143-7156.

    [13]BURROUGHS JF,WEISS J,HADDOCK JE. Influence of high volumes of silica fume on the rheological behavior of oil well cement pastes[J]. Construction and Building Materials,2019,203:401-407.

    [14]OTROJ S,NILFORUSHAN MR,DAGHIGHI A,et al. Impact of dispersants on the mechanical strength development of alumina-spinel self-flowing refractory castables[J]. Ceramics Silikáty,2010,54(3):284-289.

    [15]WANG Y,ZHU B,LI X,et al. Effect of dispersants on the hydrate morphologies of spinel-containing calcium aluminate cement and on the properties of refractory castables[J]. Ceramics International,2016,42(1):711-720.

    [16]WANG TT,BAI QS,GUO WM,et al. Effects offused silica surface roughness on the interfacial adsorption mechanism of contaminant[J]. Journal of Materials Science,2023,58(36):14284-14298.

    [17]武玉潔,沙淑莉,董妍,等. 二氧化硅二維漫反射紅外光譜特征研究[J]. 有機(jī)硅材料,2019,33(6):479-487.

    WU YJ,SHA SL,DONGY,etal. Study on characteristics of two-dimensional diffuse reflectance infrared spectrum of silicon dioxide[J]. Silicone Material,2019,33(6):479-487.

    [18]KOBASHI T,CHAI YD,YAMAD I. et al. Effective control of water-interactive states on mesoporous silica films by phos-phoric acid addition[J]. Materials Chemistry and Physics,2019,227:134-137.

    [19]WANG WJ,ZHOU J,WEI D,et al. ZrO2-functionalized magnetic mesoporous SiO2as effective phosphate adsorbent[J]. Journal of Colloid and Interface Science,2013,407:442-449.

    Rheological properties of zirconia-containing micro silica slurries

    QIN Huiqinga,XIA Yufenga,HUANG Qinga,YUAN Wenjiea,b,c

    a. State Key Laboratory of Refractories and Metallurgy,b. National-provincial Joint Engineering Research Center of High Temperature

    Materials and Lining Technology,c. Joint International Research Laboratory of Refractories and Metallurgy,Wuhan University of Science

    and Technology,Wuhan 430081,China

    Abstract

    ObjectiveOwning to their advantages,including easy production,simple construction,no need for firing,and fewer joints thatcan lead to lower corrosion,monolithic refractories such as castable have replaced traditional shaped refractories in most applica?tion fields. The use of alarge amount of micro powders makes the dispersion of castable crucial for construction. Zirconia-containing micro silicas,a by-product of the desilication process in zirconium production,boasts enhanced dispersibility andfavorable rheological properties. These characteristics can reduce the required amount of dispersant,lower construction costs,and exhibit promising application potential. To fully utilize its potential to improve the construction and service performance ofcastable,the rheological properties of zirconia-containing micro silicas slurries were systematically investigated. The effects ofpowder characteristics and dispersant on their rheological properties were analyzed. The results can provide practical guidancefor the development and utilization of castable with zirconia-containing micro silicas.

    MethodsIn this paper,three grade zirconia-containing micro silicas powders(SIF-A,B,C)produced by Imerys Fused Miner?als Yingkou Co. ,Ltd. were selected. The phase of zirconia in micro silicas was identified by X-ray diffraction(XRD). The microstructure of zirconia-containing microsilicas was observed using transmission electron microscopy(TEM). Functional groups of zirconiain micro silicas were identified by Fourier transform infrared spectroscopy(FTIR). The particle sizedistribu?tion of micro silicas was tested by alaser particle size analyzer. A 5%mass fraction slurry was prepared and the Zeta potential of the solution was measured at different pH values. The rheology of zirconia-containing micro silicas micro powders slurries con?taining 0. 2%sodium tripolyphosphate(STPP),0. 2%sodium hexametaphosphate(SHMP),and 0. 1%FS20-type polycarbox?ylate dispersant in mass fractions was measured using acylindrical coaxial rotational rheometer. The shear stress-shear rate rela?tionshipof zirconia-containingmicrosilicasslurries withdifferentdispersants was fitted using theHerschel-Bulkeymodel. Rheological parameters were investigated using gray correlation analysis combined with weighting analysis.

    Results and DiscussionTetragonal zirconiain micro silicas was detected by XRD. It was observed that large spherical particles contained numerous smaller zirconia particles. The median particle size D50of micro silicas Aand the grading accuracy D75/D25 were the largest. All three saturated solutions of zirconia-containing micro silicas were strongly acidic,with pH values in the order Alt;Blt;C due to the high content of soluble acidic oxide P2O5in micro silicas. The absolute value of the Zeta potential of the slurries increased with the increase of pH in the acidic environment. According to the grey correlation analysis,the correlation between the pH of the slurry and the D50of the powders,and the rheological properties of the zirconia-containing micro silicas slurries at ashear rate of 0. 13 s-1were 0. 9753 and 0. 9427,respectively,consistent with the calculated values of the weight?ing. There was apositive correlation between the particle size of zirconia-containing micro silicas and the rheological properties of its slurries. With the addition of different dispersants,the zirconia-containing micro silicas slurries exhibited shear thinning characteristics. The addition of sodium tripolyphosphate(STPP)and sodium hexametaphosphate(SHMP)dispersants brought the zirconia-containing micro silicas slurry close to Newtonian fluid. The improvement of slurry rheology by STPP and SHMP was greater than that of the polycarboxylate FS20. For micro silicas A,the dispersion effect of STPP was the highest. The most effective dispersant was SHMP for micro silicas Band C. This was because the hydroxyl groups on the surface of the zirconia-containing micro silicas interacted more effectively with water molecules under the action of proper amount of phosphate. The phosphate content of STPP was lower than that of SHMP. For micro silicas Awith more surface hydroxyls,STPP was the best dis?persant,whereas for samples Band Ccontaining fewer surface hydroxyls,SHMP provided more phosphate for better dispersion.

    In addition,an increase in pH inhibited the adsorption of phosphate. Therefore,the phosphate dispersant was more significant for micro silicas A.

    ConclusionThe zirconia particles are located on the surface of silica or encapsulated in larger silica particles. The saturated solutions of three selected zirconia-containing micro silicas for this study all exhibit strong acidity,with pH values Alt;Blt;C. In acidic environment,the absolute value of the Zeta potential of the slurry increases with the increase of pH value. The influence of the characteristics of zirconia-containing micro silicas on its rheological properties was analyzed using the grey correlation analysis method. The pH value of the slurry and the D50particle size have the greatest impact on its rheological properties. For larger micro silicas particles and lower pH values of the slurry,the rheological properties are better. Zirconia-containing micro silicas slurries with different dispersants exhibit shear thinning characteristics. The slurries are approximately Newtonian fluid when STPP and SHMP were added as dispersants. The effects of STPP and SHMP on their rheological properties are more signifi?cant than those of polycarboxylate superplasticizers. At acertain shear rate,weak intermolecular forces between particles in the slurry are disrupted,weakening the adsorption of polymer structures. Therefore,under shear force,the dispersion effect of ionic surfactants is stronger than that of polycarboxylate dispersants. Zirconia-containing micro silicas with alarger range of particle size distribution and more surface hydroxyl groups shows the best dispersion with STPP. Zirconia-containing micro silicas with slightly higher pH values requires the addition of SHMP to obtain slurries with minimized viscosity,as their adsorption of phos?phate is inhibited.

    Keywords:zirconia-containingmicrosilica;dispersant;rheologicalproperty;greycorrelationanalysis;Herschel-Bulkey model

    (責(zé)任編輯:趙雁)

    猜你喜歡
    微粉氧化鋯二氧化硅
    分散劑對(duì)二氧化硅微粉漿料流變性的影響
    S75級(jí)礦渣微粉工程應(yīng)用的試驗(yàn)研究
    姜黃提取物二氧化硅固體分散體的制備與表征
    中成藥(2018年2期)2018-05-09 07:19:43
    鋼渣和高爐渣微粉技術(shù)研究
    氧化鋯陶瓷及其制備方法
    佛山陶瓷(2017年7期)2017-09-06 06:17:00
    氨基官能化介孔二氧化硅的制備和表征
    氧化鋯的表面處理與粘接
    SAC-粉煤灰-再生微粉發(fā)泡體系的性能
    齒科用二氧化硅纖維的制備與表征
    介孔二氧化硅制備自修復(fù)的疏水棉織物
    亚洲男人天堂网一区| 国产黄色免费在线视频| 免费在线观看黄色视频的| 伦理电影免费视频| 夜夜看夜夜爽夜夜摸 | 黄色视频不卡| 国产熟女午夜一区二区三区| xxxhd国产人妻xxx| 不卡一级毛片| 亚洲av美国av| www.www免费av| 美女扒开内裤让男人捅视频| av免费在线观看网站| 亚洲第一av免费看| 日韩欧美免费精品| 免费在线观看亚洲国产| 看黄色毛片网站| 亚洲欧美激情在线| 国产欧美日韩一区二区三| 夜夜爽天天搞| 欧美另类亚洲清纯唯美| 黄色成人免费大全| 他把我摸到了高潮在线观看| 超色免费av| 色尼玛亚洲综合影院| 美女国产高潮福利片在线看| 啦啦啦免费观看视频1| 99精国产麻豆久久婷婷| 久久久久国产一级毛片高清牌| 欧美乱码精品一区二区三区| 亚洲美女黄片视频| 99精国产麻豆久久婷婷| 99久久综合精品五月天人人| 欧美精品啪啪一区二区三区| 久久亚洲精品不卡| 狠狠狠狠99中文字幕| 久久久国产成人精品二区 | 欧美在线一区亚洲| www.熟女人妻精品国产| 一边摸一边做爽爽视频免费| 国产精品一区二区三区四区久久 | 国产欧美日韩一区二区三| 亚洲五月天丁香| 欧美另类亚洲清纯唯美| 在线观看66精品国产| 黄色女人牲交| 久久午夜亚洲精品久久| 精品高清国产在线一区| 91成人精品电影| 黑丝袜美女国产一区| 无人区码免费观看不卡| 日日摸夜夜添夜夜添小说| 丝袜在线中文字幕| 黑丝袜美女国产一区| 精品久久久久久电影网| 好看av亚洲va欧美ⅴa在| 99国产极品粉嫩在线观看| 国产免费现黄频在线看| 国产成人一区二区三区免费视频网站| 亚洲av片天天在线观看| 国产在线观看jvid| 亚洲精华国产精华精| 丰满人妻熟妇乱又伦精品不卡| 亚洲专区国产一区二区| 亚洲熟妇熟女久久| 日本一区二区免费在线视频| 欧美乱码精品一区二区三区| 一区二区日韩欧美中文字幕| 两性夫妻黄色片| 久久人妻av系列| 亚洲 欧美 日韩 在线 免费| 亚洲av成人av| 日本撒尿小便嘘嘘汇集6| 亚洲午夜理论影院| 91成人精品电影| 性色av乱码一区二区三区2| 国产精品亚洲av一区麻豆| 无限看片的www在线观看| 在线观看一区二区三区激情| 一级片免费观看大全| 亚洲国产中文字幕在线视频| 不卡一级毛片| 国内毛片毛片毛片毛片毛片| 久久久国产一区二区| 777久久人妻少妇嫩草av网站| 国产蜜桃级精品一区二区三区| 久久久久国内视频| 一级毛片精品| 丁香欧美五月| 丝袜人妻中文字幕| 日日摸夜夜添夜夜添小说| 97碰自拍视频| 中文字幕另类日韩欧美亚洲嫩草| 国内久久婷婷六月综合欲色啪| 一二三四在线观看免费中文在| 18禁国产床啪视频网站| 国产欧美日韩综合在线一区二区| 欧美乱色亚洲激情| 成人av一区二区三区在线看| av欧美777| 日韩欧美免费精品| 两性夫妻黄色片| 国产97色在线日韩免费| 国产日韩一区二区三区精品不卡| 亚洲欧美一区二区三区久久| 亚洲成av片中文字幕在线观看| 18禁美女被吸乳视频| 香蕉国产在线看| 成年女人毛片免费观看观看9| 极品人妻少妇av视频| 免费在线观看亚洲国产| 色尼玛亚洲综合影院| 欧美乱码精品一区二区三区| 午夜视频精品福利| 色在线成人网| 欧美日本中文国产一区发布| 日韩视频一区二区在线观看| 亚洲七黄色美女视频| 久久午夜亚洲精品久久| 亚洲avbb在线观看| 欧美最黄视频在线播放免费 | 国产欧美日韩一区二区三区在线| 国产欧美日韩一区二区三| 90打野战视频偷拍视频| 18禁裸乳无遮挡免费网站照片 | 好男人电影高清在线观看| 1024香蕉在线观看| 国产亚洲精品久久久久5区| 99久久国产精品久久久| 热re99久久国产66热| 新久久久久国产一级毛片| 国产成人精品无人区| 级片在线观看| 久久久久亚洲av毛片大全| 狠狠狠狠99中文字幕| 国产高清videossex| 热re99久久精品国产66热6| 欧美激情极品国产一区二区三区| 一级片'在线观看视频| 精品少妇一区二区三区视频日本电影| 久久精品人人爽人人爽视色| 国产片内射在线| 亚洲一区二区三区色噜噜 | 日韩大尺度精品在线看网址 | av在线天堂中文字幕 | 91成人精品电影| 久久久久久久久久久久大奶| 亚洲 欧美一区二区三区| 婷婷精品国产亚洲av在线| а√天堂www在线а√下载| 男女高潮啪啪啪动态图| 国产深夜福利视频在线观看| 这个男人来自地球电影免费观看| 精品国产国语对白av| 精品国产一区二区三区四区第35| 午夜免费激情av| 国产激情欧美一区二区| avwww免费| 后天国语完整版免费观看| 亚洲国产欧美网| 国产又色又爽无遮挡免费看| 视频区图区小说| 女性被躁到高潮视频| 国产一卡二卡三卡精品| 在线av久久热| 超碰97精品在线观看| 午夜福利在线免费观看网站| 国产日韩一区二区三区精品不卡| 国产成人系列免费观看| 男人操女人黄网站| 老司机亚洲免费影院| 人人妻人人爽人人添夜夜欢视频| 日韩一卡2卡3卡4卡2021年| 午夜激情av网站| 亚洲久久久国产精品| 老司机午夜十八禁免费视频| 超碰97精品在线观看| 99国产综合亚洲精品| www.熟女人妻精品国产| 久久人人精品亚洲av| 日韩人妻精品一区2区三区| 日韩大尺度精品在线看网址 | 日日干狠狠操夜夜爽| 亚洲欧洲精品一区二区精品久久久| 国产成人欧美| 18禁美女被吸乳视频| 亚洲情色 制服丝袜| 久久欧美精品欧美久久欧美| 嫁个100分男人电影在线观看| 一级毛片高清免费大全| 精品乱码久久久久久99久播| 中出人妻视频一区二区| 97碰自拍视频| 国产精品偷伦视频观看了| 搡老熟女国产l中国老女人| 久久亚洲精品不卡| 亚洲一区高清亚洲精品| ponron亚洲| 久久99一区二区三区| 人妻丰满熟妇av一区二区三区| 无遮挡黄片免费观看| 国产成人影院久久av| 国产亚洲精品综合一区在线观看 | 99国产精品99久久久久| 亚洲精品一二三| 日本wwww免费看| 777久久人妻少妇嫩草av网站| 亚洲精品粉嫩美女一区| 熟女少妇亚洲综合色aaa.| 老汉色∧v一级毛片| 少妇裸体淫交视频免费看高清 | 80岁老熟妇乱子伦牲交| 两人在一起打扑克的视频| 久久香蕉精品热| 99国产综合亚洲精品| 丰满迷人的少妇在线观看| 亚洲成人免费av在线播放| 日韩高清综合在线| 久久久久国产精品人妻aⅴ院| 亚洲熟妇熟女久久| 久久影院123| 午夜免费成人在线视频| tocl精华| 国产成人免费无遮挡视频| 国产精品综合久久久久久久免费 | 99国产精品一区二区蜜桃av| 精品久久久久久久久久免费视频 | 国产真人三级小视频在线观看| 亚洲欧美一区二区三区黑人| 中出人妻视频一区二区| 99国产精品一区二区三区| 精品一区二区三卡| 午夜免费激情av| 国产精品一区二区在线不卡| 国产亚洲精品久久久久久毛片| 女人高潮潮喷娇喘18禁视频| 成人免费观看视频高清| www.精华液| www.自偷自拍.com| 国产精品久久视频播放| 亚洲国产精品合色在线| 91av网站免费观看| 看片在线看免费视频| 久久亚洲精品不卡| 久久久久国产一级毛片高清牌| 亚洲成人久久性| 久久久久久久精品吃奶| 国产免费男女视频| 国产精品日韩av在线免费观看 | 亚洲精品成人av观看孕妇| 香蕉丝袜av| 欧美最黄视频在线播放免费 | 亚洲欧美精品综合久久99| 老汉色∧v一级毛片| 交换朋友夫妻互换小说| 欧美乱色亚洲激情| 成在线人永久免费视频| 精品高清国产在线一区| 亚洲精品粉嫩美女一区| 国产av一区在线观看免费| 免费看a级黄色片| 青草久久国产| 亚洲欧美日韩另类电影网站| 人成视频在线观看免费观看| 国产伦一二天堂av在线观看| 国产精品日韩av在线免费观看 | 热re99久久精品国产66热6| cao死你这个sao货| 国产免费男女视频| 国产有黄有色有爽视频| 欧美日韩国产mv在线观看视频| 88av欧美| 久久影院123| 美女午夜性视频免费| x7x7x7水蜜桃| 91字幕亚洲| 国产成人影院久久av| 免费日韩欧美在线观看| 免费女性裸体啪啪无遮挡网站| 久久青草综合色| 两个人免费观看高清视频| 99热国产这里只有精品6| 可以在线观看毛片的网站| 亚洲全国av大片| 中国美女看黄片| 在线十欧美十亚洲十日本专区| 久久久国产精品麻豆| 精品一区二区三区av网在线观看| 亚洲精品一二三| 久久久国产一区二区| 国产男靠女视频免费网站| 99香蕉大伊视频| 国产精品亚洲一级av第二区| 午夜福利在线观看吧| 欧美国产精品va在线观看不卡| 亚洲中文av在线| √禁漫天堂资源中文www| 久久人人精品亚洲av| 国产极品粉嫩免费观看在线| 欧美日韩亚洲高清精品| 欧美日韩视频精品一区| 精品国产超薄肉色丝袜足j| 中亚洲国语对白在线视频| 亚洲专区字幕在线| 黑丝袜美女国产一区| 一级毛片精品| av有码第一页| 国产激情欧美一区二区| 亚洲精品粉嫩美女一区| 黄色毛片三级朝国网站| 99精品欧美一区二区三区四区| 男女高潮啪啪啪动态图| 国产精品国产av在线观看| 校园春色视频在线观看| avwww免费| 中出人妻视频一区二区| 国产又爽黄色视频| 成人三级做爰电影| 亚洲色图av天堂| 一夜夜www| 香蕉久久夜色| 国内毛片毛片毛片毛片毛片| 国产成+人综合+亚洲专区| 免费高清在线观看日韩| 丝袜美足系列| 成人亚洲精品一区在线观看| 看黄色毛片网站| 亚洲中文av在线| 怎么达到女性高潮| 国产黄a三级三级三级人| 欧美久久黑人一区二区| 99精品欧美一区二区三区四区| 天堂影院成人在线观看| 在线免费观看的www视频| 正在播放国产对白刺激| 亚洲第一青青草原| 黄色a级毛片大全视频| 欧美激情 高清一区二区三区| 国产精品永久免费网站| 在线观看一区二区三区| 大码成人一级视频| av在线播放免费不卡| 久久精品国产99精品国产亚洲性色 | 久久久久久久久免费视频了| 国产精品二区激情视频| 99精品在免费线老司机午夜| 久久香蕉国产精品| 色综合婷婷激情| 国产一区二区在线av高清观看| 欧美久久黑人一区二区| 他把我摸到了高潮在线观看| 亚洲精品国产色婷婷电影| 婷婷六月久久综合丁香| av天堂久久9| 午夜免费观看网址| 精品一区二区三区av网在线观看| 成年人免费黄色播放视频| 人人澡人人妻人| 亚洲av美国av| 免费在线观看日本一区| 欧美日韩中文字幕国产精品一区二区三区 | 久久久国产一区二区| 亚洲第一av免费看| 欧美中文综合在线视频| 免费av毛片视频| 中文字幕最新亚洲高清| 国产精品免费一区二区三区在线| 夜夜躁狠狠躁天天躁| 亚洲成av片中文字幕在线观看| 久久国产精品人妻蜜桃| 亚洲av美国av| 日日爽夜夜爽网站| 嫩草影院精品99| 国产激情欧美一区二区| 免费高清在线观看日韩| 国产精品久久久久成人av| 久久人妻福利社区极品人妻图片| 欧美日韩瑟瑟在线播放| 啪啪无遮挡十八禁网站| 欧美成人午夜精品| 波多野结衣一区麻豆| 亚洲成人久久性| av福利片在线| 女人高潮潮喷娇喘18禁视频| 亚洲欧美精品综合久久99| 美女午夜性视频免费| 欧美另类亚洲清纯唯美| 国产一卡二卡三卡精品| 脱女人内裤的视频| 免费高清在线观看日韩| 亚洲va日本ⅴa欧美va伊人久久| 久久精品国产亚洲av高清一级| 日韩国内少妇激情av| 亚洲欧美一区二区三区黑人| av免费在线观看网站| 久久久久国内视频| 黄色 视频免费看| 午夜精品久久久久久毛片777| 亚洲成人久久性| 18禁黄网站禁片午夜丰满| 99久久人妻综合| 欧美丝袜亚洲另类 | 黄片小视频在线播放| 成人影院久久| 亚洲精品美女久久久久99蜜臀| 亚洲欧美日韩高清在线视频| 亚洲精品国产精品久久久不卡| 99国产精品99久久久久| 日本免费a在线| 757午夜福利合集在线观看| 母亲3免费完整高清在线观看| 黑人巨大精品欧美一区二区mp4| 在线观看免费日韩欧美大片| 每晚都被弄得嗷嗷叫到高潮| 日本vs欧美在线观看视频| 波多野结衣av一区二区av| 婷婷丁香在线五月| 黄色女人牲交| 久久青草综合色| 亚洲av日韩精品久久久久久密| 在线观看舔阴道视频| 天堂中文最新版在线下载| 欧美日韩精品网址| 男人的好看免费观看在线视频 | 老司机午夜福利在线观看视频| av在线播放免费不卡| 久久久久精品国产欧美久久久| 日韩欧美三级三区| 美女福利国产在线| 性色av乱码一区二区三区2| 亚洲色图av天堂| 午夜免费激情av| 女人被躁到高潮嗷嗷叫费观| 免费在线观看亚洲国产| av在线播放免费不卡| 级片在线观看| 国产三级黄色录像| av电影中文网址| 国产成人精品无人区| 久久国产精品影院| 亚洲人成电影免费在线| 国产三级在线视频| 亚洲男人的天堂狠狠| 久久中文看片网| 丁香六月欧美| 亚洲精品中文字幕一二三四区| 亚洲专区国产一区二区| 99香蕉大伊视频| 最好的美女福利视频网| 性欧美人与动物交配| 99久久人妻综合| 交换朋友夫妻互换小说| 大香蕉久久成人网| 超碰成人久久| 亚洲狠狠婷婷综合久久图片| 免费观看精品视频网站| 日本 av在线| 精品日产1卡2卡| 国产av在哪里看| 日本vs欧美在线观看视频| 97碰自拍视频| 黄片大片在线免费观看| 国产精品免费视频内射| 18禁美女被吸乳视频| 免费一级毛片在线播放高清视频 | 人人妻,人人澡人人爽秒播| 一区二区三区精品91| 在线观看免费高清a一片| 欧美黑人欧美精品刺激| 多毛熟女@视频| 在线视频色国产色| 午夜老司机福利片| 久久久久久人人人人人| 久久精品成人免费网站| 国产精品国产高清国产av| 黄色a级毛片大全视频| 天天影视国产精品| 9色porny在线观看| 亚洲性夜色夜夜综合| 美女国产高潮福利片在线看| 国产精品偷伦视频观看了| 久久欧美精品欧美久久欧美| 法律面前人人平等表现在哪些方面| 天堂动漫精品| 国产精品久久久久成人av| 又大又爽又粗| 99久久人妻综合| 亚洲男人的天堂狠狠| 亚洲精品美女久久久久99蜜臀| 国产熟女xx| 中国美女看黄片| 18禁观看日本| 欧美成人免费av一区二区三区| 亚洲激情在线av| 亚洲 欧美一区二区三区| 免费观看人在逋| 欧美成人午夜精品| aaaaa片日本免费| 婷婷六月久久综合丁香| 国产1区2区3区精品| 高清黄色对白视频在线免费看| 日韩中文字幕欧美一区二区| av片东京热男人的天堂| 久久精品国产清高在天天线| 亚洲av成人一区二区三| 中亚洲国语对白在线视频| 三上悠亚av全集在线观看| 色综合欧美亚洲国产小说| 国产精品二区激情视频| 国产免费男女视频| 黄频高清免费视频| 天堂俺去俺来也www色官网| 色婷婷av一区二区三区视频| 午夜免费观看网址| 咕卡用的链子| 亚洲五月婷婷丁香| 亚洲自拍偷在线| 91大片在线观看| 99精国产麻豆久久婷婷| 亚洲三区欧美一区| 亚洲一区高清亚洲精品| 美女高潮喷水抽搐中文字幕| 一本综合久久免费| 一区二区三区精品91| 国产三级在线视频| 国产精品一区二区在线不卡| 极品教师在线免费播放| 久久精品91蜜桃| 操美女的视频在线观看| 亚洲激情在线av| 亚洲欧美一区二区三区久久| 高清毛片免费观看视频网站 | 制服诱惑二区| 啦啦啦免费观看视频1| 脱女人内裤的视频| 交换朋友夫妻互换小说| 欧美+亚洲+日韩+国产| 国产精品永久免费网站| 亚洲狠狠婷婷综合久久图片| 亚洲人成网站在线播放欧美日韩| 亚洲成a人片在线一区二区| 宅男免费午夜| 欧美乱码精品一区二区三区| 91国产中文字幕| 涩涩av久久男人的天堂| 黄片播放在线免费| 亚洲七黄色美女视频| 每晚都被弄得嗷嗷叫到高潮| 精品久久久久久成人av| videosex国产| 女同久久另类99精品国产91| 最新在线观看一区二区三区| 亚洲久久久国产精品| 色婷婷久久久亚洲欧美| 免费在线观看黄色视频的| 久久精品国产亚洲av香蕉五月| 在线国产一区二区在线| 高清毛片免费观看视频网站 | 三级毛片av免费| 他把我摸到了高潮在线观看| 美国免费a级毛片| 国产色视频综合| 天天躁狠狠躁夜夜躁狠狠躁| 脱女人内裤的视频| 老鸭窝网址在线观看| 嫩草影视91久久| av天堂久久9| 少妇裸体淫交视频免费看高清 | 高清毛片免费观看视频网站 | 国产精品秋霞免费鲁丝片| 久久天堂一区二区三区四区| 欧美乱色亚洲激情| 久久香蕉激情| 亚洲精品久久成人aⅴ小说| 色播在线永久视频| 日韩大码丰满熟妇| 亚洲自拍偷在线| 脱女人内裤的视频| 色精品久久人妻99蜜桃| 国产野战对白在线观看| 久久青草综合色| 亚洲五月天丁香| 国产野战对白在线观看| 精品国内亚洲2022精品成人| 日韩人妻精品一区2区三区| 女人高潮潮喷娇喘18禁视频| 人人妻人人添人人爽欧美一区卜| 狠狠狠狠99中文字幕| 亚洲全国av大片| 久久影院123| 满18在线观看网站| 91字幕亚洲| 久久国产精品人妻蜜桃| 高清黄色对白视频在线免费看| 韩国精品一区二区三区| 亚洲情色 制服丝袜| 久久久久久久精品吃奶| 亚洲伊人色综图| 午夜免费鲁丝| 亚洲精华国产精华精| 亚洲成人精品中文字幕电影 | 国产精品免费一区二区三区在线| 热99国产精品久久久久久7| 国产成人av教育| 人人妻人人爽人人添夜夜欢视频| 一边摸一边抽搐一进一出视频| 中文字幕人妻熟女乱码| 成人三级黄色视频| 久久影院123| a级片在线免费高清观看视频| 久久精品人人爽人人爽视色| 久久精品成人免费网站| 午夜激情av网站| 青草久久国产| 国产亚洲精品第一综合不卡|