摘要:人表皮生長(zhǎng)因子受體2(HER2)在多種腫瘤中異常表達(dá)或突變,促進(jìn)與細(xì)胞增殖和腫瘤發(fā)生相關(guān)的多種信號(hào)通路的啟動(dòng),是腫瘤診療的重要靶點(diǎn)之一。核醫(yī)學(xué)利用放射性示蹤技術(shù)精確定位病灶,通過PET/SPECT顯像技術(shù)實(shí)現(xiàn)腫瘤早期診斷及治療監(jiān)測(cè)。HER2放射性分子探針,包括抗體、小分子多肽、親合體及錨蛋白重復(fù)蛋白等類型,正處于積極研發(fā)及臨床前/早期臨床研究階段,為核醫(yī)學(xué)領(lǐng)域研究熱點(diǎn)之一。本文基于HER2放射性分子探針種類與乳腺癌、卵巢癌、胃癌等HER2陽性腫瘤疾病分類,對(duì)核醫(yī)學(xué)技術(shù)應(yīng)用于HER2陽性腫瘤診療的研究進(jìn)展作一綜述。
關(guān)鍵詞:HER2;放射性分子探針;核醫(yī)學(xué);放射性核素;乳腺癌;卵巢癌;胃癌;非小細(xì)胞肺癌
Advances in the application of HER2 radioactive molecular probes for tumour diagnosis and treatment
ZHA Yuan1, GUO Xu2, GAO Xiaomin3, YANG Rui4, YAO Ying2
1Nanjing Medical University Wuxi Medical Centre, Nanjing 211166, China; 2Department of Pharmacy, Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Wuxi 214002, China; 3School of Medicine Jiangnan University, Wuxi 214002, China; 4Institute of Eugenics and Genetic Medicine, Wuxi Maternal and Child Health Hospital, Wuxi 214002, China
Abstract: Human epidermal growth factor receptor 2 (HER2), which is abnormally expressed or mutated in a variety of tumours, promotes the initiation of a variety of signalling pathways related to cell proliferation and tumourigenesis, and is one of the most important targets for tumour diagnosis and treatment. Nuclear medicine uses radiotracer technology to precisely locate lesions and PET/SPECT imaging to achieve early diagnosis and therapeutic monitoring of tumours. HER2 radiotracer probes, including antibodies, small molecule peptides, amphiphiles, and anchoring repeat proteins, are undergoing active research and development, and are one of the hotspots of research in the field of nuclear medicine. Based on the types of HER2 radioactive molecular probes and the disease classification of HER2-positive tumours, this paper reviewed the research progress of nuclear medicine technology applied to the diagnosis and treatment of HER2-positive tumours.
Keywords: HER2; radioactive molecular probes; nuclear medicine; radionuclides; breast cancer; ovarian cancer; gastric cancer; non-small cell lung cancer
人表皮生長(zhǎng)因子受體(HER)家族包括HER1、HER2、HER3和HER4,其位于細(xì)胞表面,可根據(jù)生長(zhǎng)因子等外部信號(hào)激活內(nèi)部信號(hào)通路。HER2以其開放構(gòu)象中的二聚化結(jié)構(gòu)域,雖無配體結(jié)合能力,卻在HER家族中充當(dāng)關(guān)鍵的二聚化伴侶,與其他成員協(xié)同激活磷脂酰肌醇-3激酶/蛋白激酶B(PI3K/AKT)和蛋白激酶C(PKC)等信號(hào)途徑,從而調(diào)節(jié)細(xì)胞的生長(zhǎng)與存活。HER2的過表達(dá)促進(jìn)HER2-HER家族異二聚體形成,激活A(yù)KT原發(fā)性致瘤途徑[1] 。由于腫瘤的生存依賴于HER2活性或表達(dá)水平的提升,因此在臨床實(shí)踐中,HER2已被確認(rèn)為治療腫瘤的關(guān)鍵靶標(biāo)之一[2] 。
2022年美國(guó)新診斷的浸潤(rùn)性乳腺癌發(fā)病300 590例,其中大約20%的乳腺癌患者中存在HER2過表達(dá)[3] 。在胃癌患者中,HER2過表達(dá)率為9%~23%[4] 。2022年美國(guó)19 880例卵巢癌患者中20%~30%的患者存在HER2過表達(dá)[5, 6] 。在晚期非小細(xì)胞肺癌(NSCLC)中,HER2過表達(dá)的發(fā)生率為7.7%~23%,均與預(yù)后不良相關(guān)[7] 。此外,HER2在5%~15%的膀胱癌、5%~15%的宮頸癌、12%~15%的膽囊癌、8%~35%的子宮內(nèi)膜癌和15%~37%的唾液腺癌中呈陽性[8] 。在HER2陽性腫瘤患者中,應(yīng)用針對(duì)HER2的靶向療法,如曲妥珠單抗(Trastuzumab)和帕妥珠單抗(Pertuzumab)藥物治療,通過延長(zhǎng)總生存期(OS)和減少死亡率,有效提升了患者的預(yù)后[9, 10] 。目前,臨床通常采用免疫組織化學(xué)(IHC)和熒光原位雜交(FISH)這兩種技術(shù)來評(píng)估腫瘤細(xì)胞中蛋白質(zhì)及基因的表達(dá)情況[11] 。IHC技術(shù)操作簡(jiǎn)便且成本較低但瘤內(nèi)異質(zhì)性、癌細(xì)胞染色不完全及結(jié)果主觀解釋的差異使其具有局限性[4]。FISH技術(shù)具有高度的可重復(fù)性和客觀性,但實(shí)現(xiàn)高雜交效率和高信號(hào)強(qiáng)度的同時(shí),保持低背景噪音是熒光原位雜交技術(shù)的關(guān)鍵挑戰(zhàn)。相較于IHC及FISH兩種有創(chuàng)性檢驗(yàn)方式,放射性分子成像技術(shù)(RMI,如PET/CT、SPECT/CT)檢測(cè)HER2表達(dá)具有一定的補(bǔ)充作用:首先,它屬于非侵襲性檢測(cè),可多次重復(fù)評(píng)估不同治療階段HER2表達(dá)情況;其次,程序便捷,單一的全身成像即可實(shí)時(shí)顯示體內(nèi)所有組織病灶中HER2的狀態(tài);再者,多模式成像技術(shù)的結(jié)合有助于采取針對(duì)性治療措施。目前,RMI技術(shù)已在腫瘤影像分析中發(fā)揮重要作用,包括疾病分布和嚴(yán)重程度的精確顯示、療效監(jiān)測(cè)以及新藥研發(fā)的作用機(jī)制和安全性評(píng)估等。RMI標(biāo)記的基本策略為:選擇合適半衰期放射性核素(常用核素68Ga、124I、89Zr、18F、64Cu用于PET顯像,99mTc、177Lu、123I、111In用于SPECT顯像);使用連接劑或螯合劑1,4,7,10-四氮雜環(huán)十二烷-1,4,7,10-四羧酸(DOTA)、1,4,7-三氮雜環(huán)壬烷-1,4,7-三乙酸(NOTA)、二乙烯三胺五乙酸(DTPA)等將其化學(xué)連接到靶向抗體、多肽、親合體等配體上制得相應(yīng)分子探針。放射性標(biāo)記的單克隆抗HER2抗體是評(píng)估HER2表達(dá)的首個(gè)成像探針,隨后基于HER2抗體片段Fab和(Fab')2、親合體、小型肽、工程支架蛋白、納米抗體和小分子化合物等小體積分子成像探針被相繼開發(fā)。這些放射性標(biāo)記的探針在臨床前開發(fā)中具備評(píng)估HER2表達(dá)的(半)定量能力,并在初步臨床試驗(yàn)中顯示出臨床應(yīng)用的潛力[12]。然而,放射性分子探針的選擇和優(yōu)化,如放射性核素的半衰期、探針的特異度、敏感度和穩(wěn)定性、安全性等仍是放射性分子探針在HER2陽性腫瘤診療中所面臨的局限與挑戰(zhàn)。未來的探針優(yōu)化可通過改進(jìn)其設(shè)計(jì)和合成方法,開發(fā)新型特異性探針或與其它治療手段(如靶向療法、免疫療法等)結(jié)合以實(shí)現(xiàn)更有效的臨床治療效果。本文基于HER2放射性分子探針種類與HER2陽性腫瘤疾病分類,對(duì)核醫(yī)學(xué)技術(shù)應(yīng)用于HER2陽性腫瘤診療的研究進(jìn)展作一綜述。
1" HER2放射性分子探針的種類
1.1" 抗體類PET/SPECT分子探針
目前核素標(biāo)記的單克隆抗體主要為曲妥珠單抗和帕妥珠單抗,兩者均為靶向HER2的人源化單克隆抗體,臨床用于治療早期與轉(zhuǎn)移性的HER2陽性乳腺癌[9]。采用64Cu、89Zr、177Lu[13]、111In[14]、124I標(biāo)記這兩種抗體的探針研究目前已取得一定的進(jìn)展,如64Cu-trastuzumab[15]、124I-trastuzumab[16]、89Zr-pertuzumab[17]等探針。HER2抗體片段Fab分子大小相對(duì)小,有助于靶組織的顯像,提高腫瘤與非靶組織的對(duì)比度[18]。在初步臨床研究中,采用木瓜蛋白酶消化或酶切法等方法制備的曲妥珠單抗片段[Fab and F(ab’)2]在用放射性核素(如68Ga、89Zr、177Lu等)標(biāo)記后制得的探針如68Ga trastuzumab Fab[19],89Zr?Df-HER2-Fab-PAS200[20],177Lu-CHX-A”-DTPA-F(ab’)2-Trastuzumab[21]等在患者體內(nèi)安全穩(wěn)定且可特異靶向HER2陽性腫瘤細(xì)胞,具有良好應(yīng)用前景。納米抗體又稱單域抗體,是一種小型抗原結(jié)合片段,其具有的穩(wěn)定性好、特異性高、抗原結(jié)合親和力強(qiáng)、循環(huán)時(shí)間短、腫瘤穿透深等優(yōu)點(diǎn)使其適合開發(fā)作為HER2靶向探針制劑[22]。目前,采用18F[23]、131I[22]、89Zr[24]、99mTc[25]、177Lu[26]、225Ac[27]等放射性元素標(biāo)記NM-02、2Rs15d、RAD201、MIRC208、MIRC213[28]、MIRC213-709等納米抗體的研究正進(jìn)一步推進(jìn)臨床HER2陽性癌癥診斷治療過程。
1.2" 小分子多肽類PET/SPECT探針
小分子肽類成像劑可加快注射到成像的時(shí)間,同時(shí)通過使用半衰期較短的放射性同位素可減少對(duì)患者的潛在劑量[29]。目前,放射性核素標(biāo)記肽類HER2靶向探針在研究中經(jīng)驗(yàn)證可用于臨床診療多種類型癌癥。研究發(fā)現(xiàn)使用68Ga、177Lu、99mTc、111In等放射性標(biāo)記HER2靶向肽GSGKCCYSL、DTFPYLGWWNPNEYRY[29]、A9肽[30]、rL-A9肽[31]、六聚組氨酸多肽[32]、H10F多肽[33]、LTVSPWY[34]、SSSLTVPWY[35]等多肽制得的PET/SPET探針如68Ga-GSGKCCYSL[29]、[177Lu]Lu-DOTA-rL-A9[30]、99mTc-HYNIC-H10F[33]、111In-trastuzumab-NLS[36]可在動(dòng)物模型中清晰地觀察到HER2陽性異種移植瘤,具有作為HER2靶向探針應(yīng)用于臨床的潛力。
1.3" 親合體類PET/SPECT探針
親合體(6~7 k)類小尺寸蛋白質(zhì)具有生物相容性、無毒性并能與特異性受體高親和性結(jié)合,可作為抗體的替代品用于腫瘤靶向遞送和治療[37]。親合體放射性探針具有分子體積小,清除速度快,成像對(duì)比度高,腫瘤穿透性好的優(yōu)勢(shì)。研究發(fā)現(xiàn)親合體ABY-025、MZHER2:342、ZHER2:41071等與放射性元素68Ga[38]、18F[39]、99mTc[40]等標(biāo)記后制得的探針如68Ga-NOTA-MAL-MZHER2[41]、[18F] AlF-RESCA-HER2-BCH[39]、[68Ga] Ga-ABY-025[42]、68Ga-NOTA-MAL-Cys-MZHER2:342[38]、99mTc-ZHER2:41071[43]在鑒別HER2過表達(dá)型乳腺癌中具有較高的診斷準(zhǔn)確性,且不受既往抗HER2治療方案的影響,可作為臨床可行的HER2檢測(cè)方法。
1.4" 設(shè)計(jì)錨蛋白重復(fù)蛋白類PET/SPECT探針
設(shè)計(jì)的錨定蛋白重復(fù)蛋白是一種小型工程支架蛋白,其體積小、親和力強(qiáng)、外滲性穿透性好且在腫瘤中蓄積性和保留性高,因此能在注射后數(shù)小時(shí)內(nèi)提供高成像對(duì)比度,適用于腫瘤靶向放射性核素遞送[44]。目前常用的設(shè)計(jì)的錨定蛋白重復(fù)蛋白主要為ADAPTs(白蛋白結(jié)合肽來源的親和蛋白)和DARPin G3(相對(duì)分子質(zhì)量14 k的支架蛋白)[45]。目前,利用放射性核素89Zr[46]、99mTc[47]和125I[11]標(biāo)記ADAPTs、DARPin G3制得的靶向HER2受體分子探針如89Zr-DFO-G3-DARPin[46]、[99mTc]Tc-(HE)3-G3、[99mTc]Tc-ADAPT[49]、[125I]I-(HE)3-G3[50]、[99mTc]Tc-G3-G3C[51]等具有特異性靶向HER2陽性細(xì)胞應(yīng)用于臨床的潛力。
1.5" 外泌體與納米顆粒PET/SPECT探針
外泌體具有獨(dú)特的特性,包括無毒性、無免疫原性、生物降解性和靶向能力,使其成為臨床應(yīng)用的合適候選者。采用99mTc和111In標(biāo)記的外泌體探針99mTc-exosomes[52]和 [111In]In-oxine-T-exos[53]主動(dòng)靶向?qū)崿F(xiàn)腫瘤部位的可視化,有潛力用作檢測(cè)HER2表達(dá)的有效成像工具。Wen[54]等構(gòu)建了一種新型的有機(jī)多巴胺-黑色素納米顆粒(dMNs)作為載體并在其表面負(fù)載曲妥珠單抗,經(jīng)同位素64Cu、124I標(biāo)記后成功制備的多功能納米探針64Cu-PEG-dMNPs和124I-PEG-dMNPs可用于定量檢測(cè)小鼠體內(nèi)HER2的表達(dá)。此外,有學(xué)者開發(fā)出一種與放射性標(biāo)記的抗HER2單克隆抗體共軛的金納米棒探針111In-Tra2-AuNRs,其可作為針對(duì) HER2 陽性腫瘤的SPECT/光聲雙成像探針[55]。
2" HER2放射性分子探針在腫瘤診療中的應(yīng)用
2.1" HER2放射性分子探針在乳腺癌中的應(yīng)用
在乳腺癌中HER2陽性型占15%~20%,靶向藥物的開發(fā)應(yīng)用顯著改善HER2陽性患者預(yù)后,使部分患者通過降級(jí)化療策略獲得最佳療效[56]。研究發(fā)現(xiàn),64Cu-NOTA-trastuzumab PET探針具有高HER2特異性、良好的血清穩(wěn)定性及安全性[57]。臨床試驗(yàn)顯示其在HER2陽性乳腺癌患者中特異性攝取,肝攝取低、無不良反應(yīng)。劑量較64Cu-DOTA-trastuzumab和89Zr-trastuzumab低,有助于減少患者輻射暴露,有望用于HER2陽性乳腺癌放療劑量測(cè)定和治療反應(yīng)預(yù)測(cè)[58]。有研究對(duì)6例乳腺癌患者的89Zr-trastuzumab PET/CT圖像進(jìn)行定性評(píng)估,發(fā)現(xiàn)其檢測(cè)原發(fā)腫瘤治療反應(yīng)具有中等準(zhǔn)確性(66.7%),診斷效果與大型乳腺癌反應(yīng)評(píng)估研究中描述的核磁共振成像或[18F]FDG-PET/CT 的診斷效果相當(dāng)。該探針在目前的研究中,PET/CT圖像的定性評(píng)估(66.7%)雖不比標(biāo)準(zhǔn)核磁共振成像(83.3%)優(yōu)越,但其定量評(píng)估有可能更準(zhǔn)確地評(píng)估 HER2 陽性乳腺癌新輔助治療后原發(fā)腫瘤的反應(yīng)[59]。采用創(chuàng)新的化學(xué)酶法對(duì)帕妥珠單抗進(jìn)行位點(diǎn)特異性修飾制備的新型探針89Zr-ss-pertuzumab在6例HER2陽性轉(zhuǎn)移性乳腺癌患者中的應(yīng)用顯示,其平均有效劑量與隨機(jī)賴氨酸法標(biāo)記的89Zr-DFO-pertuzumab以及89Zr-DFO-trastuzumab相當(dāng)[60]。值得注意的是,與89Zr-DFO-pertuzumab相比,89Zr-ss-pertuzumab的病灶檢測(cè)能力更強(qiáng),示蹤劑陽性率更高。該示蹤劑在臨床應(yīng)用方面具有顯著潛力,可用于實(shí)時(shí)評(píng)估HER2狀態(tài),從而指導(dǎo)活檢過程并輔助治療決策制定。89Zr?Df-HER2-Fab-PAS200為氨基酸殘基鏈(PAS)修飾合成的新型抗HER2 Fab片段探針,其在1例HER2陽性轉(zhuǎn)移性乳腺癌患者的首次臨床應(yīng)用中具有適當(dāng)?shù)难呵宄什⒚舾袡z測(cè)小腫瘤病灶,然而由于其代謝周期較預(yù)期長(zhǎng),可能需要使用更短的PAS多肽或者聯(lián)合注射曲妥珠單抗進(jìn)一步優(yōu)化[20]。有研究指出,68Ga-NOTA-MAL-MZHER2 PET/CT顯像在24例HER2過表達(dá)乳腺癌患者診斷中的準(zhǔn)確性高,不受抗HER2治療影響,敏感度為91.7%,特異性為84.6%。其評(píng)估轉(zhuǎn)移灶表現(xiàn)與18F-FDG相似,可作為標(biāo)準(zhǔn)HER2檢測(cè)方法的補(bǔ)充,利于個(gè)性化臨床決策[41]。此外,抗HER2單域抗體示蹤劑99mTc-NM-02在10例乳腺癌患者的SPECT/CT顯像研究中具有安全性、合理的輻射劑量、良好的生物分布和腫瘤靶向成像特性,可提供一種準(zhǔn)確、無創(chuàng)的方法來確定乳腺癌患者的HER2狀態(tài)。未來還需開展更廣泛的研究以驗(yàn)證和比較該成像技術(shù)與病理檢測(cè)在HER2表達(dá)判定上的精確性[25]。
2.2" HER2放射性分子探針在卵巢癌中的應(yīng)用
HER2在卵巢癌增殖中具關(guān)鍵作用,為預(yù)測(cè)性生物標(biāo)志物,評(píng)估其過表達(dá)有助于制定最佳治療方案。有研究將短半衰期核素68Ga標(biāo)記于HER2靶向小型肽制得的探針68Ga-DOTA-(Ser)3-LTVSPWY在卵巢癌SKOV-3腫瘤皮下迅速蓄積,實(shí)現(xiàn)短時(shí)間內(nèi)的高對(duì)比度成像。此外,該探針在肝臟中的代謝有助于肝轉(zhuǎn)移灶的HER2成像,且使用68Ga代替99mTc可提高HER2檢測(cè)的靈敏度和表達(dá)的定量準(zhǔn)確性[34]。在首次臨床前研究中,研究者采用了一種創(chuàng)新的同源二聚體策略,與原有親代探針(99mTc-HYNIC- SSSLTVPWY)(99mTc-LY)相比,新型配體探針99mTc-HYNIC-E(SSSLTVPWY)2 (99mTc-DLY) 展現(xiàn)了相似的生物分布特征,同時(shí)在體內(nèi)藥代動(dòng)力學(xué)方面表現(xiàn)出顯著優(yōu)勢(shì):其消除半衰期和分布半衰期的延長(zhǎng)提升了腫瘤的保留率。此外,在對(duì)SKOV3腫瘤的成像對(duì)比度上,99mTc-DLY也展現(xiàn)出了更高的效能[35]。該研究為制備出更有效的 HER2 靶向能力更強(qiáng)的同源配體探針提供了新思路。[225Ac]Ac-DOTA-2Rs15d是一種采用α粒子發(fā)射體225Ac標(biāo)記的抗HER2單域抗體探針,具有HER2陽性卵巢癌特異性細(xì)胞攝取和殺傷能力。該探針與曲妥珠單抗聯(lián)合使用可提高卵巢癌小鼠平均生存期,可作為曲妥珠單抗的附加療法。但需進(jìn)一步研究降低其在腎臟的滯留[27]。在小鼠SKOV3腫瘤模型中,[89Zr]Zr-DFO-MAL-Cys-MZHER2注射后72 h,腫瘤對(duì)血/肌肉攝取比與18F或68Ga標(biāo)記的MZHER2性能相當(dāng),肝臟吸收值也相似,表明親水連接物有效降低腹部本底。臨床前研究顯示,該示蹤劑可特異性、無創(chuàng)檢測(cè)腫瘤HER2水平[61]。
同樣在SKOV3腫瘤模型中,3種親合體探針[64Cu]DOTA-Cys-ZHER2:342、[64Cu]DOTA-ZHER2:342(Cys39)和[64Cu]DOTA-ZHER2:342-Cys中,[64Cu]DOTA-Cys-ZHER2:342具有最佳親和力、快速的腫瘤靶向性、良好的腫瘤蓄積性與對(duì)比度,可作為適宜的PET探針[62]。
有研究指出使用直接放射性碘標(biāo)記的DARPin G3變體探針在小鼠SKOV3移植瘤PET/CT檢查中效果更佳,因此直接碘化為放射性碘標(biāo)記DARPin G3的首選臨床方法[50]。此外,示蹤劑99mTc-HYNIC-(Ser)3-LTVPWY監(jiān)測(cè)裸鼠卵巢腫瘤異種移植化療后的HER2狀態(tài)性能優(yōu)越,但腫瘤攝取率較低需進(jìn)行下一步優(yōu)化研究[63]。
2.3" HER2放射性分子探針在胃癌中的應(yīng)用
在晚期胃癌中,7%~34%的患者存在HER2過表達(dá),因此開發(fā)無創(chuàng)全身HER2靶向成像技術(shù)對(duì)于篩選適用于抗HER2治療的患者及治療評(píng)估具重大意義,可提高胃癌患者管理水平[64]。研究者設(shè)計(jì)了一種新型的99mTc和177Lu標(biāo)記的雙靶向HER2和IgG的納米抗體探針99mTc/177Lu-MIRC213-709,該探針可以與胃癌NCI-N87腫瘤細(xì)胞系中的HER2受體特異性結(jié)合。MIRC213與MIRC709融合顯著改善單體MIRC213藥代動(dòng)力學(xué),半衰期延長(zhǎng),腫瘤/腎臟攝取比提高20.4倍,給藥頻次減少,降低毒性,具有臨床應(yīng)用潛力[26]。研究發(fā)現(xiàn),探針68Ga-NOTA-MAL-MZHER2在注射后2 h即可進(jìn)行成像,相比64Cu和89Zr標(biāo)記的完整抗體,其具有更短的等待時(shí)間,提高了患者舒適度和臨床應(yīng)用可行性。同時(shí),該探針具有的快速清除和高圖像對(duì)比度特點(diǎn)使其適用于難以活檢的特殊部位病變?cè)u(píng)估,如腦、肺、腎上腺和骨轉(zhuǎn)移灶等。憑借不受抗HER2治療影響的優(yōu)點(diǎn),其可用于監(jiān)測(cè)治療反應(yīng)和重新評(píng)估HER2狀態(tài),有助于腫瘤學(xué)家及時(shí)調(diào)整治療策略。此外,將該探針與ctDNA測(cè)序結(jié)合還有望克服HER2陽性胃癌的異質(zhì)性問題[64]。采用N-溴代丁二酰亞胺法對(duì)曲妥珠單抗進(jìn)行124I標(biāo)記,應(yīng)用于6例胃癌轉(zhuǎn)移患者的PET顯像后發(fā)現(xiàn)124I-trastuzumab可用于檢測(cè)胃癌原發(fā)灶和轉(zhuǎn)移灶HER2陽性胃癌病灶。然而,甲狀腺對(duì)碘化放射性配體的吸收問題還需進(jìn)一步研究?jī)?yōu)化[16]。在一項(xiàng)33例HER2 陽性轉(zhuǎn)移性食管胃癌患者的PET/CT臨床研究發(fā)現(xiàn),89Zr-trastuzumab PET成像在評(píng)估HER2表達(dá)及全身病變方面具有優(yōu)勢(shì),尤其對(duì)骨病變敏感。但89Zr-Trastuzumab肝攝取高且顯像受曲妥珠預(yù)治療影響,需進(jìn)一步研究其臨床應(yīng)用價(jià)值[65]。
2.4" HER2放射性分子探針在肺癌中的應(yīng)用
根據(jù)病理分類,肺癌可細(xì)分為NSCLC和小細(xì)胞肺癌。化療為晚期NSCLC首選,但效果有限且副作用嚴(yán)重。HER2在肺癌中過表達(dá),放射性靶向HER2配體-藥物偶聯(lián)物可提高化療藥物腫瘤靶向性,為肺癌靶向化療提供新機(jī)遇[66]。2010年一項(xiàng)研究發(fā)現(xiàn)64Cu-DOTA-trastuzumab作為一種PET示蹤劑能顯示出清晰的HER2陽性肺部腫瘤圖像,有效地顯示NSCLC中HER2基因的表達(dá)情況,這表明它有可能在臨床上用于鑒別可能從曲妥珠單抗治療中獲益的患者[67]。培美曲塞(Pemetrexed)是晚期肺腺癌一線治療的常用藥,具有廣泛應(yīng)用、細(xì)胞毒性及免疫調(diào)節(jié)作用,是開發(fā)新型靶向化療藥物的優(yōu)良原料。研究者利用培美曲塞與ZHER2:V2親和抗體融合,以其C端4個(gè)氨基酸(Gly-Gly-Gly-Cys)作為螯合劑對(duì)共軛物進(jìn)行了放射性標(biāo)記,構(gòu)建了基于抗HER2的抗腫瘤靶向化療藥物99mTc-ZHER2:V2-pemetrexed[66]。該探針放射化學(xué)收率高、穩(wěn)定性好、血液清除率較快,可特異性靶向HER2陽性肺癌細(xì)胞。對(duì)于99mTc-ZHER2:V2-pemetrexed,研究發(fā)現(xiàn)在HER2陽性NSCLC A549異種移植模型中HER2親和體成功將細(xì)胞毒性藥物輸送至HER2陽性肺癌細(xì)胞,增強(qiáng)了培美曲塞的HER2靶向性,同時(shí)保留其抗腫瘤活性。ZHER2:V2-pemetrexed共軛物在靶向性、抗腫瘤效果和安全性上優(yōu)于培美曲塞[37]。分子藥物有望成為HER2陽性肺腺癌診斷和治療的重要手段。
2.5" HER2放射性分子探針在其他腫瘤中的應(yīng)用
HER2放射性分子探針不僅在上述疾病的診斷中顯示出其應(yīng)用價(jià)值,而且在諸如腦癌、腸癌以及甲狀腺癌等其他類型的腫瘤診療中也展現(xiàn)出潛在的應(yīng)用前景。膠質(zhì)母細(xì)胞瘤約占腦癌的15%,其治療包括手術(shù)、放療和化療。早期腦癌治愈率較高,高效的非侵入性腫瘤成像探針有助于膠質(zhì)母細(xì)胞瘤的早期診療,表現(xiàn)在分期、轉(zhuǎn)移檢測(cè)、治療管理和預(yù)后方面具有重要價(jià)值。有研究首次證明HER2靶向肽可用作膠質(zhì)瘤的SPECT成像劑,該研究顯示,99mTc-HYNIC-(Ser)3-LTVPWY多肽具有對(duì)U-87 MG膠質(zhì)瘤癌細(xì)胞高特異性和親和性、高腫瘤攝取率和高腫瘤與非靶標(biāo)比等特點(diǎn),可應(yīng)用于診斷,因此有望作為膠質(zhì)瘤SPECT診斷劑應(yīng)用于臨床[68]。對(duì)HER2陽性結(jié)直腸癌患者進(jìn)行HER2狀態(tài)的精確評(píng)估有助于腸癌患者從抗HER2靶向治療中獲益。125I-Herceptin具有標(biāo)記率高、體外穩(wěn)定性好、與HER2結(jié)合特異性高等特點(diǎn),研究者以HER2陽性MC38小鼠結(jié)腸腺癌細(xì)胞系建立裸鼠模型,采用125I-Herceptin進(jìn)行SPECT成像,結(jié)果顯示,注射125I-Herceptin后12 h即可觀察到腫瘤,24 h達(dá)峰,且過量非標(biāo)記Herceptin能顯著降低腫瘤攝取。這表明125I-Herceptin是一種有效的SPECT探針,有望用于結(jié)腸癌的無創(chuàng)HER2檢測(cè)[69]。由于甲狀腺未分化癌具有去分化性和侵襲性,其臨床治療非常具有挑戰(zhàn)性。研究發(fā)現(xiàn),HER2特異性免疫PET成像探針89Zr-Df-pertuzumab進(jìn)行的PET成像能清晰顯示所有皮下甲狀腺未分化癌,有助于HER2陽性甲狀腺未分化癌患者的診療,有臨床應(yīng)用潛力[70]。
3" 展望與小結(jié)
目前,應(yīng)用于PET/SPECT的HER2放射性分子探針大多處于臨床前和臨床開發(fā)階段。本文綜述了不同種類HER2放射性分子探針在乳腺癌、卵巢癌、胃癌、肺癌等HER2陽性腫瘤方面的研究進(jìn)展。在臨床應(yīng)用方面,放射性元素68Ga、89Zr、64Cu、99mTc等標(biāo)記抗體、抗體片段、親合體等配體的HER2靶向探針已經(jīng)在多個(gè)臨床試驗(yàn)中進(jìn)行了測(cè)試,并且主要在乳腺癌和胃癌取得了積極的結(jié)果。這些探針被用于幫助診斷HER2陽性腫瘤,以及在治療過程中監(jiān)測(cè)疾病的反應(yīng),設(shè)計(jì)個(gè)體化的給藥方案改善患者預(yù)后。采用放射性元素基于單克隆抗體曲妥珠單抗和帕妥珠單抗的分子探針研究已相對(duì)成熟但其在體內(nèi)穩(wěn)定性和持久性的欠缺(包括分布不均、半衰期短、免疫反應(yīng)及藥物相互作用等)以及可能出現(xiàn)的耐藥性大大限制了其臨床應(yīng)用。為解決這些問題,研究人員正致力于藥物設(shè)計(jì)改良、給藥方式優(yōu)化、聯(lián)合療法及個(gè)體化醫(yī)療等方面的改進(jìn)工作。HER2靶向抗體片段探針的優(yōu)勢(shì)在于較小的分子大小使其更易滲入HER2過表達(dá)組織和細(xì)胞,在提高探針特異性的同時(shí)明顯縮短了探針的作用速度。HER2靶向親合體、納米探針、小型肽探針因良好的靶向性,較強(qiáng)的組織穿透性且便于合成和修飾在臨床研究中應(yīng)用前景較好。除已有的HER2靶向放射性探針外,研究人員正在開發(fā)新型的HER2靶向探針,如將熒光分子與放射性核素結(jié)合制成的雙模式探針111In?DTPA?trastuzumab-IRDye800CW[71]通過雙標(biāo)記抗體模式實(shí)現(xiàn)術(shù)前和術(shù)中腫瘤定位,有助于圖像引導(dǎo)手術(shù)從而提高腫瘤切除的徹底性。這些探針旨在提高對(duì)HER2陽性腫瘤的診斷精度和治療效果。此外,在成像技術(shù)方面,AI技術(shù)的引入正在改變傳統(tǒng)的醫(yī)學(xué)影像分析方式。AI輔助顯微鏡可以減少人為評(píng)估的視覺誤差,提高HER2表達(dá)的評(píng)估精度?;贏I的影像組學(xué)和深度學(xué)習(xí)技術(shù)也在癌癥預(yù)后預(yù)測(cè)和治療反應(yīng)評(píng)估等方面展現(xiàn)出巨大潛力。
總的來說,核素標(biāo)記HER2靶向分子探針在腫瘤研究中已取得良好進(jìn)展,但實(shí)際應(yīng)用仍面臨一些挑戰(zhàn):需針對(duì)患者選擇優(yōu)化,避免HER2陰性患者使用無明顯益處;劑量需平衡,過高可能導(dǎo)致輻射傷害,過低影響圖像質(zhì)量;成本效益分析亦不可忽視。未來的研究可能會(huì)集中在提高探針的選擇性、降低劑量、減少成本以及提高圖像質(zhì)量等方面。此外,隨著個(gè)性化醫(yī)療和精準(zhǔn)醫(yī)療的發(fā)展,HER2放射性分子探針可能會(huì)在未來成為更多癌癥患者治療計(jì)劃的一部分。
參考文獻(xiàn):
[1]" "Galogre M, Rodin D, Pyatnitskiy M, et al. A review of HER2 overexpression and somatic mutations in cancers[J]. Crit Rev Oncol Hematol, 2023, 186: 103997.
[2]" "Zhang XN, Gao Y, Zhang XY, et al. Detailed curriculum vitae of HER2-targeted therapy[J]. Pharmacol Ther, 2023, 245: 108417.
[3]" "Gradishar WJ, O'Regan R, Rimawi MF, et al. Margetuximab in HER2-positive metastatic breast cancer[J]. Future Oncol, 2023, 19(16): 1099-112.
[4]" "Pous A, Notario L, Hierro C, et al. HER2-positive gastric cancer: the role of immunotherapy and novel therapeutic strategies[J]. Int J Mol Sci, 2023, 24(14): 11403.
[5]" "Metebi A, Kauffman N, Xu L, et al. Pb-214/Bi-214-TCMC-Trastuzumab inhibited growth of ovarian cancer in preclinical mouse models[J]. Front Chem, 2023, 11: 1322773.
[6]" "Siegel R, Miller K, Fuchs HE, et al. Cancer statistics, 2022[J]. CA Cancer J Clin, 2022, 72(1): 7-33.
[7]" "Ren S, Wang J, Ying J, et al. Consensus for HER2 alterations testing in non-small-cell lung cancer[J]. ESMO Open, 2022, 7(1): 100395.
[8]" "宋宏杰, 周治國(guó), 宋少莉, 等. 放射性核素標(biāo)記HER2抗體和納米抗體的分子影像研究進(jìn)展[J]. 腫瘤影像學(xué), 2020, 29(5): 510-9.
[9]" "Oh DY, Bang YJ. HER2-targeted therapies-a role beyond breast cancer[J]. Nat Rev Clin Oncol, 2020, 17: 33-48.
[10] Swain SM, Shastry M, Hamilton E. Targeting HER2-positive breast cancer: advances and future directions[J]. Nat Rev Drug Discov, 2023, 22(2): 101-26.
[11]Zhang QQ, Jin L, Gong H. Comparison of her?2/neu gene amplification or expression between IHC and FISH in BC[J]. Cell Mol Biol, 2022, 67(5): 399-404.
[12] Tolmachev V, Orlova A, S?rensen J. The emerging role of radionuclide molecular imaging of HER2 expression in breast cancer[J]. Semin Cancer Biol, 2021, 72: 185-97.
[13] Nautiyal A, Jha AK, Mithun S, et al. Analysis of absorbed dose in radioimmunotherapy with 177Lu-trastuzumab using two different imaging scenarios: a pilot study[J]. Nucl Med Commun, 2021, 42(12): 1382-95.
[14] Kurdziel KA, Mena E, McKinney Y, et al. First-in-human phase 0 study of" 111In-CHX-A\"-DTPA trastuzumab for HER2 tumor imaging[J]. J Transl Sci, 2019, 5(2). doi: 10.15761/JTS.1000269.
[15] Lee I, Lim I, Byun BH, et al. The prediction of HER2-targeted treatment response using 64Cu-Tetra-azacyclododecanetetra-acetic acid (DOTA)-trastuzumab PET/CT in metastatic breast cancer: a case report[J]. J Breast Cancer, 2022, 25(1): 69-73.
[16] Guo XY, Zhou NN, Chen ZH, et al. Construction of 124I-trastuzumab for noninvasive PET imaging of HER2 expression: from patient-derived xenograft models to gastric cancer patients[J]. Gastric Cancer, 2020, 23(4): 614-26.
[17] Ulaner GA, Carrasquillo JA, Riedl CC, et al. Identification of HER2-positive metastases in patients with HER2-negative primary breast cancer by using HER2-targeted 89Zr-pertuzumab PET/CT[J]. Radiology, 2020, 296(2): 370-8.
[18] Yue TTC, Ge Y, Aprile FA, et al. Site-specific 68Ga radiolabeling of trastuzumab fab via methionine for ImmunoPET imaging[J]. Bioconjug Chem, 2023, 34(10): 1802-10.
[19] Suman SK, Mukherjee A, Pandey U, et al. 68Ga-labeled trastuzumab fragments for ImmunoPET imaging of human epidermal growth factor receptor 2 expression in solid cancers[J]. Cancer Biother Radiopharm, 2023, 38(1): 38-50.
[20] Richter A, Knorr K, Schlapschy M, et al. First In-human medical imaging with a PASylated 89Zr-labeled anti-HER2 fab-fragment in a patient with metastatic breast cancer[J]. Nucl Med Mol Imaging, 2020, 54(2): 114-9.
[21]Sharma R, Kameswaran M, Dash A. Comparative in vitro cytotoxicity studies of 177Lu-CHX-A″-DTPA-trastuzumab and 177Lu-CHX-A″-DTPA-F(ab')2-trastuzumab in HER2-positive cancer cell lines[J]. Cancer Biother Radiopharm, 2020, 35(3): 177-89.
[22] Zhao LZ, Gong JL, Qi QL, et al. 131I-labeled anti-HER2 nanobody for targeted radionuclide therapy of HER2-positive breast cancer[J]. Int J Nanomedicine, 2023, 18: 1915-25.
[23] Qin X, Guo XY, Liu TY, et al. High in-vivo stability in preclinical and first-in-human experiments with [18F]AlF-RESCA-MIRC213: a 18F-labeled nanobody as PET radiotracer for diagnosis of HER2-positive cancers[J]. Eur J Nucl Med Mol Imaging, 2023, 50(2): 302-13.
[24] Ducharme M, Hall L, Eckenroad W, et al. Evaluation of [89Zr]Zr-DFO?2Rs15d nanobody for imaging of HER2?positive breast cancer[J]. Mol Pharm, 2023, 20(9): 4629-39.
[25] Zhao LZ, Liu CC, Xing Y, et al. Development of a 99mTc-labeled single?domain antibody for SPECT/CT assessment of HER2 expression in breast cancer[J]. Mol Pharm, 2021, 18(9): 3616-22.
[26] Hu B, Liu TY, Li LQ, et al. IgG?binding nanobody capable of prolonging nanobody?based radiotracer plasma half?life and enhancing the efficacy of tumor-targeted radionuclide therapy[J]. Bioconjug Chem, 2022, 33(7): 1328-39.
[27] Rodak M, Dekempeneer Y, Wojewódzka M, et al. Preclinical evaluation of 225Ac?labeled single?domain antibody for the treatment of HER2pos cancer[J]. Mol Cancer Ther, 2022, 21(12): 1835-45.
[28] Li LQ, Liu TY, Shi LQ, et al. HER2-targeted dual radiotracer approach with clinical potential for noninvasive imaging of trastuzumab?resistance caused by epitope masking[J]. Theranostics, 2022, 12(12): 5551-63.
[29] Ducharme M, Houson HA, Fernandez SR, et al. Evaluation of 68Ga-radiolabeled peptides for HER2 PET imaging[J]. Diagnostics, 2022, 12(11): 2710.
[30] Sharma AK, Sharma R, Vats K, et al. Synthesis and comparative evaluation of 177Lu-labeled PEG and non-PEG variant peptides as HER2-targeting probes[J]. Sci Rep, 2022, 12(1): 15720.
[31] Sharma AK, Sharma R, Das A, et al. Synthesis and 177Lu labeling of the first retro analog of the HER2-targeting A9 peptide: a superior variant[J]. Bioconjug Chem, 2023, 34(9): 1576-84.
[32] Facca VJ, Al-saden N, Ku A, et al. Imaging of HER2-positive tumors in NOD/SCID mice with pertuzumab fab?hexahistidine peptide immunoconjugates labeled with [99mTc]?(I)?tricarbonyl complex[J]. Mol Imag Biol, 2021, 23(4): 495-504.
[33] Wu Y, Li LQ, Wang ZH, et al. Imaging and monitoring HER2 expression in breast cancer during trastuzumab therapy with a peptide probe 99mTc?HYNIC?H10F[J]. Eur J Nucl Med Mol Imaging, 2020, 47(11): 2613-23.
[34] Biabani Ardakani J, Akhlaghi M, Nikkholgh B, et al. Targeting and imaging of HER2 overexpression tumor with a new peptide-based 68Ga-PET radiotracer[J]. Bioorg Chem, 2021, 106: 104474.
[35] Ebrahimi F, Noaparast Z, Abedi SM, et al. Homodimer 99mTc-HYNIC?E(SSSLTVPWY)2 peptide improved HER2-overexpressed tumor targeting and imaging[J]. Med Oncol, 2022, 39(12): 204.
[36] Li HK, Hasegawa S. Favorable tumor uptake and nuclear transport of Auger electrons by nuclear targeting with 111In-trastuzumab in an intraperitoneal tumor mouse model[J]. Nucl Med Commun, 2022, 43(7): 763-9.
[37] Han JY, Zhao Y, Zhao XM, et al. Therapeutic efficacy and imaging assessment of the HER2-targeting chemotherapy drug ZHER2: V2-pemetrexed in lung adenocarcinoma Xenografts[J]. Invest New Drugs, 2020, 38(4): 1031-43.
[38] Xu YP, Wang LZ, Pan DH, et al. PET imaging of a 68Ga labeled modified HER2 affibody in breast cancers: from xenografts to patients[J]. Br J Radiol, 2019, 92(1104): 20190425.
[39] Liu JY, Guo XY, Wen L, et al. Comparison of renal clearance of [18F]AlF-RESCA-HER2-BCH and [18F]AlF-NOTA-HER2-BCH in mice and breast cancer patients[J]. Eur J Nucl Med Mol Imaging, 2023, 50(9): 2775-86.
[40] Ramos-Suzarte M, Pintado AP, Mesa NR, et al. Diagnostic efficacy and safety of 99mTc-labeled monoclonal antibody ior c5 in patients with colorectal and anal carcinomas: final report clinical trial phase I/II[J]. Cancer Biol Ther, 2007, 6(1): 22-9.
[41] Miao HT, Sun YY, Jin YZ, et al. Application of a novel 68Ga-HER2 affibody PET/CT imaging in breast cancer patients[J]. Front Oncol, 2022, 12: 894767.
[42] Velikyan I, Schweigh?fer P, Feldwisch J, et al. Diagnostic HER2-binding radiopharmaceutical, [68Ga]Ga-ABY-025, for routine clinical use in breast cancer patients[J]. Am J Nucl Med Mol Imaging, 2019, 9(1): 12-23.
[43] Bragina O, Chernov V, Larkina M, et al. Phase I clinical evaluation of 99mTc-labeled Affibody molecule for imaging HER2 expression in breast cancer[J]. Theranostics, 2023, 13(14): 4858-71.
[44] Altai M, Garousi J, Rinne SS, et al. On the prevention of kidney uptake of radiolabeled DARPins[J]. EJNMMI Res, 2020, 10(1): 7.
[45] Bragina O, Chernov V, Schulga A, et al. Phase I trial of 99mTc-(HE)3-G3, a DARPin-based probe for imaging of HER2 expression in breast cancer[J]. J Nucl Med, 2022, 63(4): 528-35.
[46] Fay R, T?r? I, Schinke AL, et al. Sortase-mediated site-specific conjugation and 89Zr-radiolabeling of designed ankyrin repeat proteins for PET[J]. Mol Pharm, 2022, 19(10): 3576-85.
[47] Bragina O, von Witting E, Garousi J, et al. Phase I study of 99mTc-ADAPT6, a scaffold protein-based probe for visualization of HER2 expression in breast cancer[J]. J Nucl Med, 2021, 62(4): 493-9.
[48] Vorobyeva A, Schulga A, Rinne SS, et al. Indirect radioiodination of DARPin G3 using N-succinimidyl- Para-iodobenzoate improves the contrast of HER2 molecular imaging[J]. Int J Mol Sci, 2019, 20(12): 3047.
[49] Tolmachev V, Bodenko V, Oroujeni M, et al. Direct in vivo comparison of 99mTc-labeled scaffold proteins, DARPin G3 and ADAPT6, for visualization of HER2 expression and monitoring of early response for trastuzumab therapy[J]. Int J Mol Sci, 2022, 23(23): 15181.
[50] Vorobyeva A, Sсhulga A, Konovalova E, et al. Comparison of tumor-targeting properties of directly and indirectly radioiodinated designed ankyrin repeat protein (DARPin) G3 variants for molecular imaging of HER2[J]." Int J Oncol, 2019, 54(4): 1209-20.
[51] Larkina M, Plotnikov E, Bezverkhniaia E, et al. Comparative preclinical evaluation of peptide-based chelators for the labeling of DARPin G3 with 99mTc for radionuclide imaging of HER2 expression in cancer[J]. Int J Mol Sci, 2022, 23(21): 13443.
[52] Molavipordanjani S, Khodashenas S, Abedi SM, et al. 99mTc-radiolabeled HER2 targeted exosome for tumor imaging[J]. Eur J Pharm Sci, 2020, 148: 105312.
[53] Ghavami M, Vraka C, Hubert V, et al. Radiolabeled HER2-directed exosomes exhibit improved cell targeting and specificity[J]. Nanomed-Nanotechnol Biol Med, 2021, 16(7): 553-67.
[54] Wen L, Xia L, Guo XY, et al. Multimodal imaging technology effectively monitors HER2 expression in tumors using trastuzumab-coupled organic nanoparticles in patient?derived xenograft mice models[J]. Front Oncol, 2021, 11: 778728.
[55] Ding N, Sano K, Shimizu Y, et al. Development of gold nanorods conjugated with radiolabeled anti-human epidermal growth factor receptor 2 (HER2) monoclonal antibody as single-photon emission computed tomography/photoacoustic dual?imaging probes targeting HER2-positive tumors[J]." Biol Pharm Bull, 2020, 43(12): 1859-66.
[56]" Pérez-García JM, Gebhart G, Borrego MR, et al. Chemotherapy de-escalation using an 18F-FDG-PET-based pathological response-adapted strategy in patients with HER2-positive early breast cancer (PHERGain): a multicentre, randomised, open?label, non-comparative, phase 2 trial[J]. Lancet Oncol, 2021, 22(6): 858-71.
[57] Woo SK, Jang SJ, Seo MJ, et al. Development of 64Cu?NOTA-trastuzumab for HER2 targeting: a radiopharmaceutical with improved pharmacokinetics for human studies[J]. J Nucl Med, 2019, 60(1): 26-33.
[58]" Lee I, Lim I, Byun BH, et al. A preliminary clinical trial to evaluate 64Cu?NOTA?Trastuzumab as a positron emission tomography imaging agent in patients with breast cancer[J]. EJNMMI Res, 2021, 11(1): 8.
[59] Linders DGJ, Deken MM, van Dam MA, et al. 89Zr-trastuzumab PET/CT imaging of HER2-positive breast cancer for predicting pathological complete response after neoadjuvant systemic therapy: a feasibility study[J]. Cancers, 2023, 15(20): 4980.
[60] Yeh R, O'Donoghue JA, Jayaprakasam VS, et al. First?in?human evaluation of site-specifically labeled 89Zr-pertuzumab in patients with HER2-positive breast cancer[J]. J Nucl Med, 2024, 65(3): 386-93.
[61] Xu YP, Wang LZ, Pan DH, et al. Synthesis of a novel 89Zr-labeled HER2 affibody and its application study in tumor PET imaging[J]. EJNMMI Res, 2020, 10(1): 58.
[62] Qi SB, Hoppmann S, Xu YD, et al. PET imaging of HER2-positive tumors with Cu-64-labeled affibody molecules[J]. Mol Imaging Biol, 2019, 21(5): 907-16.
[63] Avan Z, Biabani Ardakani J, Talebpour Amiri F, et al. The potential usefulness of 99mTc-HYNIC-(Ser)3-LTVPWY peptide for predicting HER2 status alteration after chemotherapy in ovarian tumor-bearing mice[J]. Cancer Biother Radiopharm, 2022, 37(9): 862-9.
[64] Zhou NN, Liu C, Guo XY, et al. Impact of 68Ga-NOTA-MAL-MZHER2 PET imaging in advanced gastric cancer patients and therapeutic response monitoring[J]. Eur J Nucl Med Mol Imaging, 2021, 48(1): 161-75.
[65] Lumish MA, Maron SB, Paroder V, et al. Noninvasive assessment of human epidermal growth factor receptor 2 (HER2) in esophagogastric cancer using 89Zr-trastuzumab PET: a pilot study[J]. J Nucl Med, 2023, 64(5): 724-30.
[66] Jiao HL, Zhao XM, Liu JH, et al. In vivo imaging characterization and anticancer efficacy of a novel HER2 affibody and pemetrexed conjugate in lung cancer model[J]. Nucl Med Biol, 2019, 68/69: 31-9.
[67]Paudyal P, Paudyal B, Hanaoka H, et al. Imaging and biodistribution of Her2/neu expression in non?small cell lung cancer xenografts with Cu-labeled trastuzumab PET[J]. Cancer Sci, 2010, 101(4): 1045-50.
[68] Shahsavari S, Shaghaghi Z, Abedi SM, et al. Evaluation of 99mTc-HYNIC-(ser)3-LTVPWY peptide for glioblastoma imaging[J]. Int J Radiat Biol, 2020, 96(4): 502-9.
[69] Pan GX, Li DN, Li X, et al. SPECT/CT imaging of HER2 expression in colon cancer-bearing nude mice using 125I-Herceptin[J]. Biochem Biophys Res Commun, 2018, 504(4): 765-70.
[70]Wei WJ, Jiang DW, Rosenkrans ZT, et al. HER2-targeted multimodal imaging of anaplastic thyroid cancer[J]. Am J Cancer Res, 2019, 9(11): 2413-27.
[71] Deken MM, Bos DL, Tummers WSFJ, et al. Multimodal image-guided surgery of HER2-positive breast cancer using[111In]In-DTPA-trastuzumab-IRDye800CW in an orthotopic breast tumor model[J]. EJNMMI Res, 2019, 9(1): 98.
(編輯:孫昌朋)