• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    MXenes 基光催化劑的進(jìn)展、挑戰(zhàn)和展望

    2024-08-26 00:00:00蔡宇珊肖方興
    物理化學(xué)學(xué)報 2024年8期
    關(guān)鍵詞:電荷轉(zhuǎn)移

    摘要:隨著科學(xué)技術(shù)的不斷進(jìn)步,傳統(tǒng)的能源資源如石油和煤炭正面臨大規(guī)模耗竭的問題,同時也釋放出大量的溫室氣體,導(dǎo)致能源短缺和極端氣候變化,這已成為威脅人類生存和發(fā)展的緊迫挑戰(zhàn)。在這一背景下,光催化技術(shù)備受關(guān)注,因?yàn)樗梢詫⑻柲苡行У剞D(zhuǎn)化為化學(xué)能,被認(rèn)為是解決能源和環(huán)境問題的新興途徑。要實(shí)現(xiàn)高效的光催化反應(yīng),選擇合適的催化劑至關(guān)重要。然而,常用的光催化劑,如二氧化鈦(TiO2)、硫化鎘(CdS)、氮化碳(g-C3N4)等存在著一系列問題,包括光生電荷復(fù)合率高、光能利用效率低、穩(wěn)定性差、電荷轉(zhuǎn)移速度慢等,這些缺陷限制了光催化效率的提高。為應(yīng)對這些挑戰(zhàn),二維(2D)材料MXenes備受關(guān)注。MXenes具有獨(dú)特的結(jié)構(gòu)柔韌性、多樣性的元素組成、優(yōu)越的導(dǎo)電性、卓越的載流子遷移性能以及豐富的催化活性位點(diǎn),這些特性有助于加速界面電荷轉(zhuǎn)移并抑制光生電荷復(fù)合,因此被廣泛應(yīng)用于光催化反應(yīng)中,充當(dāng)了催化劑的角色。本文綜合總結(jié)了制備高質(zhì)量MXenes的各種方法,包括水溶液刻蝕、無水刻蝕以及其他物理輔助方法。同時,還討論了構(gòu)建MXenes復(fù)合光催化體系的多種策略,例如原位生長合成、原位氧化合成和靜電自組裝等。此外,文中還回顧了MXene與其他材料如TiO2、CdS、g-C3N4、WO3、BiOBr等在光催化制氫、二氧化碳還原、環(huán)境修復(fù)、氮固定、殺菌等領(lǐng)域的研究進(jìn)展。最后,鑒于MXene本身存在的局限性以及產(chǎn)業(yè)化需求,文章還展望了MXene基復(fù)合材料在光催化領(lǐng)域的未來發(fā)展前景和面臨的挑戰(zhàn)??偟膩碚f,本文為MXenes在光催化太陽能轉(zhuǎn)化中的應(yīng)用提供了詳實(shí)而豐富的信息。

    關(guān)鍵詞:MXenes;二維材料;電荷轉(zhuǎn)移;光催化氧化還原;界面結(jié)構(gòu)

    中圖分類號:O643

    Abstract: With the advancement of science and technology, traditional energysources such as oil and coal have been extensively depleted, leading to the emissionof greenhouse gases like CO2. Consequently, issues such as energy scarcity anddrastic environmental changes have emerged as pressing concerns that threatenhuman survival and development. Photocatalysis offers a promising solution byharnessing solar energy for chemical energy conversion, yielding clean andsustainable products. It is widely regarded as an emerging approach to address theenergy crisis and environmental challenges. To achieve high-efficiency photocatalyticreactions, the selection of appropriate catalysts and co-catalysts plays a pivotal role.However, conventional photocatalysts such as TiO2, CdS, and g-C3N4 suffer frominherent limitations, including high charge recombination rates, low light utilizationefficiency, poor stability, and sluggish charge transfer kinetics, which hinder the enhancement of photocatalytic efficiency.In this context, two-dimensional (2D) materials known as MXenes have gained prominence. These materials exhibit uniquestructural flexibility, diverse elemental compositions, superior conductivity, excellent carrier mobility, and abundant activesites, making them valuable co-catalysts in photocatalysis. MXenes accelerate interfacial charge transfer kinetics andmitigate charge recombination, enhancing the overall photocatalytic performance. This review provides a comprehensiveoverview of various methods employed to prepare high-quality MXenes under different conditions, such as water solutionetching, water-free etching, and other physical methods. It also explores diverse strategies for constructing MXene-basedcomposite photocatalytic systems, including in situ growth synthesis, in situ oxidation synthesis, and electrostatic selfassembly.Additionally, the review discusses various MXenes-based photosystems, such as MXene/TiO2, MXene/CdS,MXene/g-C3N4, MXene/WO3, and BiOBr/MXene/MMTex, and their applications in photocatalytic processes, includinghydrogen production, CO2 reduction, environmental remediation, nitrogen fixation, and sterilization. The critical role ofMXenes as reduction co-catalysts in these photoredox catalysis reactions is thoroughly examined, along with an elucidationof the relationship between MXene electronic structure and charge transfer characteristics. Furthermore, the reviewaddresses the challenges related to the stability of MXenes in photocatalytic reactions and offers insights into potentialstrategies to mitigate this issue. Finally, the development prospects and future challenges of MXene-based composites inthe field of photocatalysis are presented, taking into consideration the inherent limitations of MXenes and the requirementsfor industrialization. It is expected that this review will provide valuable insights into the physicochemical properties ofMXenes and inspire innovative approaches to the rational design of diverse MXene-based photosystems forheterogeneous photocatalysis across various applications.

    Key Words: MXenes; Two-dimensional; Charge transfer; Photoredox catalysis; Interface configuration

    1 Introduction

    In recent years, energy shortage and extreme environmentalchanges have emerged as threats to human survival anddevelopment. The development of clean, abundant, andrenewable solar energy is considered a promising strategy tomeet the growing demand for energy consumption and addressenvironmental concerns 1,2. Photocatalysis presents an emergingand viable approach to achieve solar-to-chemical energyconversion under light irradiation 3–5. It encompasses variousphoto-redox catalytic processes, such as photocatalytic watersplitting 6–9, CO2 reduction 10–13, nitrogen fixation 14–17 and dyedecomposition 18–21, producing green, recyclable, andsustainable products 22,23. To achieve high-efficiencyphotocatalytic reactions, the selection of suitable catalysts is ofparamount importance. However, prevalent photocatalysts, suchas TiO2, CdS, and g-C3N4, suffer from drawbacks like slowcarrier mobility kinetics, rapid charge recombination rates, lowlight utilization efficiency, and poor stability 24–27, significantlylimiting improvements in photocatalytic efficiency. To addressthese limitations, various methods, including element doping 27–31,heterostructure construction 32–36, and co-catalyst decoration 37,38,have been explored to modify photocatalysts 39–43. Among theseapproaches, the introduction of co-catalysts has proven effectivein accelerating photo-induced charge migration, reducing chargerecombination, and enhancing photocatalytic performance.

    One noteworthy category of co-catalysts that has gainedprominence in recent years is two-dimensional (2D) MXene nanosheets. In 2011, the research group led by Prof. YuryGogotsi at Drexel University successfully synthesized a novelseries of 2D transition metal carbide/nitride/carbonitridenanomaterials through selective etching, naming them MXenes 44.The general formula of MXenes is Mn+1XnTx (n = 1–3), whereM represents the transition metal (e.g., Ti, Cr, Nb, Sc, Mo, etc.),X denotes carbon and/or nitrogen, T indicates surface endfunctional groups (e.g., ―OH, ―O, ―F), and x represents thenumber of surface functional groups per unit of the formula 45,46.Importantly, MXene’s layered structure is held together by vander Waals forces 47. The constituent elements and structure ofMXene are illustrated in Fig. 1. MXene exhibits versatilephysicochemical properties due to its unique structuralflexibility and diverse elemental composition. For instance,V2CTx possesses excellent energy storage characteristics andrapid ion diffusion rates 48–51, while Mo2CTx exhibits distinctiveelectrochemical and thermoelectric properties 52–56. Ti3C2Txdemonstrates outstanding carrier mobility and abundant activesites 57. Despite its impressive physicochemical andthermodynamic properties, MXene faces challenges such as pooroxidation resistance and a lack of photocatalytic capability 58,59.Researchers have sought to overcome these limitations andexpand the scope of MXene applications by designing compositeheterostructures to leverage their synergistic effects 60–62.Previous studies have shown that MXene can function as a cocatalystdue to its high carrier mobility and abundant active sites,thereby enhancing carrier migration, suppressing charge recombination, and boosting photoactivity. Additionally,Ti3C2Tx exhibits the typical localized surface plasmon resonance(LSPR) effect, creating a local electric field that improves chargeseparation efficiency and generates hot charge carriers withslower relaxation compared to traditional plasmonic metals 63.These phenomena suggest the potential for enhancing thephotoactivity of MXene-based photocatalysis by utilizing theLSPR effect of Ti3C2Tx. As a result, a wide range ofMXene/semiconductor composite photocatalysts, includingMXene/TiO2, MXene/CdS, MXene/g-C3N4, MXene/WO3, andBiOBr/MXene/MMTex, have been explored for photocatalyticapplications.

    It is important to note that existing reviews on MXene haveprimarily focused on theoretical research in fields such aselectrochemistry 64–66, energy storage 67–69, and sensors 70–72.However, there is a shortage of comprehensive and systematicreviews that summarize the latest developments in MXene-basedcomposite photocatalysts. In this review, we provide a detailedoverview of the recent progress made in utilizing MXene as aco-catalyst in photocatalysis. We begin by introducing varioussynthetic methods for preparing MXene under differentconditions, including those with or without water. Subsequently,we discuss strategies for the precise construction of MXenebasedcomposite photocatalytic systems, such as in situ growthsynthesis, in situ oxidation synthesis, and electrostatic selfassembly.Furthermore, we delve into recent advancements inexpanding the application of MXene-mediated compositephotocatalysts in various photocatalytic reactions, includingphotocatalytic hydrogen production, CO2 reduction, dyedegradation, nitrogen fixation, and sterilization. Finally, wepresent challenges and prospects related to MXene in the fieldof heterogeneous photocatalysis for solar energy conversion,considering the inherent limitations and the need forindustrialization.

    2 Preparation methods of MXene

    MXene is typically produced through a selective chemicaletching process applied to the parent phase known as MAX.MAX is a significant family of layered ternary carbides andnitrides with a general empirical formula of Mn+1AXn, where Mrepresents a transition metal (e.g., Ti, Sc, Nb, Mo, Ta, V), and Ais an element from either group III A or group IV A 73,74. TheMAX phase can be thought of as a layered structure composedof atomic layers from group III A or IV A inserted betweenadjacent MXene layers. This unique structure renders it theprecursor material for MXene production. The atomic layers of group A elements (e.g., Al, Si) are selectively removed from thestacked MAX phase precursor through etching processes,resulting in the formation of MXene with specific functionalgroups. These functional groups can significantly influence theproperties of the MXene material 67,75. In the subsequent section,we provide a comprehensive overview of various MXenepreparation methods based on recent research findings.

    2.1 Water solution etching methods

    2.1.1 Direct HF etching

    Direct HF etching is one of the most commonly employedmethods for the preparation of MXene (Fig. 2a) 76. Since thesuccessful isolation of 2D MXene from its MAX precursor in2011 44, HF etching agents have been extensively utilized toproduce MXene through the selective etching of the MAXphase. The etching process can be broken down into threedistinct steps:

    Ti3AlC2 + 3HF = AlF3 + 3/2H2 + Ti3C2 (1)

    Ti3C2 + 2H2O = Ti3C2(OH)2 + H2 (2)

    Ti3C2 + 2HF = Ti3C2F2 + H2 (3)

    In the first reaction depicted in Eq. (1), Al is separated fromthe MAX phase by forming AlF3 in the presence of F?. This stepis pivotal in preparing Ti3C2 with a high degree of purity. In steps2 and 3, the newly formed Ti3C2 continues to react, leading tothe formation of terminal functional groups on the MXenesurface. These functional groups are not fixed and depend on thecomposition of the etching solution 77.

    However, the strong corrosive nature of HF can lead to theformation of defects during the etching process, which, in turn,reduces the electrical conductivity and oxidation resistance ofthe resulting MXene 78,79. Hence, it is crucial to exercise controlover factors such as acid concentration, reaction temperature,and etching time in order to produce MXene with fewer defects 80.Additionally, because of the small radius of cationic H+ ions andtheir limited stratification effect, it is common to obtainaccordion-like multilayer MXene structures with tightinteractions between adjacent layers following HF etching.These multilayer structures can be challenging to separatethrough conventional ultrasound methods. To achieve singlelayerMXene, an additional intercalation and delaminationprocess is required to peel apart the multilayer structure 81.Currently, commonly used intercalators for this purpose includepolar organic molecules 82,83, large organic base molecules 83,84,and metal cations. These intercalators serve to reduce theinteraction between adjacent layers, facilitating the productionof colloidal solutions containing single-layer or fewer-layerMXene through agitation or ultrasound in water.

    2.1.2 In situ HF etching

    Due to the strong corrosion caused by HF and subsequentdelamination through intercalation agents, single-layer MXeneobtained by direct HF etching often contains numerousdefects 78,79. In 2014, Ghidiu et al. pioneered the use of a LiFHClmixture as the etchant, successfully achieving theconversion of Ti3AlC2 MAX phase to Ti3C2. During the etching process (Fig. 2b), H+ ions from the acid and F? ions from thefluorine salt react in situ to form HF, hence this etching methodis referred to as in situ HF etching 85,86. Cations from fluoridesalts can be inserted into the interlayer spaces of MAX,increasing the separation between MXene nanosheets. Thisreduces the interaction between adjacent layers and mitigatesself-stacking tendencies. This approach introduces an innovativemethod for producing MXene by substituting HF with the milderHCl 81. Subsequent studies have confirmed that MXene can alsobe synthesized by replacing LiF with other fluoride salts (e.g.,KF, NaF, CsF, CaF2) or HCl with H2SO4, building upon thisinitial work 87–89. By adjusting the appropriate LiF/HCl ratio, theresearchers produced multi-layer MXene with weaker interlayerinteractions. This material can be stratified either through directultrasonic treatment or manual shaking to obtain single-layerMXene 90. This approach eliminates the need for additionalinterlayer and stratification steps required in the direct HFetchingmethod and reduces the occurrence of defects.Consequently, in situ HF etching has become one of the mostwidely adopted methods for producing MXene nanosheets 91,92.

    2.1.3 Alkali solution etching

    In addition to the aforementioned etching methods usingagents containing fluorine (F), MXene can also be synthesizedby etching MAX with an alkali solution (Fig. 2c) 93. Notably,MXene produced through this method exhibits a larger layerspacing compared to MXene obtained via in situ HF etching 94.Currently, sodium hydroxide (NaOH) and potassium hydroxide(KOH) are the most commonly employed alkaline etchingagents 93,95. For instance, Zou et al. achieved the preparation ofhighly conductive Ti3C2 through an alkaline hydrothermalreaction using Ti3SiC2 and KOH (0.1–2 mol?L?1) 96. The alkalietching method allows for the production of high-purity MXene.However, there are certain challenges associated with thisapproach. Firstly, MXene is susceptible to oxidation underalkaline conditions, increasing the likelihood of obtaining metaloxides instead of MXene 97. Secondly, during the etchingprocess, atoms from the elements present in MAX tend to forman oxide layer on the MAX surface. This layer acts as a barrierbetween the un-etched MAX and the etching agent, impedingfurther MAX etching. Lastly, the conditions for alkali treatmentoften involve high temperatures and pressures, posingsignificant safety hazards. Therefore, the synthesis of MXenethrough alkali treatment typically requires stringent control ofthe synthesis conditions.

    2.1.4 Electrochemical etching

    Electrochemical etching is a widely used method for thefluorine-free preparation of MXene (Fig. 2d) 98. To selectivelyremove the aluminum (Al) layer while preserving the 2Dstructure of Ti3C2, the design of the electrolyte is crucial. Forinstance, Yang et al. demonstrated an effective fluorine-freeelectrochemical method for the delamination of Ti3C2 in a binaryaqueous electrolyte 99. In this work, NH4Cl (1 mol?L?1) andtetramethylammonium hydroxide (TMA?OH, 0.2 mol?L?1) were employed as the electrolytes for the electrochemical process,conducted under environmental conditions with a pH greaterthan 9. The presence of chloride ions in the electrolyte enabledthe rapid etching of the anode and the cleavage of the Ti―Albonds. Subsequent insertion of ammonium hydroxide (NH4?OH)facilitated the etching of the MAX phase on the surface,achieving complete etching of the anode (Ti3AlC2) in a shortertime frame (5 h) to obtain Ti3C2Tx. The resulting productconsisted of more than 90% single or double-layer nanosheetswith an average transverse size exceeding 2 mm, which is largerthan those obtained using the classical HF etching method.Notably, the resulting Ti3C2Tx (T = O, OH) sheets did not containany fluorine terminal groups.

    2.2 Water-free etching methods

    MXene is susceptible to slow oxidation, even when placed inwater without dissolved oxygen, particularly at lowtemperatures, due to its poor oxidation resistance 59. WhenNaOH or HF is used as etching agents during the MXenepreparation process, the oxidation of MXene can be furtherexacerbated. To mitigate the influence of water on productquality during the etching process, the preparation of MXenethrough water-free etching has emerged as a research focus.

    2.2.1 Organic matter etching

    Organic etching is a commonly used, water-free method forpreparing MXene (Fig. 3a) 100. For instance, Lee et al. employeda rapid and high-yield etching process using Ti3AlC2 as thestarting material 101. They etched it in a non-aqueous solution ofdimethyl sulfoxide (DMSO), which contained a fluoride ionetcher (NH4HF2), complementary acid (CH3SO3H), and saltinserter (NH4PF6), all conducted at a temperature of 100 °C. Thisresulted in the production of Ti3C2Tx with large dimensions andhigh mechanical strength. Compared to similar aqueoussolutions reported in the literature, the time required for MXenepreparation using organic etching is significantly shorter 102. Forinstance, the etching of Ti3AlCN and Ti4AlC3 to produceTi3CNTx and Ti4C3Tx MXene takes only 4 and 8 h, respectively,when using DMSO solution. In contrast, the same process withHF etching under similar conditions would require 24 and 96 h,respectively 102.

    2.2.2 Molten salt etching

    Molten salt etching is another frequently employed water-freemethod for producing MXene (Fig. 3b) 59,103. For instance, Li etal. prepared Ti3C2Tx by immersing the precursor Ti3SiC2 inmolten CuCl2 at 750 °C (melting temperature: 498 °C) 104. In this process, the Si atoms exposed to the Ti3C2 sublayer, weaklybonded with Ti atoms, are oxidized by the Lewis acid Cu2+ toform Si4+ cations, which then react to produce volatile SiCl4.Meanwhile, Cu2+ is reduced to Cu metal. The resulting productis cleaned with an ammonium persulfate (APS, (NH4)2S2O8)solution, ultimately yielding MXene nanosheets with terminalfunctional groups. The as-prepared Ti3C2 MXene anode materialexhibits excellent Li+ storage capacity (738 C?g?1 at 205mA?h?g?1), rapid charge-discharge rates, and pseudo-capacitorlikeelectrochemical characteristics when tested in a 1 mol?L?1LiPF6 carbonate electrolyte.

    2.3 Other physical methods assisted MXene synthesis

    In addition to the liquid methods mentioned above forpreparing MXene, some physically assisted methods have alsobeen utilized to synthesize high-quality MXene materials.。

    2.3.1 Mechanical ball milling

    Chemically combined ball milling is one of the frequently observed mechanochemical synthesis methods 105. Compared toother etching methods, mechanical ball milling offers greaterconvenience, which is highly significant for MXene preparation.For example, Xue et al. introduced a straightforward strategy forproducing P-Ti3C2 through the chemical integration of ballmilling with a solution of tetramethylammonium hydroxide(TMAOH) and LiCl (Fig. 4) 106. The resulting fluorine-free PTi3C2exhibited a larger specific surface area (38.93 m2?g?1),which is 8 times larger than that of HF-etched Ti3C2 (HF-Ti3C24.87 m2?g?1), and 234 times that of the original Ti3AlC2 (0.166m2?g?1). This innovative method, combining an appropriateetching agent with ball milling, represents an environmentallyfriendly technique for mass-producing porous MXene materials.

    2.3.2 Magnetron sputtering

    While many MXene preparation methods have been discussedabove, most of them require the identification of a suitable MAX phase as the precursor. Due to the diverse elementalcompositions of MXenes, some MXenes cannot be synthesizedthrough selective etching due to the difficulty of finding thecorresponding stable MAX phase. An alternative method ismagnetron sputtering, which enables the direct preparation ofMXene through atomic deposition without the need for a stableMAX phase counterpart 107,108. For example, Sc2C cannot bereadily prepared using traditional selective etching methodsbecause the corresponding MAX phase is unstable. To addressthis challenge, Chen et al. employed magnetron sputteringtechnology and a double-target magnetron sputtering system tosynthesize Sc2C for the first time. They used carbon (C) andscandium (Sc) as the target materials and silicon and sapphiresubstrates. The resulting product was then cleaned withultrasonic waves, ultimately yielding Sc2C with a thickness of200 nm by sequentially cleaning the substrate with acetone,isopropylamine (IPA), and deionized water 109.

    2.3.3 CVD

    Chemical vapor deposition (CVD), known as an efficienttechnique for the preparation of 2D materials, can also beemployed for the synthesis of MXene. For instance, Xu et al.prepared 2D ultra-thin α-Mo2C with a thickness of a fewnanometers and a transverse size exceeding 100 μm using CVD.This method utilized methane as a carbon source and copper foilplaced on molybdenum foil as a substrate, with the processconducted at temperatures higher than 1085 °C 110. The ultrathinα-Mo2C crystals synthesized via CVD exhibited minimalstructural changes when exposed to various liquid environmentssuch as water, ethanol, acetone, isopropyl alcohol, andhydrochloric acid. Additionally, they remained stable whensubjected to temperatures of 200 °C for 2 h. These results suggestthat α-Mo2C synthesized by CVD displays high stability.

    More detailed preparation methods of MXene are listed in Table 1 111–129.

    3 Strategies for preparation of composite materials

    MXene exhibits significant potential as a co-catalyst thanks toits excellent conductivity and abundant active sites. However,the catalyst’s performance is closely linked to the constructionmethods employed 130–132. Appropriate composite methods canenhance the stability of the composite, strengthen interactionforces, facilitate charge transfer, and ultimately improvephotocatalytic efficiency 64,133–135. Currently, there are threemain methods for constructing MXene-based compositestructures, which will be discussed in the following section.

    3.1 In situ grown synthesis

    The various functional groups grafted onto the framework ofMXene give it the ability to absorb precursor ions throughelectrostatic attraction when mixed with semiconductorprecursors 69. In this manner, semiconductors can be grown insitu on the surface of MXene using wet-chemistry methods 136.MXene serves as a growth platform in this process, enhancinginterfacial interactions with semiconductors, promoting theseparation and transfer of charge carriers, and improvingphotocatalytic performance. Numerous studies have utilizedMXene as a platform for fabricating heterostructures. Forinstance, Ghidiu et al. reported the uniform growth of ZnIn2S4on the surface of MXene to create a sandwich-likeheterostructure with a double heterogeneous interface using a solvent-thermal method 68. Compared to exposed ZnIn2S4, theclose contact between ZnIn2S4 nanosheets and Ti3C2Tx facilitatesefficient interfacial charge transfer, thereby enhancingphotoactivity. However, in situ growth methods often requirehigh-temperature treatment, such as hydrothermal or solventthermalreactions, which can lead to the oxidation of MXene anda decrease in conductivity 59,137. Therefore, careful considerationis required when selecting preparation parameters andconducting composition analysis of MXene-based composites.

    3.2 In situ oxidation synthesis

    The surface of MXene is rich in exposed transition metalatoms, which differ from the internal atoms by exhibiting higheractivity and greater susceptibility to oxidation, leading to theformation of corresponding metal oxides (Fig. 5) 138–140. Forinstance, taking Ti3C2Tx as an example, if left at roomtemperature for a few days, it will completely oxidize intoanatase TiO2. Several studies have demonstrated that theoxidation process can be controlled by adjusting treatmentparameters such as raising the temperature or introducingoxidants like O2 and H2O2. Since 2014, Naguib et al. haveconducted preliminary research on TiO2 nanocrystals decoratedon carbon sheets, both derived from layered Ti3C2. Theyachieved this by storing Ti3C2 in pure CO2 at 500 °C for 1 h,followed by heating in an autoclave at 250 °C for 2 h (Fig.6a) 141. Scanning electron microscope (SEM) images reveal thatthe resulting Ti3C2Tx features biconical TiO2 crystals growing atthe edges of the layers (Fig. 6c), showcasing a lamellar structureakin to graphite (Fig. 6b). X-ray diffraction (XRD) and Ramanspectroscopy results confirm the transformation of Ti3C2Tx intonanocrystalline anatase and amorphous TiO2 (Fig. 6d,e). Thesefindings validate that TiO2 can be produced in situ from MXene.Building on this work, numerous studies have developedMXene-transition metal oxide composite photocatalysts. Themain preparation methods reported to date primarily revolvearound hydrothermal, calcination (or calcination with CO2 as anoxidizer), and in situ solvothermal methods 59,139,142,143.

    It has also been demonstrated that different calcinationtemperatures lead to the formation of metal oxides with differentstructures from MXene. For example, Ke et al. fabricatedcomposite materials by calcining Ti3C2 with isopropyl alcohol(IPA) to produce TiO2 nanoparticles (NPs) 144. According to UVVisdiffuse reflectance spectra (DRS) results, the absorptionband edge of bulk-Ti3C2/TiO2 and dS-Ti3C2/TiO2 appears at 400nm when the calcination temperature exceeds 360 °C, indicating the presence of anatase TiO2. Furthermore, it was observed thatthe absorbance values of bulk-Ti3C2/TiO2 and dS-Ti3C2/TiO2decrease as the calcination temperature surpasses 360 °C,attributable to the conversion of anatase into rutile TiO2. Allthese studies emphasize the importance of controlling synthesistemperature and time or understanding the crystal structure ofthe as-prepared material, as these factors significantly impact theyield and photocatalytic performance of the final compositeswhen using in situ oxidation methods.

    3.3 Electrostatic self-assembly

    MXene possesses various terminal functional groups suchas ―OH, ―F, and ―O, which are acquired by etching theMAX phase with different etchants. These functional groupsmake the surface of MXene negatively charged 69,145,146.Counterparts with opposite charges can form heterogeneouscomposite structures with MXene through electrostaticattraction under the influence of external agitation. The productsproduced using this method are also more uniform than thoseobtained through mechanical mixing 147,148. Electrostatic selfassemblyis the most commonly used technique for preparingcomposite photocatalysts. For example, Xie et al. preparedCdS/Ti3C2Tx heterostructured photocatalysts by mixingpositively charged CdS nanosheet substrates treated with (3-aminopropyl) triethoxysilane (APTES) with negatively chargedTi3C2Tx colloids through simple ultrasound. They then stirred themixture at room temperature for 1 h. During this process, thepositively charged CdS and negatively charged MXeneassembled through electrostatic self-assembly to form thecomposite material. This method resulted in significantlyimproved photocatalytic activity and excellent stability of thecomposite material 149.

    4 Construction of MXene-based composites photocatalysts

    In the field of photocatalysis, a significant challenge is theslow carrier mobility and quick recombination rate, whichconsiderably limit the enhancement of photocatalytic efficiency.The introduction of a co-catalyst can effectively improve carriermigration kinetics and inhibit carrier recombination 150. MXeneis often employed as a co-catalyst due to its excellent electricalconductivity and favorable reaction contact surface 151–154.Currently, a variety of materials are utilized to constructheterostructures with MXene, leading to substantialimprovements in photocatalytic activity. In the followingsection, we will delve into several exemplary MXene-basedheterostructured photosystems designed for variousphotocatalytic applications.

    4.1 MXene/TiO2

    TiO2 is considered one of the most environmentally friendlyphotocatalysts and is widely used in photocatalysis due to itsideal oxidation capacity, low cost, safety, and stability 155,156.However, TiO2 as a photocatalyst has some significantlimitations that restrict its widespread application. Firstly,anatase TiO2 has a wide-band-gap structure (approximately 3.2eV), which means it can only demonstrate photocatalysis in theultraviolet region, with limited light absorption in the visibleregion 157. Secondly, TiO2 exhibits rapid photoinduced electronholerecombination, leading to only a small fraction of carriersparticipating in the photocatalytic reaction, which severelyhampers its photocatalytic activity 18. To enhance thephotocatalytic efficiency of TiO2 and expand its range ofapplications, researchers have employed various modificationstrategies 158. MXene, as a widely used co-catalyst, has beenemployed to create heterostructures with TiO2. In the followingsection, we will delve into the research progress of MXene/TiO2in various photocatalytic reactions, including hydrogenproduction, carbon dioxide reduction, and environmentalremediation, providing detailed insights into these applications.

    4.1.1 H2 production

    Recent studies have revealed that the size of MXenenanosheets, including their thickness and width, has a profoundimpact on the photocatalytic performance of MXene-basedhybrid systems. This effect can be attributed to several factors.Firstly, the Fermi level of MXene plays a crucial role in catalyticperformance and influences whether carriers can transfer to theco-catalyst, and this is greatly affected by the size 159. Secondly,as the size of MXene nanosheets decreases, the specific surfacearea and active sites on the edges of monolayer MXene increase,which is conducive to improved photocatalytic performance 160.Thirdly, the small size of monolayer MXene is favorable forcarrier separation and diffusion 161. Thus, making appropriatechanges to the monolayer size of MXene can significantlyimpact the photocatalytic efficiency of MXene-based systems.For example, Su et al. reported the preparation of multilayer andsingle-layer Ti3C2Tx (Tx = O, OH, F) as co-catalysts forcommercial TiO2 (P25) 159. The study found that the 2D singlelayerTi3C2Tx is more favorable for charge separation over TiO2compared to the multilayer counterpart because the electron-holepair separation efficiency of single-layer Ti3C2Tx is higher.Moreover, the single-layer Ti3C2Tx has more active sites due toits larger specific surface area. As a result, the photocatalytichydrogen generation yield of the Ti3C2Tx/TiO2 composite is 2.5times higher than that of the multilayer counterpart. In additionto this work, other MXene/TiO2 composite systems have alsobeen explored for photocatalytic hydrogen production. Forinstance, Li et al. prepared mesoporous TiO2 nanoparticles andused them as a substrate to fabricate mesoporous TiO2/Ti3C2nanocomposites through electrostatic self-assembly usingsurfactants as structure-guiding media 162. The results show thatthe photocatalytic H2 generation rate of TiO2/Ti3C2 can reach upto 218.85 μmol?g?1?h?1, which is 5.6 times higher than that ofpristine TiO2. Importantly, the Ti3C2 content in the TiO2/Ti3C2nanocomposite is only 3% (wt, mass fraction), highlighting asignificant improvement in photocatalytic hydrogen generationrate with the incorporation of Ti3C2. In another study, Wang etal. investigated the impact of MXene (Nb2CTx, Ti2CTx) on the photocatalytic performance of TiO2/MXene composites 163. Theresults demonstrate that TiO2/Ti3C2Tx exhibits the optimalphotocatalytic hydrogen evolution rate, which increases by400% compared to pure rutile TiO2 when the Ti3C2Tx content isoptimized to 5% (wt). Furthermore, Peng et al. synthesized Ti3+-doped rutile TiO2 octahedra with exposed (111) surfaces andintegrated them with 2D Ti3C2 nanosheets through hydrothermaloxidation and hydrazine hydrate reduction 164. NH4F wasemployed as a crystal plane control agent to adjust the crystalplane ratio of TiO2 during the process. This photocatalystcombines the advantages of the facet effect of rutile TiO2,optimized interfacial microstructure, and lattice vacanciesinduced by Ti3+ doping, leading to significantly enhancedphotocatalytic performance of the MXene-based heterostructure,with extended light absorption into the visible light region.

    4.1.2 CO2 reduction

    Due to its suitable band structure and strong interaction withTiO2, MXene/TiO2 photocatalysts exhibit superior performancein photocatalytic CO2 reduction compared to TiO2 alone. Forinstance, Zhang et al. produced TiO2 nanoparticles in situ onTi3C2 nanosheets through calcination, resulting in a unique riceshell structure with a uniform distribution of TiO2 nanoparticles 165.It was revealed that the optimized TiO2/Ti3C2 heterostructuredemonstrated a CH4 production rate of 0.22 mol?h?1, which is 3.7times higher than that of commercial TiO2 (P25). First-principlescalculations and discrete Fourier transform (DFT) simulationsindicated that photogenerated electrons can migrate from TiO2to Ti3C2 due to the minimal difference in the conduction bandedge of TiO2 and the Fermi level of Ti3C2. This leads to areduced electron transfer barrier and significantly enhances theelectron-hole separation efficiency of the composites.Furthermore, the high electron conductivity of Ti3C2 furtherfacilitates the spatial separation of electron-hole pairs. Thus,appropriately tuning the composition of TiO2 and Ti3C2promotes the enhancement of photocatalytic CO2 conversionefficiency.。

    Building upon the remarkable photocatalytic performance ofMXene/TiO2 heterostructures, ternary MXene/TiO2-basedphotosystems have garnered significant attention. Theincorporation of multiple components into an integratedphotosystem can synergistically expedite charge separation andenhance photocatalytic performance. For example, Wang et al.employed sol-gel and hydrothermal methods to fabricate a coreshellmesoporous TiO2@ZnIn2S4/Ti3C2 MXene (T-ZIS-M)heterostructure (Fig. 7a) 166. In this multi-componentheterostructure, Ti3C2 MXene acts as a solid electron transfermedium, accelerating charge migration in the ternaryphotocatalytic system and improving the selectivity of CO2photoreduction to CH4. Under simulated visible light irradiationfor 3 h, the photocatalytic rates for CO and CH4 generationreached 30.5 and 34.0 μmol?g?1, respectively (Fig. 7b,c), with aCH4 selectivity of 52.7% (Fig. 7d).

    Xu et al. prepared a 2D TiO2/MXene heterojunction througha hydrothermal oxidation method 167. In this study, Ti3CNMXene, which exhibits higher electrical conductivity and betterelectrochemical performance compared to traditional Ti3C2, washybridized with TiO2 for CO2 photoreduction. Electronparamagnetic resonance (EPR) spectra were measured under room temperature and dark conditions. The substantial EPRsignal was attributed to the multiple coordination environmentsof Ti3+ species, which provide center traps for the capture ofcharge carriers and inhibit charge recombination. This wascorroborated by the CO2 photoreduction results of Pd@TOCN-160, which exhibited the highest HCOO? formation rate (37.7μmol?L?1cm?2?h?1), three times larger than that of Pd@Ti3CN.The study also conducted in situ infrared tests and firstprinciplescalculations to explore the reaction mechanism,confirming that Ti3CN possesses metallic properties based on thepartial state density (PDOS) and total state density (TDOS) ofTiO2/Ti3CN heterojunctions. Additionally, DFT calculationsrevealed the reaction energetics of the CO2 → HCOOHpathway and provided a free energy diagram of CO2 reductionover TiO2/Ti3CN. Initially, CO2* intermediates form via thetransfer of electrons adsorbed on the TiO2 surface to CO2.Subsequently, HCOO* is produced through a single migration ofelectrons and protons, and it utilizes another proton to formHCOOH*. Finally, HCOOH* is desorbed from the TiO2/Ti3CNheterojunction and diffuses into the reaction system.

    4.1.3 Sterilization

    Photocatalytic sterilization has emerged as a competitivestrategy in recent years for effectively purifying water throughphotocatalysis. MXene/TiO2-based composites have gainedwidespread attention in this field due to their excellentphotocatalytic capabilities. For instance, Huang et al. introduceda novel Z-type heterojunction material, specificallyMXene/TiO2/Bi2S3 (MTBn, where n represents the mass fractionof Bi2S3 in the composition). In this composite, TiO2 and Bi2S3are uniformly deposited onto the MXene substrate using astraightforward hydrothermal method 168. Visible-light-drivenphotocatalytic inactivation experiments were conducted usingEscherichia coli and Staphylococcus aureus as representativebacteria. Results from electrochemical impedance spectra (EIS)and photocurrent tests indicate that the addition of Bi2S3significantly enhances the photocatalytic bactericidal efficiencyof MXene/TiO2/Bi2S3 compared to the blank control group(consisting of pure MXene and MTB0). When the Bi2S3 contentreaches 30% (MTB3), the composite material inactivated all thebacteria within 2 h, demonstrating the highest photoactivityamong the samples. The study also monitored changes inantioxidant enzyme levels, specifically superoxide dismutase(SOD), catalase (CAT), and adenosine triphosphate (ATP),which are three essential parameters of bacterial activity used toassess the bactericidal effect of the photocatalyst. The levels ofSOD and CAT showed slight fluctuations because of theunfavorable cell placement environment in the dark for 30 min,confirming that photocatalysis only occurs under light. Underprolonged light irradiation, the SOD and CAT values in theexperimental group containing MTB3 continued to decline withincreasing irradiation time, whereas the control group withoutlight exposure showed no significant change in SOD and CATcontents, indicating that the enzyme system was disrupted byactive species. Additionally, Lu et al. prepared a hybridcomposite consisting of TiO2 exposing the (001) surface with amonolayer Ti3C2Tx nanosheet (MXene) and employed it as aphotocatalyst under UV light to inactivate airborne bacteria 169.The study confirmed that the inactivation mechanism of UVirradiation differs from that of ultraviolet photocatalysis. Theformer inactivates bacteria by damaging their DNA, whilephotocatalysis physically destroys the cell structure.Consequently, photocatalytic inactivation is considered a morecomprehensive disinfection technique than single UVinactivation.

    In addition to the aforementioned research, Liu et al.constructed a vane-like Ti3C2Tx/TiO2 heterostructure forphotocatalytic water disinfection 170. Photoelectrons migratefrom TiO2 to Ti3C2Tx, where they accumulate in the presence ofan internal electric field and then combine with oxygen to formsuperoxide free radicals (·O2?). Simultaneously, the holes in theTiO2 react with water to produce hydroxyl free radicals (·OH).These reactive oxygen species effectively attack the cellmembranes of bacteria, achieving bactericidal effects. This workdemonstrated that the activity of Salmonella typhimurium andStaphylococcus aureus was significantly reduced when usingTi3C2Tx/TiO2 as a catalyst under visible light irradiationcompared to Ti3C2Tx alone. All bacteria were inactivated after 50min of irradiation, while bacteria in the TiO2 group remainedviable.

    4.1.4 Dye degradation

    Breaking the limitation of TiO2’s light absorption range hasalways been a key challenge in extending its photocatalyticapplications. To address this issue, composite modificationthrough element doping has proven to be an effective approachfor altering the band structure, which is also widely employed toinfluence the selectivity of photocatalytic products 171,172. Forexample, Zheng et al. prepared N-doped TiO2/Ti3C2nanocomposites through one-step in situ calcination 173.Introducing impurity levels into the band gap through nitrogen(N) doping enables N-doped TiO2/Ti3C2 (NTM-x, where xrepresents the calcination time) to absorb visible light (Fig.8a,b). This alteration plays a crucial role in the selectivephotocatalytic removal of NO3? and N2. Specifically, NTM-2.0exhibits the highest NO3? removal rate of 100%, indicating thatTi3C2 decoration and N doping effectively enhance thephotoactivity of TiO2 for nitrate reduction (Fig. 8c). Fig. 8dillustrates the ratio of nitrogen species (NO3?, NO2?, NH4+, andN2) and the selectivity of N2 in different samples by analyzingthe reduction products of nitrate in water. It shows that the N2selectivity of TM (TiO2/Ti3C2) is the highest (91.9%), while thatof Ti3C2 is the lowest (66.6%). For NTM compounds, the higheryield of NH4+ leads to a lower selectivity of N2 compared to TM.In another study, Xu et al. prepared a series of BiOBr/TiO2/Ti3C2Tx (BTM-x%, where x is the theoretical mass ratio ofTi3C2Tx) ternary heterostructures through a hydrothermalmethod 174. The photoluminescence (PL) emission intensity of TiO2/Ti3C2Tx and BiOBr/TiO2/Ti3C2Tx is significantly lowerthan that of BiOBr alone, indicating that the carrierrecombination rate in the ternary heterostructure is significantlylower than that in the individual materials. This observationaligns with experimental results showing that the photocatalyticactivity of the BiOBr/TiO2/Ti3C2Tx heterostructure is higher thanthat of pure BiOBr and TiO2/Ti3C2Tx counterparts. Thesephenomena can be explained by several factors. Firstly, theintroduction of TiO2/Ti3C2Tx extends the light absorption edgeof the ternary heterostructure further into the visible region,enhancing absorption intensity compared to BiOBr alone.Secondly, the ternary heterostructure benefits from excellentelectrical conductivity of Ti3C2Tx and a suitable band structurebetween BiOBr and TiO2. Additionally, Ti3C2Tx can effectivelytrap electrons, inhibiting photogenerated charge recombinationdue to its inherent excellent conductivity. Furthermore, Tan et al.successfully prepared alk-MXene-TiO2/α-Fe2O3-Tnanocomposites for the photocatalytic degradation of organicdyes, and they investigated the role of KHSO5 (PMS) in thereaction 175.

    4.2 MXene/CdS

    CdS possesses remarkable solar spectral response, favorablethermodynamic energy levels, and excellent light absorption inthe visible region 176,177. However, as a metallic sulfide, photogeneratedholes generated on CdS under light irradiation canoxidize sulfide ions (S2?) to form polysulfides (Sx2?), sulfur,and/or sulfate (SO4 2?). Simultaneously, metal ions are releasedinto the solution, leading to photo-corrosion, which inactivatesCdS. The leachable Cd2+ ions released during this process canalso cause secondary pollution 178,179. These factors have beenkey reasons for the poor photocatalytic stability of CdS. Toaddress this issue and achieve stable utilization of CdS inphotocatalysis, two approaches have been proposed. Oneapproach is to mitigate CdS corrosion by reducing the numberof holes through spatial transfer or loss. This can be achieved byconstructing CdS-based composites or introducing holeconductiveco-catalysts or hole scavengers to facilitatedirectional hole transfer 180,181. The other approach involvesartificially controlling conditions to delay the photo-corrosionreaction of CdS. For example, coating the surface of CdS withpoly(diallyl dimethylammonium) chloride to prevent Cd2+ fromleaking into the reaction medium has been shown to inhibitphoto-corrosion 182. Increasing the Cd2+ concentration inhibitsthe progression of the reaction, achieving the purpose ofmitigating photo-corrosion 183. It has been demonstrated inexisting reports that MXene can enhance the stability of CdS andincrease the photocatalytic efficiency of composites. Currently,significant attention has been devoted to the construction ofMXene/CdS heterostructures, and their photocatalyticapplications in various fields are summarized in the followingsection.

    MXene, with its abundant functional groups, can adsorbmaterials with opposite charges through electrostatic attraction.The hydrophilic groups also facilitate close contact between thephotocatalyst and water molecules, contributing to improvedphotocatalytic hydrogen production rates. For instance, Ding etal. prepared a CdS/Ti3C2Tx nanocomposite (CSM-x, where xrepresents the amount of MXene added) using a solvothermalmethod through electrostatic interaction 184. This studydemonstrated that the construction of CdS/Ti3C2Txnanocomposites significantly enhances the photocatalytichydrogen generation yield. Specifically, CSM-20 exhibited theoptimal photocatalytic hydrogen production rate, which wasmore than 5 times higher than that of pristine CdS (3226 μmol?1?h?1). However, the photocatalytic hydrogen yield ofCSM-80 decreased to 1811 μmol?g?1?h?1, suggesting that furtherincreasing the loading of Ti3C2Tx was not conducive toimproving photocatalytic efficiency. Thus, the addition of anappropriate amount of Ti3C2Tx nanosheets facilitates chargeseparation, but excessive loading of Ti3C2Tx reduces the numberof active sites on CdS, significantly inhibiting photocatalyticactivity.

    In addition to enhancing the photocatalytic H2 production rateof CdS, the introduction of MXene has also been shown innumerous studies to inhibit the photo-corrosion of CdS. Thisinhibition can be achieved through two primary mechanisms: thereduction of hole concentration via spatial transfer/loss andcontrolled conditions that delay the photo-corrosion of CdS. Inthis section, we will review existing research and elucidate themechanisms by which MXene suppresses CdS photocorrosion.

    For instance, Li et al. established a heterostructure involving1D CdS nanowires (NWs) and 2D Ti3C2Tx MXene (CdS-MX)using an electrostatic self-assembly approach 185. Their findingsindicated that the introduction of Ti3C2Tx can significantlyenhance charge separation in CdS. This enhancement arises fromthe rich functional groups present in MXene, which exhibitstrong adsorption capabilities for Cd2+ ions generated duringphotocorrosion. This localized confinement of Cd2+ ions aroundCdS prevents their leaching into the solution. According to thephotocorrosion reaction of CdS (xCdS + (2x ? 2)h+ → xCd2+ +Sx2?) and Le Chatelier’s principle, an increase in Cd2+concentration can decelerate the photo-corrosion of CdS 186. Weiet al. incorporated Ti3C2Tx (T = ―O) MXene quantum dots(MQDs) and N-doped carbon dots (NCDs) onto CdS to enhancephotocatalytic hydrogen generation 187. Naked CdS nanoparticlesexhibited relatively low H2 yield (2.17 mmol?g?1) within 5 h (Fig.9a), while the H2 yield of 1.0% MNC reached 28.21 mmol?g?1(Fig. 9b). To investigate the stability of the catalyst, the studyconducted a 20-h cycle (5 h per cycle) using 1.0% MNC and CdS(Fig. 9c). Additionally, the changes in Cd2+ concentration in thereaction solution were monitored (Fig. 9d). These resultsdemonstrated that the deactivation of 1.0% MNC compositesduring the cyclic reaction was primarily due to sacrificantconsumption, rather than the photocorrosion of the CdS substrate.Furthermore, the photochemical stability of CdS was significantlyimproved by the co-catalyst of double quantum dots (MQD andNCD). This research elucidates the mechanism by which chargecarriers are generated on CdS, with electrons captured by MQDs,while photogenerated holes transfer to NCDs, thereby reducingthe photooxidation and photocorrosion of CdS (Fig.9e).

    4.3 MXene/g-C3N4

    g-C3N4 is an inorganic polymer material with a graphiticstructure, offering the advantages of adjustable electronicproperties, high chemical stability, and a straightforwardsynthesis method 188–191. Moreover, 2D g-C3N4 exhibitsremarkable photocatalytic activity under visible light irradiation,attributed to its narrow bandgap of 2.7 eV 192,193. In 2009, Wanget al. first reported the utilization of g-C3N4 in photocatalysis 194,sparking extensive research into its use as a photocatalytic rawmaterial. However, inherent limitations of g-C3N4, such as rapidrecombination of charge carriers and sluggish electron transferkinetics, have significantly impeded its widespread applicationin photocatalysis. Consequently, researchers have exploredvarious modification strategies over the past few decades,including element doping 195–197, co-catalyst decoration 198,199,and defect engineering 200–202. Among these approaches, theconstruction of composite materials stands out as the mosteffective strategy to enhance carrier mobility, thereby mitigatingcharge recombination. Recently, MXene/g-C3N4 photocatalystshave gained considerable attention due to the incorporation of MXene, which reduces carrier recombination rates andcontributes to superior photocatalytic performance compared topure g-C3N4. The subsequent sections elucidate the applicationsof MXene/g-C3N4-based photocatalysts in various fields,including CO2 reduction, dye degradation, nitrogen fixation, andwater splitting.

    4.3.1 H2 production

    Recent studies have confirmed that MXene offers superiorbenefits for enhancing the photoactivity of g-C3N4 compared toother co-catalysts, such as graphene and precious metals. This isattributed to MXene’s rich surface functional groups, uniqueband structure, and exceptional hydrophilicity 202–204. Forinstance, Su et al. developed 2D/2D Ti3C2/g-C3N4 composites(denoted as x-TC/CN, with x representing the mass ratio ofMXene) using an electrostatic self-assembly method 142. Ti3C2introduces alterations in the light absorption spectrum, resultingin a more substantial enhancement of light absorption intensityin Ti3C2/g-C3N4 nanosheets compared to pure g-C3N4. As theTi3C2 content increases, the light absorption strength of Ti3C2/g-C3N4 also increases within the range of 250–800 nm. This workdemonstrates that the close interface formed between g-C3N4nanosheets and Ti3C2, combined with the high electricalconductivity of Ti3C2, synergistically facilitates electron transferfrom g-C3N4 to Ti3C2, significantly reducing chargerecombination rates. These factors contribute to the increase inthe photocatalytic hydrogen evolution rate of Ti3C2/g-C3N4composites with higher Ti3C2 loading. Consequently, thephotocatalytic activity of the composite is enhanced, reaching25.8 μmol?h?1?gcat?1 when g-C3N4 nanoplates are combined with1.0% (wt) Ti3C2 (referred to as 1-TC/CN). In this study, thephotocatalytic activities of Ti3C2/g-C3N4 composites werecompared with other counterparts, such as G/g-C3N4 and G/Pt/g-C3N4, which employ graphene as the co-catalyst. The resultsindicate that the photocatalytic capacity of Graphene/g-C3N4(G/g-C3N4) is inferior to that of Ti3C2/g-C3N4. This observationcan be explained by several factors: ①The Gibbs free energyΔGH = 0.00283 eV is nearly zero for Ti3C2, significantly lowerthan the Gibbs free energy ΔGH = 0.79 eV of graphene forhydrogen adsorption. This suggests that Ti3C2, with terminaloxygen groups, exhibits a more favorable evolution rate for H2production. ②Hydrophobic graphene is not conducive to theadsorption of water molecules, whereas Ti3C2 features amultitude of hydrophilic functional groups on its surface,facilitating strong interactions with water molecules and makingit more suitable for the hydrogen evolution reaction (HER). ③The presence of metal sites exposed on the Ti3C2 surface mayresult in stronger redox activity compared to graphene, whichconsists entirely of carbon. These factors collectively contributeto the exceptional photocatalytic hydrogen production ability ofTi3C2/g-C3N4.

    4.3.2 CO2 reduction

    The strength of CO2 adsorption capacity serves as a crucialindicator of CO2 reduction performance. MXene exhibits adiverse range of characteristics, with MXene-OH beingparticularly noteworthy for its higher CO2 adsorption capacity,making it well-suited for CO2 reduction. For instance, Tang et al.employed a simple mixture of g-C3N4 (CN) and Ti3C2OH(TCOH), derived through surface treatment of Ti3C2F withKOH, as a noble metal-free co-catalyst for CO2 photocatalyticreduction 205. In this study, the CO2 thermogravimetric (CO2-TG) method was utilized to investigate the CO2 adsorptionbehaviors of TC and TCOH. The results revealed that the CO2adsorption capacity of TC and TCOH at room temperature for 1h was determined as 1.5 mgCO2?g?1 and 19.0 mgCO2?g?1,respectively. This highlights that KOH treatment substantiallyincreases the CO2 adsorption capacity of TC, consistent withprevious findings 159. Furthermore, it was observed that theintroduction of Ti3C2OH does not alter the CO selectivity (90%)of g-C3N4 in photocatalytic CO2 reduction, indicating that theprimary product in the photocatalytic CO2 reduction test is CO.Remarkably, the 5% TCOH-CN (Ti3C2OH/g-C3N4) compositeexhibited a CO yield of 11.21 mol?g?1, approximately 5.9 timeshigher than that of CN (1.88 mol?g?1). This underscores thatTCOH serves as a more effective co-catalyst for enhancing thephotocatalytic CO2 reduction performance of CN. The enhancedefficiency in photocatalytic CO2 reduction of 5% TCOH-CN isattributed to the increased CO2 adsorption capacity.

    Mesoporous materials with abundant pores are alsocommonly employed as co-catalysts. They increase theadsorption sites for gas molecules and enhance the conductiveability of Ti3C2Tx (MXene), thereby facilitating electron transfer.For example, Li et al. prepared mesoporous g-C3N4/Ti3C2Txcomposites by directly heating a mixture of mesoporous g-C3N4and Ti3C2Tx in a nitrogen atmosphere at 250 °C, with a mass ratioof 10 : 3 206. Their findings indicate that the fluorescence lifetimeof the g-C3N4/ Ti3C2Tx composite is significantly longer than thatof g-C3N4, suggesting a lower electron-hole recombination ratein the mesoporous g-C3N4/Ti3C2Tx composites compared to pureg-C3N4. This work suggests that the introduction of MXeneaccelerates electron transfer and enhances the production of COand CH4, reaching 3.98 and 2.170 μmol?g?1, respectively.

    4.3.3 Dye degradation

    The presence of abundant functional groups such as ―O, ―F,and ―OH on the surface of MXene imparts it with exceptionalhydrophilicity, the capacity to adsorb dye molecules and heavymetal ions, and a wealth of active sites 207–212. These attributesmake MXene-based membranes highly promising forwastewater treatment. In recent years, MXene has gainedprominence as a membrane material for addressing waterpollution issues, owing to its unique 2D layered structure andsubstantial specific surface area. For instance, Zeng et al.developed a novel g-C3N4@MXene (CN-MX) membrane forwastewater treatment, wherein g-C3N4 (CN) was used to modifyMXene membranes through vacuum filtration 213. Theintroduction of g-C3N4 enhances the hydrophilicity of themembrane, as evidenced by the contact angle (CA) of thecomposite film. Notably, the CA decreases with the incorporationof CN nanosheets, reaching a minimum of 31.77° ± 2.72°. This indicates that the CN-MX composite membrane exhibitsexcellent water permeability and hydrophilicity. Thephotocatalytic activities of CN-MX (M3 film) in degradingCongo red (CR) and Trypan blue (TB) can achieve removal ratesof 98% and 96%, respectively. Under visible light irradiation, thepermeability of the M3 film remains nearly unchanged after eachcycle, with the removal rate of CR solution consistentlyexceeding 90%. These results confirm that the g-C3N4/MXenecomposite membrane demonstrates outstanding self-cleaningability under light irradiation. In another study, Wang et al.reported the fabrication of MXene/g-C3N4 (MX/CN) compositesfor photocatalytic selective organic transformations 214.

    4.3.4 Nitrogen fixation

    The exceptionally high energy of the N≡N triple bondindicates that nitrogen (N2) is challenging to activate 215.Currently, the primary method for synthesizing NH3 from N2revolves around the Haber-Bosch process, which relies on hightemperatures and pressures 216,217. However, in recent years,researchers have discovered that N2 can be converted into NH3through photocatalysis 218. For instance, Liu et al. achievedsuccessful integration of Ti3C2 MXene with g-C3N4 using astraightforward ultrasonic approach for N2 fixation 219. TheSchottky heterojunction formed between g-C3N4 and Ti3C2reduces charge transfer resistance, enhancing charge separationin the process.

    4.4 Other MXene-based composite materials

    In addition to the previously mentioned MXene-basedphotosystems, extensive research has also been conducted onother unconventional MXene-based composites in recent years.In the following section, we provide a brief introduction to someof these MXene-based composites. For instance, Zhu et al.developed heterostructures of 0D/2D nickel-doped Ti3C2TxMXene (MN)-encapsulated transition metal chalcogenidequantum dots (TMC QD:Ni)/Ti3C2Tx MNs through anelectrostatic self-assembly strategy 220. This study demonstratedthat the photocatalytic H2 production rate of CdSe QDs:2Ni-MNs was 1.4 times higher than that of CdSe QDs:2Ni. Thissubstantial improvement in photoactivity can be attributed to theintroduction of Ti3C2Tx MNs, which act as efficient co-catalystsfor electron withdrawal. In another case, our research grouputilized transition metal chalcogenides (TMCs:CdIn2S4, CdS,Zn0.5Cd0.5S, ZnIn2S4) and Ti3C2Tx (MXene) as building blocksto construct MXene-TMCs NSs heterostructures via anelectrostatic self-assembly method. These heterostructures werethen applied for the photocatalytic selective reduction ofaromatic nitro compounds. This work indicated that MXene-TMCs NSs heterostructures exhibited excellent and versatilephoto-redox catalytic activities under visible light irradiation.This included anaerobic selective photoreduction ofnitroaromatics to amino derivatives and photooxidation ofaromatic alcohols to aldehydes. In another study, Nguyen et al.deposited Ag3PO4 nanoparticles (NPs) on flower-likeTiO2@Ti3C2 using an in situ precipitation method 221. Comparedto TiO2@Ti3C2, Ag3PO4, and Ag3PO4/TiO2 P25, theAg3PO4/TiO2@Ti3C2 ternary composite exhibited enhancedphotocatalytic activity for the degradation of various organicdyes (97% Rhodamine B, 94% Methylene blue, 99% Crystalviolet, and 92% Methylene orange) in a short time.Alternatively, Guo et al. conducted a comprehensive analysis ofthe crystal structure, electronic, and optical properties of 2DSc2CT2 (T = F, Cl, Br) MXene 222,223. Their work revealed thatthe band edge arrangement of Sc2CF2 could be adjusted to matchthe water redox potential (pH = 8.0) in the visible range.Theoretical calculations confirmed that Sc2CF2 effectivelypromoted charge separation. Liu et al. designed a well-defined3D/2D/2D microsphere BiOBr/layered Ti3C2/exfoliatedmontmorillonite (MMTex) ternary Schottky heterojunction withtight interfacial contact through in situ co-precipitation coupledwith a microwave hydrothermal method 224. The resultingBiOBr/Ti3C2/MMTex composite demonstrated better thermalstability, more intimate interfacial coupling, and higherphotocatalytic activity than BiOBr/Ti3C2 due to the synergisticeffect of the Ti3C2/MMTex co-catalyst and the formation of aSchottky junction. Under visible light, the removal rates of theBiOBr/Ti3C2/MMTex composite for the degradation ofciprofloxacin (CIP), RhB, MB, tetracycline (TC), andoxytetracycline (OTC) reached 96%, 99%, 99%, 84%, and 79%,respectively. In another instance, Peng et al. used a hydrothermalmethod to grow well-arranged Nb2O5 nanorod arrays on thesurface of Nb2CTx nanosheets 225. The close contact betweenNb2O nanorods and Nb2CTx plates facilitated rapid chargetransfer, and the Ag/Nb2O5@Nb2CTx hybrid demonstratedsignificantly enhanced photocatalytic hydrogen generationactivity of 682.2 μmol?g?1?h?1 under sunlight irradiation. Theseresults not only elucidate the photocatalytic properties of NibasedMXene but also highlight the potential of MXene as aversatile platform for constructing novel layered nanostructures.In a separate study, Pang et al. successfully prepared 2D/2Dheterostructures consisting of WO3 nanoplates and Ti3C2 MXenelayers using an ultrasonic method 226. The resulting nanocompositephotocatalyst was immobilized on a Polyvinylidenefluoride (PVDF) membrane via vacuum filtration to create aphotocatalytic membrane system. Increasing the Ti3C2 contentfrom 3% to 7% (wt) in Ti3C2/WO3/PVDF membranes led toenhanced visible-light-driven photoactivity against RhBdegradation. The excellent photoactivities of these membraneswere attributed to efficient charge separation. Cheng et al.prepared a series of BiOCl-PPy@MXene (PPy is polypyrrole)photocatalytic membranes composed of stacked MXene andBiOCl-PPy layers on polyether sulfone (PES) 227. The resultingBiOCl-PPy membrane exhibited excellent water permeability(3680.2 L?mol?2?h?1) and demonstrated high removal rates of99.9% for three different dyes and 96% for the antibiotictetracycline hydrochloride.。

    More detailed information about MXene-based composites islisted in Tables 2–4 228–261.

    5 Conclusions and future prospects

    In summary, MXene, as a member of the extensive family of2D materials, has gained widespread use in the field ofphotocatalysis due to its rich composition, adjustable surfacefunctional groups, and appropriate band structure. Our reviewprovides comprehensive and systematic insights into theresearch on MXene in the realm of photocatalysis. Firstly, wepresent an overview of the diverse methods employed to prepareMXene under various conditions. Secondly, we discuss a rangeof strategies for constructing composite photocatalytic systemsbased on MXene. Thirdly, we summarize the MXene-basedphotosystems, such as MXene/TiO2, MXene/CdS, MXene/g-C3N4, and MXene/WO3, which have found broad application inphotocatalytic processes, including hydrogen production, CO2reduction, environmental remediation, nitrogen fixation, andsterilization. It has been firmly established that the incorporationof MXene can significantly enhance the photocatalyticperformance and stability of catalysts, owing to several keyfactors. (1) Formation of heterojunctions and close interfacialcontact between MXene and the catalyst, optimizing cooperativeeffects that promote carrier separation and reduce the likelihoodof electron-hole recombination. (2) Introduction of MXenefacilitates carrier transfer, inhibiting photo-corrosion, therebyextending the catalyst’s lifespan and improving its overallstability. (3) MXene, with its abundance of functional groups,exhibits a strong attraction to reactants, promoting the efficiencyof photocatalytic reactions through reactant aggregation. (4) Thelarge specific surface area of MXene provides ample active sites,further boosting catalytic efficiency.

    Current research on MXene-based composites has indeedachieved significant progress in various photocatalyticapplications, including water splitting, CO2 reduction, nitrogenfixation, and sterilization. However, there are inherentlimitations of MXene that continue to impact its widespreadapplication in photocatalysis, primarily centered around thefollowing aspects. (1) Poor oxidation resistance. Due to theexposure of metal cations on the surface, MXene is prone tooxidation, resulting in the formation of the corresponding metaloxides. It’s important to note that the Ti3C2Tx MXene solutiondegrades completely, reaching a degradation level of 100%,when exposed to the air for 15 days. This results in the formationof a cloudy white colloidal solution of anatase (TiO2). WhenMXene is utilized as a co-catalyst, it facilitates the formation ofTiO2, which, in turn, leads to the deterioration of the MXenestructure and a reduction in conductivity during the synthesis andphotocatalysis processes. (2) Limitation of materials. Due to theinherent instability of MXene precursors and the constraintsposed by current preparation methods, only a limited number ofMXenes have been investigated in laboratory settings thus far.The majority of research efforts remain concentrated on Ti3C2.In light of these challenges and with the aim of promoting furtheradvancements in MXene’s application within the field ofphotocatalysis, several potential strategies have been proposedfor the modification of MXene: (1) Actively exploring additionalMXene materials, including Mo2ScC2, Mo2C, Nb4C3, TiNbC,Ti4C3, Ti4N3, V2C, and Zr3C2, while concurrently striving toharness their potential in photocatalysis. (2) In the course of thepreparation process, it is possible to notably extend the delay inthe oxidative decomposition of MXene by effectively managingvarious synthesis parameters. These parameters encompass thequality of the MAX phase, chemical etching conditions, the useof ultrasound, and the choice of storage environment. It’s worthnoting that dissolved oxygen and water serve as the primarysources of oxidation, and higher temperatures can accelerate thisundesirable process. To mitigate the impact of these factors, it isadvisable to store MXene in an inert atmosphere at lowertemperatures, a practice that proves highly effective in inhibitingMXene oxidation.

    While MXene has gained widespread attention in the field ofphotocatalysis due to its excellent electrical conductivity andsuitable band gap structure, several challenges still need to beaddressed. Firstly, when applying MXene-based photocatalystsin practical settings, real-world conditions introduce complexitybeyond laboratory settings. Factors such as water turbidity, thepresence of numerous organic compounds, and inorganic saltscan potentially compromise the stability of MXene-basedphotocatalysts. Consequently, the design of MXene-basedphotocatalysts should gradually shift towards adapting to thesereal-world challenges, rather than solely pursuing highperformance and stability in controlled laboratory conditions.Secondly, it’s essential to consider that the preparation of MXeneand MXene-based composites is a manual and time-consumingprocess, making mass production challenging. Maintainingconsistent product quality is also a significant challenge. Despitethe advancement 262–284, addressing these issues will requirefurther advancements in science and technology in the future.

    References

    (1) Yang, Y.; Zeng, G.; Huang, D.; Zhang, C.; He, D.; Zhou, C.; Wang,W.; Xiong, W.; Li, X.; Li, B.; et al. Appl. Catal. B-Environ. 2020,272, 118970. doi: 10.1016/j.apcatb.2020.118970

    (2) Zhang, X.; Li, X.; Zhang, D.; Su, N. Q.; Yang, W.; Everitt, H. O.; Liu,J. Nat. Commun. 2017, 8, 14542. doi: 10.1038/ncomms14542

    (3) Mamaghani, A. H.; Haghighat, F.; Lee, C.-S. Appl. Catal. B-Environ.2017, 203, 247. doi: 10.1016/j.apcatb.2016.10.037

    (4) Pichat, P. Appl. Catal. B-Environ. 2019, 245, 770.doi: 10.1016/j.apcatb.2018.12.027

    (5) Spasiano, D.; Marotta, R.; Malato, S.; Fernandez-Ibanez, P.; DiSomma, I. Appl. Catal. B-Environ. 2015, 170, 90.doi: 10.1016/j.apcatb.2014.12.050

    (6) Wei, Z.-Q.; Xiao, F.-X. Inorg. Chem. 2023, 62, 6138.doi: 10.1021/acs.inorgchem.3c00295

    (7) Zhang, H.; Liu, X.; Liu, B.; Sun, F.; Jing, L.; Shao, L.; Cui, Y.; Yao,Q.; Wang, M.; Meng, C.; et al. J. Hazard. Mater. 2023, 458, 131939.doi: 10.1016/j.jhazmat.2023.131939

    (8) Wang, K.; Ge, X.-Z.; Mo, Q.-L.; Yan, X.; Xiao, Y.; Wu, G.; Xu, S.-R.;Li, J.-L.; Chen, Z.-X.; Xiao, F.-X. J. Catal. 2022, 416, 92.doi: 10.1016/j.jcat.2022.10.026

    (9) Mo, Q.-L.; Hou, S.; Wei, Z.-Q.; Fu, X.-Y.; Xiao, G.; Xiao, F.-X.Chem. Eng. J. 2022, 433, 133641. doi: 10.1016/j.cej.2021.133641

    (10) Xu, S.-R.; Li, J.-L.; Mo, Q.-L.; Wang, K.; Wu, G.; Xiao, Y.; Ge, X.-Z.; Xiao, F.-X. Inorg. Chem. 2022, 61, 17828.doi: 10.1021/acs.inorgchem.2c03148

    (11) Cao, S.; Low, J.; Yu, J.; Jaroniec, M. Adv. Mater. 2015, 27, 2150.doi: 10.1002/adma.201500033

    (12) Yu, H.; Shi, R.; Zhao, Y.; Bian, T.; Zhao, Y.; Zhou, C.; Waterhouse, G.I. N.; Wu, L.-Z.; Tung, C.-H.; Zhang, T. Adv. Mater. 2017, 29,1605148. doi: 10.1002/adma.201605148

    (13) Zhou, P.; Yu, J.; Jaroniec, M. Adv. Mater. 2014, 26, 4920.doi: 10.1002/adma.201400288

    (14) Wang, S.; Hai, X.; Ding, X.; Chang, K.; Xiang, Y.; Meng, X.; Yang,Z.; Chen, H.; Ye, J. Adv. Mater. 2017, 29, 1701774.doi: 10.1002/adma.201701774

    (15) Li, H.; Li, J.; Ai, Z.; Jia, F.; Zhang, L. Angew. Chem. Int. Ed. 2018,57, 122. doi: 10.1002/anie.201705628

    (16) Wang, Q.; Astruc, D. Chem. Rev. 2020, 120, 1438.doi: 10.1021/acs.chemrev.9b00223

    (17) Zhao, Y.; Zhao, Y.; Shi, R.; Wang, B.; Waterhouse, G. I. N.;Wu, L.-Z.; Tung, C.-H.; Zhang, T. Adv. Mater. 2019, 31, 1806482.doi: 10.1002/adma.201806482

    (18) Hieu, V. Q.; Phung, T. K.; Nguyen, T.-Q.; Khan, A.; Doan, V. D.;Tran, V. A.; Le, V. T. Chemosphere 2021, 276, 130154.doi: 10.1016/j.chemosphere.2021.130154

    (19) Kumar, S. G.; Devi, L. G. J. Phys. Chem. A 2011, 115, 13211.doi: 10.1021/jp204364a

    (20) Pelaez, M.; Nolan, N. T.; Pillai, S. C.; Seery, M. K.; Falaras, P.;Kontos, A. G.; Dunlop, P. S. M.; Hamilton, J. W. J.; Byrne, J. A.;O'Shea, K.; et al. Appl. Catal. B-Environ. 2012, 125, 331.doi: 10.1016/j.apcatb.2012.05.036

    (21) Sakthivel, S.; Neppolian, B.; Shankar, M. V.; Arabindoo, B.;Palanichamy, M.; Murugesan, V. Sol. Energ. Mat. Sol. C 2003, 77,65. doi: 10.1016/s0927-0248(02)00255-6

    (22) Kumar, J. A.; Prakash, P.; Krithiga, T.; Amarnath, D. J.; Premkumar,J.; Rajamohan, N.; Vasseghian, Y.; Saravanan, P.; Rajasimman, M.Chemosphere 2022, 286, 131607.doi: 10.1016/j.chemosphere.2021.131607

    (23) Jun, B.-M.; Kim, S.; Heo, J.; Park, C. M.; Her, N.; Jang, M.; Huang,Y.; Han, J.; Yoon, Y. Nano Res. 2019, 12, 471.doi: 10.1007/s12274-018-2225-3

    (24) Xiang, Q.; Yu, J.; Jaroniec, M. Chem. Soc. Rev. 2012, 41, 782.doi: 10.1039/c1cs15172j

    (25) Tong, H.; Ouyang, S.; Bi, Y.; Umezawa, N.; Oshikiri, M.; Ye, J. Adv.Mater. 2012, 24, 229. doi: 10.1002/adma.201102752

    (26) Chong, M. N.; Jin, B.; Chow, C. W. K.; Saint, C. Water Res. 2010, 44,2997. doi: 10.1016/j.watres.2010.02.039

    (27) Chen, X.; Shen, S.; Guo, L.; Mao, S. S. Chem. Rev. 2010, 110, 6503.doi: 10.1021/cr1001645

    (28) Yu, J. C.; Yu, J. G.; Ho, W. K.; Jiang, Z. T.; Zhang, L. Z. Chem.Mater. 2002, 14, 3808. doi: 10.1021/cm020027c

    (29) Ohno, T.; Akiyoshi, M.; Umebayashi, T.; Asai, K.; Mitsui, T.;Matsumura, M. Appl. Catal. A-Gen. 2004, 265, 115.doi: 10.1016/j.apcata.2004.01.007

    (30) Liu, G.; Niu, P.; Sun, C.; Smith, S. C.; Chen, Z.; Lu, G. Q.; Cheng,H.-M. J. Am. Chem. Soc. 2010, 132, 11642. doi: 10.1021/ja103798k

    (31) Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Science2001, 293, 269. doi: 10.1126/science.1061051

    (32) Huang, H.; Han, X.; Li, X.; Wang, S.; Chu, P. K.; Zhang, Y. ACSAppl. Mater. Interfaces 2015, 7, 482. doi: 10.1021/am5065409

    (33) Xue, J.; Ma, S.; Zhou, Y.; Zhang, Z.; He, M. ACS Appl. Mater.Interfaces 2015, 7, 9630. doi: 10.1021/acsami.5b01212

    (34) Fu, J.; Yu, J.; Jiang, C.; Cheng, B. Adv. Energy. Mater. 2018, 8,1701503. doi: 10.1002/aenm.201701503

    (35) Jin, J.; Yu, J.; Guo, D.; Cui, C.; Ho, W. Small 2015, 11, 5262.doi: 10.1002/smll.201500926

    (36) Ran, J.; Guo, W.; Wang, H.; Zhu, B.; Yu, J.; Qiao, S.-Z. Adv. Mater.2018, 30, 1800128. doi: 10.1002/adma.201800128

    (37) Wen, P.; Zhao, K.; Li, H.; Li, J.; Li, J.; Ma, Q.; Geyer, S. M.; Jiang,L.; Qiu, Y. J. Mater. Chem. A 2020, 8, 2995. doi: 10.1039/c9ta08361h

    (38) Paramasivam, I.; Jha, H.; Liu, N.; Schmuki, P. Small 2012, 8, 3073.doi: 10.1002/smll.201200564

    (39) Hou, Y.; Abrams, B. L.; Vesborg, P. C. K.; Bjorketun, M. E.; Herbst,K.; Bech, L.; Setti, A. M.; Damsgaard, C. D.; Pedersen, T.; Hansen,O.; et al. Nat. Mater. 2011, 10, 434. doi: 10.1038/nmat3008

    (40) Liao, L.; Zhang, Q.; Su, Z.; Zhao, Z.; Wang, Y.; Li, Y.; Lu, X.; Wei,D.; Feng, G.; Yu, Q.; et al. Nat. Nanotechnol. 2014, 9, 69.doi: 10.1038/nnano.2013.272

    (41) Mishra, A.; Mehta, A.; Basu, S.; Shetti, N. P.; Reddy, K. R.;Aminabhavi, T. M. Carbon 2019, 149, 693.doi: 10.1016/j.carbon.2019.04.104

    (42) Yu, J.; Jin, J.; Cheng, B.; Jaroniec, M. J. Mater. Chem. A 2014, 2,3407. doi: 10.1039/c3ta14493c

    (43) Lau, V. W.-H.; Moudrakovski, I.; Botari, T.; Weinberger, S.; Mesch,M. B.; Duppel, V.; Senker, J.; Blum, V.; Lotsch, B. V. Nat. Commun.2016, 7, 12165. doi: 10.1038/ncomms12165

    (44) Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.;Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Adv. Mater. 2011, 23,4248. doi: 10.1002/adma.201102306

    (45) Khazaei, M.; Arai, M.; Sasaki, T.; Estili, M.; Sakka, Y. Phys. Chem.Chem. Phys. 2014, 16, 7841. doi: 10.1039/c4cp00467a

    (46) Zhang, K.; Li, D.; Cao, H.; Zhu, Q.; Trapalis, C.; Zhu, P.; Gao, X.;Wang, C. Chem. Eng. J. 2021, 424, 130340.doi: 10.1016/j.cej.2021.130340

    (47) Wang, H.; Wu, Y.; Yuan, X.; Zeng, G.; Zhou, J.; Wang, X.; Chew, J.W. Adv. Mater. 2018, 30, 1704561. doi: 10.1002/adma.201704561

    (48) Liu, Y.; Jiang, Y.; Hu, Z.; Peng, J.; Lai, W.; Wu, D.; Zuo, S.; Zhang,J.; Chen, B.; Dai, Z.; et al. Adv. Funct. Mater. 2021, 31, 2008033.doi: 10.1002/adfm.202008033

    (49) Khazaei, M.; Arai, M.; Sasaki, T.; Chung, C.-Y.; Venkataramanan, N.S.; Estili, M.; Sakka, Y.; Kawazoe, Y. Adv. Funct. Mater. 2013, 23,2185. doi: 10.1002/adfm.201202502

    (50) Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. Adv.Mater. 2014, 26, 992. doi: 10.1002/adma.201304138

    (51) Xie, Y.; Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y.;Yu, X.; Nam, K.-W.; Yang, X.-Q.; Kolesnikov, A. I.; Kent, P. R. C.J. Am. Chem. Soc. 2014, 136, 6385. doi: 10.1021/ja501520b

    (52) Wan, L.; Tang, Y.; Chen, L.; Wang, K.; Zhang, J.; Gao, Y.; Lee, J. Y.;Lu, T.; Xu, X.; Li, J.; et al. Chem. Eng. J. 2021, 410, 128349.doi: 10.1016/j.cej.2020.128349

    (53) Halim, J.; Kota, S.; Lukatskaya, M. R.; Naguib, M.; Zhao, M.-Q.;Moon, E. J.; Pitock, J.; Nanda, J.; May, S. J.; Gogotsi, Y.; et al. Adv.Funct. Mater. 2016, 26, 3118. doi: 10.1002/adfm.201505328

    (54) Handoko, A. D.; Fredrickson, K. D.; Anasori, B.; Convey, K. W.;Johnson, L. R.; Gogotsi, Y.; Vojvodic, A.; Seh, Z. W. ACS Appl.Energ. Mater. 2018, 1, 173. doi: 10.1021/acsaem.7b00054

    (55) Seh, Z. W.; Fredrickson, K. D.; Anasori, B.; Kibsgaard, J.; Strickler,A. L.; Lukatskaya, M. R.; Gogotsi, Y.; Jaramillo, T. F.; Vojvodic, A.Acs. Energy. Lett. 2016, 1, 589. doi: 10.1021/acsenergylett.6b00247

    (56) Urbankowski, P.; Anasori, B.; Hantanasirisakul, K.; Yang, L.; Zhang,L.; Haines, B.; May, S. J.; Billinge, S. J. L.; Gogotsi, Y. Nanoscale2017, 9, 17722. doi: 10.1039/c7nr06721f

    (57) Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. Nat. Rev. Mater. 2017, 2,16098. doi: 10.1038/natrevmats.2016.98

    (58) Lipatov, A.; Alhabeb, M.; Lukatskaya, M. R.; Boson, A.; Gogotsi, Y.;Sinitskii, A. Adv. Electron. Mater. 2016, 2, 1600255.doi: 10.1002/aelm.201600255

    (59) Zhang, C. J.; Pinilla, S.; McEyoy, N.; Cullen, C. P.; Anasori, B.;Long, E.; Park, S.-H.; Seral-Ascaso, A.; Shmeliov, A.; Krishnan, D.;et al. Chem. Mater. 2017, 29, 4848.doi: 10.1021/acs.chemmater.7b00745

    (60) Su, T.; Peng, R.; Hood, Z. D.; Naguib, M.; Ivanov, I. N.; Keum, J. K.;Qin, Z.; Guo, Z.; Wu, Z. ChemSusChem 2018, 11, 688.doi: 10.1002/cssc.201702317

    (61) Li, Y.; Ding, L.; Liang, Z.; Xue, Y.; Cui, H.; Tian, J. Chem. Eng. J.2020, 383, 123178. doi: 10.1016/j.cej.2019.123178

    (62) Ran, J.; Gao, G.; Li, F.-T.; Ma, T.-Y.; Du, A.; Qiao, S.-Z. Nat.Commun. 2017, 8, 13907. doi: 10.1038/ncomms13907

    (63) Xie, G.; Han, C.; Song, F.; Zhu, Y.; Wang, X.; Wang, J.; Wu, Z.; Xie,X.; Zhang, N. Nanoscale. 2022, 14, 18010. doi: 10.1039/d2nr05983e

    (64) Liang, X.; Garsuch, A.; Nazar, L. F. Angew. Chem. Int. Ed. 2015, 54,3907. doi: 10.1002/anie.201410174

    (65) Naguib, M.; Come, J.; Dyatkin, B.; Presser, V.; Taberna, P.-L.; Simon,P.; Barsoum, M. W.; Gogotsi, Y. Electrochem. Commun. 2012, 16, 61.doi: 10.1016/j.elecom.2012.01.002

    (66) Zhao, M.-Q.; Ren, C. E.; Ling, Z.; Lukatskaya, M. R.; Zhang, C.; vanAken, K. L.; Barsoum, M. W.; Gogotsi, Y. Adv. Mater. 2015, 27, 339.doi: 10.1002/adma.201404140

    (67) Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.;Gogotsi, Y. Chem. Mater. 2017, 29, 7633.doi: 10.1021/acs.chemmater.7b02847

    (68) Ghidiu, M.; Lukatskaya, M. R.; Zhao, M.-Q.; Gogotsi, Y.; Barsoum,M. W. Nature 2014, 516, 78. doi: 10.1038/nature13970

    (69) Lukatskaya, M. R.; Mashtalir, O.; Ren, C. E.; Dall'Agnese, Y.; Rozier,P.; Taberna, P. L.; Naguib, M.; Simon, P.; Barsoum, M. W.; Gogotsi,Y. Science 2013, 341, 1502. doi: 10.1126/science.1241488

    (70) Cai, Y.; Shen, J.; Ge, G.; Zhang, Y.; Jin, W.; Huang, W.; Shao, J.;Yang, J.; Dong, X. ACS Nano 2018, 12, 56.doi: 10.1021/acsnano.7b06251

    (71) Hantanasirisakul, K.; Gogotsi, Y. Adv. Mater. 2018, 30, 1804779.doi: 10.1002/adma.201804779

    (72) Kim, S. J.; Koh, H.-J.; Ren, C. E.; Kwon, O.; Maleski, K.; Cho, S.-Y.;Anasori, B.; Kim, C.-K.; Choi, Y.-K.; Kim, J.; et al. ACS Nano 2018,12, 986. doi: 10.1021/acsnano.7b07460

    (73) Sokol, M.; Natu, V.; Kota, S.; Barsoum, M. W. Trends. Chem. 2019,1, 210. doi: 10.1016/j.trechm.2019.02.016

    (74) Khazaei, M.; Arai, M.; Sasaki, T.; Estili, M.; Sakka, Y. J. Phys.-Condens.Mat. 2014, 26, 505503. doi: 10.1088/0953-8984/26/50/505503

    (75) Khazaei, M.; Arai, M.; Sasaki, T.; Estili, M.; Sakka, Y. Sci. Technol.Adv. Mat. 2014, 15, 014208. doi: 10.1088/1468-6996/15/1/014208

    (76) Anayee, M.; Shuck, C. E.; Shekhirev, M.; Goad, A.; Wang, R.;Gogotsi, Y. Chem. Mater. 2022, 34, 9589.doi: 10.1021/acs.chemmater.2c02194

    (77) Li, T.; Jabari, E.; McLellan, K.; Naguib, H. E. Prog. Addit. Manuf.2023, 8, 1587. doi: 10.1007/s40964-023-00424-9

    (78) Li, J.; Wang, X.; Sun, W.; Maleski, K.; Shuck, C. E.; Li, K.;Urbankowski, P.; Hantanasirisakul, K.; Wang, X.; Kent, P.; et al.Chemelectrochem. 2021, 8, 151. doi: 10.1002/celc.202001449

    (79) Mallakpour, S.; Behranvand, V.; Hussain, C. M. Cearm. Int. 2021, 47,26585. doi: 10.1016/j.ceramint.2021.06.107

    (80) Murali, G.; Rawal, J.; Modigunta, J. K. R.; Park, Y. H.; Lee, J.-H.;Lee, S.-Y.; Park, S.-J.; In, I. Sustain. Energ. Fuels 2021, 5, 5672.doi: 10.1039/d1se00918d

    (81) Naguib, M.; Unocic, R. R.; Armstrong, B. L.; Nanda, J. Dalton Trans.2015, 44, 9353. doi: 10.1039/c5dt01247c

    (82) Qian, A.; Seo, J. Y.; Shi, H.; Lee, J. Y.; Chung, C.-H. ChemSusChem2018, 11, 3719. doi: 10.1002/cssc.201801759

    (83) Hantanasirisakul, K.; Alhabeb, M.; Lipatov, A.; Maleski, K.; Anasori,B.; Salles, P.; Ieosakulrat, C.; Pakawatpanurut, P.; Sinitskii, A.;May, S. J.; et al. Chem. Mater. 2019, 31, 2941.doi: 10.1021/acs.chemmater.9b00401

    (84) Mashtalir, O.; Naguib, M.; Mochalin, V. N.; Dall'Agnese, Y.; Heon,M.; Barsoum, M. W.; Gogotsi, Y. Nat. Commun. 2013, 4, 1716.doi: 10.1038/ncomms2664

    (85) Park, H.; Kim, S.; Kim, S.; Kim, M.; Kang, Y.; Amirthalingam, S.;Lee, S.; Hwang, N. S.; Yang, K.; Kim, H. D. J. Ind. Eng. Chem. 2023,117, 38. doi: 10.1016/j.jiec.2022.10.014

    (86) Zhou, C.; Zhao, X.; Xiong, Y.; Tang, Y.; Ma, X.; Tao, Q.; Sun, C.;Xu, W. Eur. Polym. J. 2022, 167, 111063.doi: 10.1016/j.eurpolymj.2022.111063

    (87) Jin, S.; Guo, Y.; Wang, J.; Wang, L.; Hu, Q.; Zhou, A. Diam. Relat.Mater. 2022, 128, 109277. doi: 10.1016/j.diamond.2022.109277

    (88) Luo, G.; Zhang, Z.; Wang, J.; Huang, M. Adv. Funct. Mater.. 2023,33, 2211610. doi: 10.1002/adfm.202211610

    (89) Liu, F.; Zhou, A.; Chen, J.; Jin, J.; Zhou, W.; Wang, L.; Hu, Q. Appl.Surf. Sci. 2017, 416, 781. doi: 10.1016/j.apsusc.2017.04.239

    (90) Nan, J.; Guo, X.; Xiao, J.; Li, X.; Chen, W.; Wu, W.; Liu, H.; Wang,Y.; Wu, M.; Wang, G. Small 2021, 17, 1902085.doi: 10.1002/smll.201902085

    (91) Zhang, S.; Liao, S.; Qi, F.; Liu, R.; Xiao, T.; Hu, J.; Li, K.; Wang, R.;Min, Y. J. Hazard. Mater. 2020, 384, 121367.doi: 10.1016/j.jhazmat.2019.121367

    (92) Peng, Q.; Si, C.; Zhou, J.; Sun, Z. Appl. Surf. Sci. 2019, 480, 199.doi: 10.1016/j.apsusc.2019.02.249

    (93) Li, T.; Yan, X.; Huang, L.; Li, J.; Yao, L.; Zhu, Q.; Wang, W.; Abbas,W.; Naz, R.; Gu, J.; et al. J. Mater. Chem. A 2019, 7, 14462.doi: 10.1039/c9ta03254a

    (94) Liu, H.-J.; Dong, B. Mater. Today Phys. 2021, 20, 100469.doi: 10.1016/j.mtphys.2021.100469

    (95) Xuan, J.; Wang, Z.; Chen, Y.; Liang, D.; Cheng, L.; Yang, X.; Liu, Z.;Ma, R.; Sasaki, T.; Geng, F. Angew. Chem. Int. Ed. 2016, 55, 14569.doi: 10.1002/anie.201606643

    (96) Zou, G.; Guo, J.; Liu, X.; Zhang, Q.; Huang, G.; Fernandez, C.;Peng, Q. Adv. Energy. Mater. 2017, 7, 1700700.doi: 10.1002/aenm.201700700

    (97) Ma, Y.; Cheng, Y.; Wang, J.; Fu, S.; Zhou, M.; Zhou, M. Infomat.Mater. 2022, 4, 12328. doi: 10.1002/inf2.12328

    (98) Chen, J.; Chen, M.; Zhou, W.; Xu, X.; Liu, B.; Zhang, W.; Wong, C.ACS Nano 2022, 16, 2461. doi: 10.1021/acsnano.1c09004

    (99) Pang, S.-Y.; Wong, Y.-T.; Yuan, S.; Liu, Y.; Tsang, M.-K.; Yang, Z.;Huang, H.; Wong, W.-T.; Hao, J. J. Am. Chem. Soc. 2019, 141,9610. doi: 10.1021/jacs.9b02578

    (100) Zhang, Q.; Lai, H.; Fan, R.; Ji, P.; Fu, X.; Li, H. ACS Nano 2021,15, 5249. doi: 10.1021/acsnano.0c10671

    (101) Oh, T.; Lee, S.; Kim, H.; Ko, T. Y.; Kim, S. J.; Koo, C. M. Small2022, 18, 2203767. doi: 10.1002/smll.202203767

    (102) Iqbal, A.; Shahzad, F.; Hantanasirisakul, K.; Kim, M.-K.; Kwon, J.;Hong, J.; Kim, H.; Kim, D.; Gogotsi, Y.; Koo, C. M. Science 2020,369, 446. doi: 10.1126/science.aba7977

    (103) Ren, S.; Xu, J. L.; Cheng, L.; Gao, X.Wang, S. D. ACS Appl. Mater.Interfaces 2021, 13, 35878. doi: 10.1021/acsami.1c06161

    (104) Li, Y.; Shao, H.; Lin, Z.; Lu, J.; Liu, L.; Duployer, B.; Persson, P. O.A.; Eklund, P.; Hultman, L.; Li, M.; et al. Nat. Mater. 2020, 19, 894.doi: 10.1038/s41563-020-0657-0

    (105) Suryanarayana, C. Prog. Mater Sci. 2001, 46, 1.doi: 10.1016/s0079-6425(99)00010-9

    (106) Xue, N.; Li, X.; Zhang, M.; Han, L.; Liu, Y.; Tao, X. ACS Appl.Energ. Mater. 2020, 3, 10234. doi: 10.1021/acsaem.0c02081

    (107) Kelly, P. J.; Arnell, R. D. Vacuum 2000, 56, 159.doi: 10.1016/s0042-207x(99)00189-x

    (108) Sato, H.; Minami, T.; Takata, S.; Yamada, T. Thin Solid Films 1993,236, 27. doi: 10.1016/0040-6090(93)90636-4

    (109) Chen, Q.; Zhang, D.; Pan, J.; Fan, W. Optik 2020, 219, 165045.doi: 10.1016/j.ijleo.2020.165046

    (110) Xu, C.; Wang, L.; Liu, Z.; Chen, L.; Guo, J.; Kang, N.; Ma, X.-L.;Cheng, H.-M.; Ren, W. Nat. Mater. 2015, 14, 1135.doi: 10.1038/nmat4374

    (111) Sharbirin, A. S.; Roy, S.; Tran, T. T.; Akhtar, S.; Singh, J.; Duong,D. L.; Kim, J. J. Mater. Chem. C 2022, 10, 6508.doi: 10.1039/d2tc00568a

    (112) Venkateshalu, S.; Cherusseri, J.; Karnan, M.; Kumar, K. S.; Kollu,P.; Sathish, M.; Thomas, J.; Jeong, S. K.; Grace, A. N. ACS Omega2020, 5, 17983. doi: 10.1021/acsomega.0c01215

    (113) Tian, Z.; Tian, H.; Cao, K.; Bai, S.; Peng, Q.; Wang, Y.; Zhu, Q.Front. Chem. 2022, 10, 962528. doi: 10.3389/fchem.2022.962528

    (114) Zou, X.; Liu, H.; Xu, H.; Wu, X.; Han, X.; Kang, J.; Reddy, K. M.Mater. Today Energy 2021, 20, 100668.doi: 10.1016/j.mtener.2021.100668

    (115) Shi, H.; Zhang, P.; Liu, Z.; Park, S.; Lohe, M. R.; Wu, Y.; ShayganNia, A.; Yang, S.; Feng, X. Angew. Chem. Int. Ed. 2021, 60, 8689.doi: 10.1002/anie.202015627

    (116) Guo, Y.; Zhang, X.; Jin, S.; Xia, Q.; Chang, Y.; Wang, L.; Zhou, A.J. Adv. Ceram. 2023, 12, 1889. doi: 10.26599/JAC.2023.9220795

    (117) Numan, A.; Rafique, S.; Khalid, M.; Zaharin, H. A.; Radwan, A.;Mokri, N. A.; Ching, O. P.; Walvekar, R. Mater. Chem. Phys. 2022,288, 126429. doi: 10.1016/j.matchemphys.2022.126429

    (118) Shekhirev, M.; Busa, J.; Shuck, C. E.; Torres, A.; Bagheri, S.;Sinitskii, A.; Gogotsi, Y. ACS Nano 2022, 9, 13695.doi: 10.1021/acsnano.2c04506

    (119) Wu, Q.; Wang, Y.; Li, P.; Chen, S.; Wu, F. Appl. Phys. Z-Mater.2021, 127, 822. doi: 10.1007/s00339-021-04970-3

    (120) Zhang, Q.; Fan, R.; Cheng, W.; Ji, P.; Sheng, J.; Liao, Q.; Lai, H.;Fu, X.; Zhang, C.; Li, H. Adv. Sci. 2022, 9, 2202748.doi: 10.1002/advs.202202748

    (121) Matthews, K.; Zhang, T.; Shuck, C. E.; VahidMohammadi, A.;Gogotsi, Y. Chem. Mater. 2022, 34, 499.doi: 10.1021/acs.chemmater.1c03508

    (122) Alijani, H.; Rezk, A. R.; Farsani, M. M. K.; Ahmed, H.; Halim, J.;Reineck, P.; Murdoch, B. J.; El-Ghazaly, A.; Rosen, J.; Yeo, L. Y.ACS Nano 2021, 15, 12099. doi: 10.1021/acsnano.1c03428

    (123) Zhu, J.; Zhang, J.; Lin, R.; Fu, B.; Song, C.; Shang, W.; Tao, P.;Deng, T. Chem. Commun. 2021, 57, 12611.doi: 10.1039/d1cc04989e

    (124) Shayesteh Zeraati, A.; Mirkhani, S. A.; Sun, P.; Naguib, M.; Braun,P. V.; Sundararaj, U. Nanoscale 2021, 13, 3572.doi: 10.1039/d0nr06671k

    (125) El Ghazaly, A.; Ahmed, H.; Rezk, A. R.; Halim, J.; Persson, P. O.A.; Yeo, L. Y.; Rosen, J. ACS Nano 2021, 15, 4287.doi: 10.1021/acsnano.0c07242

    (126) Mei, J.; Ayoko, G. A.; Hu, C.; Bell, J. M.; Sun, Z. Suatain. Mater.Technol. 2020, 25, 156. doi: 10.1016/j.susmat.2020.e00156

    (127) Guo, Y.; Jin, S.; Wang, L.; He, P.; Hu, Q.; Fan, L.-Z.; Zhou, A.Cearm. Int. 2020, 46, 19550. doi: 10.1016/j.ceramint.2020.05.008

    (128) Zhang, S.; Huang, P.; Wang, J.; Zhuang, Z.; Zhang, Z.; Han, W.-Q.J. Phys. Chem. Lett. 2020, 11, 1247.doi: 10.1021/acs.jpclett.9b03682

    (129) Mei, J.; Ayoko, G. A.; Hu, C.; Sun, Z. Chem. Eng. J. 2020, 395,125111. doi: 10.1016/j.cej.2020.125111

    (130) Li, Z.; Wu, Y. Small 2019, 15, 1804736.doi: 10.1002/smll.201804736

    (131) Peng, J.; Chen, X.; Ong, W.-J.; Zhao, X.; Li, N. Chem 2019, 5, 18.doi: 10.1016/j.chempr.2018.08.037

    (132) Chen, Y.; Xie, X.; Xin, X; Tang, Z.-R.; Xu, Y.-J. ACS Nano 2019,13, 295. doi: 10.1021/acsnano.8b06136

    (133) Shahzad, F.; Alhabeb, M.; Hatter, C. B.; Anasori, B.; Hong, S. M.;Koo, C. M.; Gogotsi, Y. Science 2016, 353, 1137.doi: 10.1126/science.aag2421

    (134) Yan, J.; Ren, C. E.; Maleski, K.; Hatter, C. B.; Anasori, B.;Urbankowski, P.; Sarycheva, A.; Gogotsi, Y. Adv. Funct. Mater.2017, 27, 1701264. doi: 10.1002/adfm.201701264

    (135) Wang, X.; Kajiyama, S.; Iinuma, H.; Hosono, E.; Oro, S.;Moriguchi, I.; Okubo, M.; Yamada, A. Nat. Commun. 2015, 6, 6544.doi: 10.1038/ncomms7544

    (136) Sun, Y.; Meng, X.; Dall'Agnese, Y.; Dall'Agnese, C.; Duan, S.; Gao,Y.; Chen, G.; Wang, X.-F. Nano-Micro Lett. 2019, 11, 79.doi: 10.1007/s40820-019-0309-6

    (137) Zhao, X.; Cao, H.; Coleman, B. J.; Tan, Z.; Echols, I. J.; Pentzer, E.B.; Lutkenhaus, J. L.; Radovic, M.; Green, M. J. Adv. Mater.Interfaces 2022, 9, 2200480. doi: 10.1002/admi.202200480

    (138) Habib, T.; Zhao, X.; Shah, S. A.; Chen, Y.; Sun, W.; An, H.;Lutkenhaus, J. L.; Radovic, M.; Green, M. J. NPJ 2D Mater. Appl.2019, 3, 8. doi: 10.1038/s41699-019-0089-3

    (139) Wang, J.; Xie, G.; Yu, C.; Peng, L.; Zhu, Y.; Xie, X.; Zhang, N.Chem. Mater. 2022, 34, 9517. doi: 10.1021/acs.chemmater.2c02013

    (140) Wang, Q.; Pan, X.; Lin, C.; Gao, H.; Cao, S.; Ni, Y.; Ma, X. Chem.Eng. J. 2020, 401, 126129. doi: 10.1016/j.cej.2020.126129

    (141) Naguib, M.; Mashtalir, O.; Lukatskaya, M. R.; Dyatkin, B.; Zhang,C.; Presser, V.; Gogotsi, Y.; Barsoum, M. W. Chem. Commun. 2014,50, 7420. doi: 10.1039/c4cc01646g

    (142) Su, T.; Hood, Z. D.; Naguib, M.; Bai, L.; Luo, S.; Rouleau, C. M.;Ivanov, I. N.; Ji, H.; Qin, Z.; Wu, Z. Nanoscale 2019, 11, 8138.doi: 10.1039/c9nr00168a

    (143) Zhao, X.; Vashisth, A.; Prehn, E.; Sun, W.; Shah, S.; Habib, T.;Chen, Y.; Tan, Z.; Lutkenhaus, J.; Radovic, M.; et al. Matter 2019,1, 513. doi: 10.1016/j.matt.2019.05.020

    (144) Ke, T.; Shen, S.; Rajavel, K.; Yang, K.; Lin, D. J. Hazard. Mater.2021, 402, 124066. doi: 10.1016/j.jhazmat.2020.124066

    (145) Cai, T.; Wang, L.; Liu, Y.; Zhang, S.; Dong, W.; Chen, H.; Yi, X.;Yuan, J.; Xia, X.; Liu, C.; et al. Appl. Catal. B-Environ. 2018, 239,545. doi: 10.1016/j.apcatb.2018.08.053

    (146) Xiong, D.; Li, X.; Bai, Z.; Lu, S. Small 2018, 14, 1703419.doi: 10.1002/smll.201703419

    (147) Li, Y.-B.; Li, T.; Dai, X.-C.; Huang, M.-H.; Hou, S.; Fu, X.-Y.; Wei,Z.-Q.; He, Y.; Xiao, G.; Xiao, F.-X. ACS Appl. Mater. Interfaces2020, 12, 4373. doi: 10.1021/acsami.9b14543

    (148) Xiao, R.; Zhao, C.; Zou, Z.; Chen, Z.; Tian, L.; Xu, H.; Tang, H.;Liu, Q.; Lin, Z.; Yan, X. Appl. Catal. B-Environ. 2020, 268,118382. doi: 10.1016/j.apcatb.2019.118382

    (149) Xie, X.; Zhang, N.; Tang, Z.-R.; Anpo, M.; Xu, Y.-J. Appl. Catal. BEnviron.2018, 237, 43. doi: 10.1016/j.apcatb.2018.05.070

    (150) Zhang, C.; Beidaghi, M.; Naguib, M.; Lukatskaya, M. R.; Zhao, M.-Q.; Dyatkin, B.; Cook, K. M.; Kim, S. J.; Eng, B.; Xiao, X.; et al.Chem. Mater. 2016, 28, 3937. doi: 10.1021/acs.chemmater.6b01244

    (151) Li, X.; Yin, X.; Han, M.; Song, C.; Sun, X.; Xu, H.; Cheng, L.;Zhang, L. J. Mater. Chem. C 2017, 5, 7621.doi: 10.1039/c7tc01991b

    (152) Sun, B.; Qiu, P.; Liang, Z.; Xue, Y.; Zhang, X.; Yang, L.; Cui, H.;Tian, J. Chem. Eng. J. 2021, 406, 127177.doi: 10.1016/j.cej.2020.127177

    (153) Kuang, P.; Low, J.; Cheng, B.; Yu, J.; Fan, J. J. Mater. Sci. Technol.2020, 56, 18. doi: 10.1016/j.jmst.2020.02.037

    (154) Han, X.; An, L.; Hu, Y.; Li, Y.; Hou, C.; Wang, H.; Zhang, Q. Appl.Catal. B-Environ. 2020, 265, 118539.doi: 10.1016/j.apcatb.2019.118539

    (155) Houas, A.; Lachheb, H.; Ksibi, M.; Elaloui, E.; Guillard, C.;Herrmann, J. M. Appl. Catal. B-Environ. 2001, 31, 145.doi: 10.1016/s0926-3373(00)00276-9

    (156) Arun, J.; Nachiappan, S.; Rangarajan, G.; Alagappan, R. P.;Gopinath, K. P.; Lichtfouse, E. Environ Chem Lett. 2022, 1, 339.doi: 10.1007/s10311-022-01503-z

    (157) Jia, G.; Wang, Y.; Cui, X.; Zheng, W. ACS Sustain. Chem. Eng.2018, 6, 13480. doi: 10.1021/acssuschemeng.8b03406

    (158) Jin, C.; Sun, D.; Sun, Z.; Rao, S.; Wu, Z.; Cheng, C.; Liu, L.; Liu,Q.; Yang, J. Appl. Catal. B-Environ. 2023, 330, 122613.doi: 10.1016/j.apcatb.2023.122613

    (159) Su, T.; Hood, Z. D.; Naguib, M.; Bai, L.; Luo, S.; Rouleau, C. M.;Ivanoy, I. N.; Ji, H.; Qin, Z.; Wu, Z. ACS Appl. Energ. Mater. 2019,2, 4640. doi: 10.1021/acsaem.8b02268

    (160) Feng, C.; Ou, K.; Zhang, Z.; Liu, Y.; Huang, Y.; Wang, Z.; Lv, Y.;Miao, Y.-E.; Wang, Y.; Lan, Q.; Liu, T. J. Membr. Sci. 2022, 658,120761. doi: 10.1016/j.memsci.2022.120761

    (161) Wan, Y.; Xiong, P.; Liu, J.; Feng, F.; Xun, X.; Gama, F. M.; Zhang,Q.; Yao, F.; Yang, Z.; Luo, H.; et al. ACS Nano 2021, 15, 8439.doi: 10.1021/acsnano.0c10666

    (162) Li, H.; Sun, B.; Gao, T.; Li, H.; Ren, Y.; Zhou, G. Chin. J. Catal.2022, 43, 461. doi: 10.1016/s1872-2067(21)63915-3

    (163) Wang, H.; Peng, R.; Hood, Z. D.; Naguib, M.; Adhikari, S. P.; Wu,Z. ChemSusChem 2016, 9, 1490. doi: 10.1002/cssc.201600165

    (164) Peng, C.; Wang, H.; Yu, H.; Peng, F. Mater. Res. Bull. 2017, 89, 16.doi: 10.1016/j.materresbull.2016.12.049

    (165) Low, J.; Zhang, L.; Tong, T.; Shen, B.; Yu, J. J. Catal. 2018, 361,255. doi: 10.1016/j.jcat.2018.03.009

    (166) Wang, K.; Li, X.; Wang, N.; Shen, Q.; Liu, M.; Zhou, J.; Li, N. Ind.Eng. Chem. Res. 2021, 60, 8720. doi: 10.1021/acs.iecr.1c00713

    (167) Xu, Y.; Wang, F.; Lei, S.; Wei, Y.; Zhao, D.; Gao, Y.; Ma, X.; Li, S.;Chang, S.; Wang, M.; et al. Chem. Eng. J. 2023, 452, 139392.doi: 10.1016/j.cej.2022.139392

    (168) Huang, H.; Zhang, J.; Tang, C.; Li, A.; Zhang, T.; Xue, H.; Zhang,D. J. Environ. Chem. Eng. 2022, 10, 108654.doi: 10.1016/j.jece.2022.108654

    (169) Lu, S.; Meng, G.; Wang, C.; Chen, H. Chem. Eng. J. 2021, 404,126526, doi: 10.1016/j.cej.2020.126526

    (170) Liu, Z.; Gao, W.; Liu, L.; Luo, S.; Zhang, C.; Yue, T.; Sun, J.; Zhu,M.; Wang, J. J. Hazard. Mater. 2023, 442, 1330036.doi: 10.1016/j.jhazmat.2022.130036

    (171) Wang, C.; Xie, Z.; deKrafft, K. E.; Lin, W. J. Am. Chem. Soc. 2011,133, 13445. doi: 10.1021/ja203564w

    (172) Jiang, L.; Yuan, X.; Pan, Y.; Liang, J.; Zeng, G.; Wu, Z.; Wang, H.Appl. Catal. B-Environ. 2017, 217, 388.doi: 10.1016/j.apcatb.2017.06.003

    (173) Zheng, R.; Li, C.; Huang, K.; Guan, Y.; Wang, W.; Wang, L.; Bian,J.; Meng, X. Inorg. Chem. Front. 2022, 9, 1195.doi: 10.1039/d1qi01614h

    (174) Xu, T.; Wang, J.; Cong, Y.; Jiang, S.; Zhang, Q.; Zhu, H.; Li, Y.; Li,X. Chin. Chem. Lett. 2020, 31, 1022.doi: 10.1016/j.cclet.2019.11.038

    (175) Tan, Q.; Yu, Z.; Long, R.; He, N.; Xiang, Q.; Wang, J.; Liu, Y.J. Mol. Liq. 2023, 383, 122189. doi: 10.1016/j.molliq.2023.122189

    (176) Li, Q.; Li, X.; Wageh, S.; Al-Ghamdi, A. A.; Yu, J. Adv. Energy.Mater. 2015, 5, 1500010. doi: 10.1002/aenm.201500010

    (177) Cheng, L.; Xiang, Q.; Liao, Y.; Zhang, H. Energ. Environ. Sci. 2018,11, 1362. doi: 10.1039/c7ee03640j

    (178) Yu, H.; Huang, X.; Wang, P.; Yu, J. J. Phys. Chem. C 2016, 120,3722. doi: 10.1021/acs.jpcc.6b00126

    (179) Li, K.; Han, M.; Chen, R.; Li, S.-L.; Xie, S.-L.; Mao, C.; Bu, X.;Cao, X.-L.; Dong, L.-Z.; Feng, P.; et al. Adv. Mater. 2016, 28, 8906.doi: 10.1002/adma.201601047

    (180) Yan, H.; Yang, J.; Ma, G.; Wu, G.; Zong, X.; Lei, Z.; Shi, J.; Li, C.J. Catal. 2009, 266, 165. doi: 10.1016/j.jcat.2009.06.024

    (181) Kuehnel, M. F.; Orchard, K. L.; Dalle, K. E.; Reisner, E. J. Am.Chem. Soc. 2017, 139, 7217. doi: 10.1021/jacs.7b00369

    (182) Yang, Y.-H.; Ren, N.; Zhang, Y.-H.; Tang, Y. J. Photochem.Photobiol. A 2008, 25, 111. doi: 10.1016/j.jphotochem.2008.10.012

    (183) Fernandez-Prini, R. J. Chem. Educ. 1982, 7, 500.doi: 10.1021/ed059p550

    (184) Ding, M.; Xiao, R.; Zhao, C.; Bukhvalov, D.; Chen, Z.; Xu, H.;Tang, H.; Xu, J.; Yang, X. Solar RRL. 2020, 5, 2000414.doi: 10.1002/solr.202000414

    (185) Li, J.-Y.; Li, Y.-H.; Zhang, F.; Tang, Z.-R.; Xu, Y.-J. Appl. Catal. BEnviron.2020, 269, 118783. doi: 10.1016/j.apcatb.2020.118783

    (186) Xie, X.; Zhang, N. Adv. Funct. Mater. 2020, 30, 2002528.doi: 10.1002/adfm.202002528

    (187) Wei, P.; Chen, Y.; Zhou, T.; Wang, Z.; Zhang, Y.; Wang, H.; Yu, H.;Jia, J.; Zhang, K.; Peng, C. ACS Catal. 2022, 13, 587.doi: 10.1021/acscatal.2c04632

    (188) Ong, W.-J.; Tan, L.-L.; Ng, Y. H.; Yong, S.-T.; Chai, S.-P. Chem.Rev. 2016, 116, 7159. doi: 10.1021/acs.chemrev.6b00075

    (189) Huang, D.; Li, Z.; Zeng, G.; Zhou, C.; Xue, W.; Gong, X.; Yan, X.;Chen, S.; Wang, W.; Cheng, M. Appl. Catal. B-Environ. 2019, 240,153. doi: 10.1016/j.apcatb.2018.08.071

    (190) Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson,J. M.; Domen, K.; Antonietti, M. Nat. Mater. 2009, 8, 76.doi: 10.1038/nmat2317

    (191) Wang, Y.; Wang, X.; Antonietti, M. Angew. Chem. Int. Ed. 2012, 51,68. doi: 10.1002/anie.201101182

    (192) Teixeira, I. F.; Barbosa, E. C. M.; Tsang, S. C. E.; Camargo, P. H. C.Chem. Soc. Rev. 2018, 47, 7783. doi: 10.1039/c8cs00479j

    (193) Islam, J.; Islam, M.; Furukawa, M.; Tateishi, I. Environ. Technol.2023, 44, 3627. doi: 10.1080/09593330.2022.2068379

    (194) Maeda, K.; Wang, X.; Nishihara, Y.; Lu, D.; Antonietti, M.; Domen,K. J. Phys. Chem. C 2009, 113, 4940. doi: 10.1021/jp809119m

    (195) Lu, C.; Chen, R.; Wu, X.; Fan, M.; Liu, Y.; Le, Z.; Jiang, S.; Song,S. Appl. Surf. Sci. 2016, 360, 1016.doi: 10.1016/j.apsusc.2015.11.112

    (196) Zhu, B.; Zhang, J.; Jiang, C.; Cheng, B.; Yu, J. Appl. Catal. BEnviron. 2017, 207, 27. doi: 10.1016/j.apcatb.2017.02.020

    (197) Chen, P.; Xing, P.; Chen, Z.; Lin, H.; He, Y. Int. J. HydrogenEnergy. 2018, 43, 19984. doi: 10.1016/j.ijhydene.2018.09.078

    (198) Li, Z.; Ma, Y.; Hu, X.; Liu, E.; Fan, J. Chin. J. Catal. 2019, 40, 434.doi: 10.1016/s1872-2067(18)63189-4

    (199) Xu, J.; Huang, J.; Wang, Z.; Zhu, Y. Chin. J. Catal. 2020, 41, 474.doi: 10.1016/s1872-2067(19)63501-1

    (200) Niu, P.; Qiao, M.; Li, Y.; Huang, L.; Zhai, T. Nano Energy 2017, 44,73. doi: 10.1016/j.nanoen.2017.11.059

    (201) Yu, X.; Ng, S.-F.; Putri, L. K.; Tan, L.-L.; Mohamed, A. R.; Ong,W.-J. Small 2021, 17, 2006851. doi: 10.1002/smll.202006851

    (202) Zhang, X.; Ma, P.; Wang, C.; Gan, L.; Chen, X.; Zhang, P.; Wang,Y.; Li, H.; Wang, L.; Zhou, X.; et al. Energ. Environ. Sci. 2022, 15,830. doi: 10.1039/d1ee02369a

    (203) Xi, L.; Youping, G.; Yiran, L.; Renchun, F. ACS Appl. Energy Mater.2023, 6, 5774. doi: 10.1021/acsaem.3c00162

    (204) Sandra, M.; Madhushree, R.; Sunaja Devi, K. R. Sustain EnergFuels. 2023, 7, 2601. doi: 10.1039/d3se00416c

    (205) Huang, K.; Lv, C.; Li, C.; Bai, H.; Meng, X. J. Colloid. Inter. Sci.2023, 636, 21. doi: 10.1016/j.jcis.2022.12.169

    (206) Tang, Q.; Sun, Z.; Deng, S.; Wang, H.; Wu, Z. J. Colloid InterfaceSci. 2020, 564, 406. doi: 10.1016/j.jcis.2019.12.091

    (207) Xie, G.; Zhu, Y.; Yu, C.; Xie, X.; Zhang, N. 2D. Mater. 2022, 10,014004. doi: 10.1088/2053-1583/ac97a6

    (208) Othman, Z.; Mackey, H. R.; Mahmoud, K. A. Chemosphere 2022,295, 133849. doi: 10.1016/j.chemosphere.2022.133849

    (209) Yu, S.; Tang, H.; Zhang, D.; Wang, S.; Qiu, M.; Song, G.; Fu, D.;Hu, B.; Wang, X. Sci. Total. Environ. 2022, 811, 152280.doi: 10.1016/j.scitotenv.2021.152280

    (210) Chen, L.; Wakeel, M.; Ul Haq, T.; Alharbi, N. S.; Chen, C.; Ren, X.Environ. Sci-Nano 2022, 9, 3168. doi: 10.1039/d2en00340f

    (211) Wang, S.; Wang, F.; Jin, Y.; Meng, X.; Meng, B.; Yang, N.; Sunarso,J.; Liu, S. J. Membr. Sci. 2021, 638, 119697.doi: 10.1016/j.memsci.2021.119697

    (212) Wu, Z.; Shen, J.; Li, C.; Zhang, C. Chemistry. 2023, 5, 492.doi: 10.3390/chemistry5010036

    (213) Rasheed, T.; Kausar, F.; Rizwan, K.; Adeel, M.; Sher, F.; Alwadai,N.; Alshammari, F. H. Chemosphere 2022, 287, 132319.doi: 10.1016/j.chemosphere.2021.132319

    (214) Zeng, G.; He, Z.; Wan, T.; Wang, T.; Yang, Z.; Liu, Y.; Lin, Q.;Wang, Y.; Sengupta, A.; Pu, S. Sep. Purif. Technol. 2022, 292,121037. doi: 10.1016/j.seppur.2022.121037

    (215) Wang, X.-X.; Meng, S.; Zhang, S.; Zheng, X.; Chen, S. Catal.Commun. 2020, 147, 106152. doi: 10.1016/j.catcom.2020.106152

    (216) Qiu, W.; Xie, X.-Y.; Qiu, J.; Fang, W.-H.; Liang, R.; Ren, X.; Ji, X.;Cui, G.; Asiri, A. M.; Cui, G.; et al. Nat. Commun. 2018, 9, 3485.doi: 10.1038/s41467-018-05758-5

    (217) Bao, D.; Zhang, Q.; Meng, F.-L.; Zhong, H.-X.; Shi, M.-M.; Zhang,Y.; Yan, J.-M.; Jiang, Q.; Zhang, X.-B. Adv. Mater. 2017, 29,1604799. doi: 10.1002/adma.201604799

    (218) Hoffman, B. M.; Lukoyanov, D.; Yang, Z.-Y.; Dean, D. R.; Seefeldt,L. C. Chem. Rev. 2014, 114, 4041. doi: 10.1021/cr400641x

    (219) Ali, M.; Zhou, F.; Chen, K.; Kotzur, C.; Xiao, C.; Bourgeois, L.;Zhang, X.; MacFarlane, D. R. Nat. Commun. 2016, 7, 11335.doi: 10.1038/ncomms11335

    (220) Liu, W.; Sun, M.; Ding, Z.; Gao, B.; Ding, W. J. Alloy. Compd.2021, 877, 160223. doi: 10.1016/j.jallcom.2021.160223

    (221) Zhu, S.-C.; Li, S.; Tang, B.; Liang, H.; Lin, B.-J.; Xiao, F.-X.J. Catal. 2021, 404, 56. doi: 10.1016/j.jcat.2021.09.001

    (222) Ngoc Tuyet Anh, N.; Kim, H. Nanomaterials 2022, 12, 2464.doi: 10.3390/nano12142464

    (223) Guo, S.; Lin, H.; Hu, J.; Su, Z.; Zhang, Y. Materials 2021, 16, 4739.doi: 10.3390/ma14164739

    (224) Peng, C.; Yang, X.; Li, Y.; Yu, H.; Wang, H.; Peng, F. ACS Appl.Mater. Interfaces 2016, 8, 6051. doi: 10.1021/acsami.5b11973

    (225) Liu, K.; Zhang, H.; Fu, T.; Wang, L.; Tang, R.; Tong, Z.; Huang, X.Chem. Eng. J. 2022, 438, 135609. doi: 10.1016/j.cej.2022.135609

    (226) Peng, C.; Xie, X.; Xu, W.; Zhou, T.; Wei, P.; Jia, J.; Zhang, K.;Cao, Y.; Wang, H.; Peng, F.; et al. Chem. Eng. J. 2021, 421, 128766.doi: 10.1016/j.cej.2021.128766

    (227) Pang, X.; Xue, S.; Zhou, T.; Xu, Q.; Lei, W. Cearm. Int. 2022, 48,3659. doi: 10.1016/j.ceramint.2021.10.147

    (228) Cheng, X.; Liao, J.; Xue, Y.; Lin, Q.; Yang, Z.; Yan, G.; Zeng, G.;Sengupta, A. J. Membr. Sci. 2022, 644, 120188.doi: 10.1016/j.memsci.2021.120188

    (229) Alsafari, I. A. Cearm. Int. 2022, 48, 10960.doi: 10.1016/j.ceramint.2021.12.315

    (230) Alsafari, I. A.; Munir, S.; Zulfiqar, S.; Saif, M. S.; Warsi, M. F.;Shahid, M. Cearm. Int. 2021, 47, 28874.doi: 10.1016/j.ceramint.2021.07.048

    (231) Lam, S.-M.; Choong, M.-K.; Sin, J.-C.; Zeng, H.; Huang, L.; Hua,L.; Li, H.; Jaffari, Z. H.; Cho, K. H. J. Environ. Chem. Eng. 2022,10, 108284. doi: 10.1016/j.jece.2022.108284

    (232) Fang, H.; Pan, Y.; Yin, M.; Xu, L.; Zhu, Y.; Pan, C. J. Solid. StateChem. 2019, 280, 71. doi: 10.1016/j.jssc.2019.120981

    (233) Zhang, L.; Ma, P.; Dai, L.; Li, S.; Yu, W.; Guan, J. Catal. Sci.Technol. 2021, 11, 3834. doi: 10.1039/d1cy00239b

    (234) Zu, D.; Song, H.; Wang, Y.; Chao, Z.; Li, Z.; Wang, G.; Shen, Y.;Li, C.; Ma, J. Appl. Catal. B Environ. 2020, 15, 119140.doi: 10.1016/j.apcatb.2020.119140

    (235) Huo, Z.; Wei, W.; Guang, Z.; Xin, W.; Jian, C. Mater. Lett. 2021,311, 131550. doi: 10.1016/j.matlet.2021.131550

    (236) Qiao, Q.; Zhang, F.; Kai, C.; Liu, C.; Wang, Y.; Oh, W. J. Korean.Ceram. Soc. 2023, 79,790. doi: 10.1007/s43207-022-00269-y

    (237) Zhong, H.; Xiao, Z.; Yan, Z.; Hong, D.; Hejun, R. Sep. Purif.Technol. 2022, 299, 121715. doi: 10.1016/j.seppur.2022.121715

    (238) Song, H.; Wang, Y.; Ling, Z.; Zu, D.; Li, Z.; Shen, Y.; Li, C. Sci. TotalEnviron. 2020, 746, 141009. doi: 10.1016/j.scitotenv.2020.141009

    (239) Meng, Y.; Zhi, W.; Li, Y.; Lei, S. Mater. Res. Bull. 2022, 159,112110. doi: 10.1016/j.materresbull.2022.112110

    (240) Yin, J.; Zhang, L.; Jiao, T.; Zou, G.; Bai, Z.; Chen, Y.; Zhang, Q.;Xia, M.; Peng, Q. Nanomaterials 2019, 9, 1009.doi: 10.3390/nano9071009

    (241) Makola, L. C.; Moeno, S.; Ouma, C. N. M.; Sharma, A.; Vo, D.-V.N.; Dlamini, L. N. J. Alloy. Compd. 2022, 916, 165459.doi: 10.1016/j.jallcom.2022.165459

    (242) Li, Z.; Huang, W.; Liu, J.; Lv, K.; Li, Q. ACS Catal. 2021, 11, 8510.doi: 10.1021/acscatal.1c02018

    (243) Huang, J.; Tao, J.; Liu, G.; Lu, L.; Tang, H.; Qiao, G. Appl. Surf.Sci. 2022, 573, 151491. doi: 10.1016/j.apsusc.2021.151491

    (244) Huang, J.; Wang, M.; Zhang, X.; Tao, J.; Lu, L.; Qiao, G.; Liu, G.J. Alloy. Compd. 2022, 923, 166256.doi: 10.1016/j.jallcom.2022.166256

    (245) Zhu, H.; Fu, X.; Zhou, Z. ACS Omega 2022, 7, 21684.doi: 10.1021/acsomega.2c01674

    (246) Guo, S.; Jian, X.; Hou, X.; Wu, J.; Tian, B.; Tian, Y. Electrocatalysis2022, 13, 469. doi: 10.1007/s12678-022-00731-9

    (247) Jin, S.; Jing, H.; Wang, L.; Hu, Q.; Zhou, A. J. Adv. Ceram. 2022,11, 1431. doi: 10.1007/s40145-022-0621-3

    (248) Bai, J.; Shen, R.; Chen, W.; Xie, J.; Zhang, P.; Jiang, Z.; Li, X.Chem. Eng. J. 2022, 429, 132587. doi: 10.1016/j.cej.2021.132587

    (249) Liu, J.; Zhou, H.; Fan, J.; Xiang, Q. Int. J. Hydrog. Energy 2022, 47,4546. doi: 10.1016/j.ijhydene.2021.11.059

    (250) Tahir, M. Energy Fuels 2021, 8, 6807.doi: 10.1021/acs.energyfuels.1c00204

    (251) Huang, K.; Li, C.; Zhang, X.; Wang, L.; Wang, W.; Meng, X. GreenEnergy. Environ. 2021, 8, 233. doi: 10.1016/j.gee.2021.03.011

    (252) Tahir, M. Energy Fuels 2021, 17, 14197.doi: 10.1021/acs.energyfuels.1c01340

    (253) Kai, C.-M.; Kong, C.; Zhang, F.-J.; Li, D.-C.; Wang, Y.-R.; Oh,W.-C. J. Korean Ceram. Soc. 2022, 59, 302.doi: 10.1007/s43207-021-00158-w

    (254) Wang, H.; Hu, P.; Zhou, J.; Roeffaers, M. B. J.; Weng, B.; Wang, Y.;Ji, H. J. Mater. Chem. A 2021, 9, 19984. doi: 10.1039/d1ta03573h

    (255) Ye, C.; Xu, F.; Ullah, F.; Wang, M. Anal. Bioanal. Chem. 2022, 414,3571. doi: 10.1007/s00216-021-03870-y

    (256) Li, X.; Bai, Y.; Shi, X.; Huang, J.; Zhang, K.; Wang, R.; Ye, L. Appl.Surf. Sci. 2021, 546, 149111. doi: 10.1016/j.apsusc.2021.149111

    (257) Wu, Z.; Li, C.; Li, Z.; Feng, K. ACS Nano. 2021, 15, 5696.doi: 10.1021/acsnano.1c00990

    (258) Yang, C.; Tan, Q.; Li, Q.; Zhou, J.; Fan, J.; Li, B.; Sun, J.; Lv, K.Appl. Catal. B Environ. 2020, 268, 118738.doi: 10.1016/j.apcatb.2020.118738

    (259) Que, M.; Cai, W.; Zhao, Y.; Yang, Y.; Zhang, B.; Yun, S.; Chen, J.;Zhu, G. J. Colloid Interface Sci. 2022, 610, 538.doi: 10.1016/j.jcis.2021.11.094

    (260) Tahir, M.; Tahir, B. Chem. Eng. J. 2020, 400, 125868.doi: 10.1016/j.cej.2020.125868

    (261) Cong, L.; Wei, W.; Mutian, Z.; Chenyang, Z.; Chengcheng, M.; Lin,C.; Debao, K.; Huimeng, F.; Wen, L.; Shougang, C. Chem. Eng. J.2021, 15, 132663. doi: 10.1016/j.cej.2021.132663

    (262) Dai, X.-C.; Huang, M.-H.; Li, Y.-B.; Li, T.; Zhang, B.-B.; He, Y.;Xiao, G.; Xiao, F.-X. J. Mater. Chem. A 2019, 7, 2741.doi: 10.1039/c8ta10379h

    (263) Hou, S.; Dai, X.-C.; Li, Y.-B.; Huang, M.-H.; Li, T.; Wei, Z.-Q.; He,Y.; Xiao, G.; Xiao, F.-X. J. Mater. Chem. A 2019, 7, 22487.doi: 10.1039/c9ta08107k

    (264) Hou, S.; Huang, M.-H.; Xiao, F.-X. J. Mater. Chem. A 2022, 10,7006. doi: 10.1039/d2ta00572g

    (265) Jiang, K.-Y.; Weng, Y.-L.; Guo, S.-Y.; Yu, Y.; Xiao, F.-X.Nanoscale 2017, 9, 16922. doi: 10.1039/c7nr04802e

    (266) Li, T.; Huang, M.-H.; Li, Y.-B.; Dai, X.-C.; He, Y.; Xiao, G.; Xiao,F(xiàn).-X. J. Mater. Chem. A 2019, 7, 21182. doi: 10.1039/c9ta07569k

    (267) Li, Y.-B.; Li, T.; Dai, X.-C.; Huang, M.-H.; He, Y.; Xiao, G.; Xiao,F(xiàn).-X. J. Mater. Chem. A 2019, 7, 8938. doi: 10.1039/c9ta01144g

    (268) Li, Y.-B.; Xiao, F.-X. J. Mater. Chem. A 2023, 11, 589.doi: 10.1039/d2ta07813a

    (269) Liang, Z.-Y.; Wei, J.-X.; Wang, X.; Yu, Y.; Xiao, F.-X. J. Mater.Chem. A 2017, 5, 15601. doi: 10.1039/c7ta04333c

    (270) Lin, X.; Xu, S.; Wei, Z.-Q.; Hou, S.; Mo, Q.-L.; Fu, X.-Y.; Xiao, F.-X. J. Mater. Chem. A 2020, 8, 20151. doi: 10.1039/d0ta07235d

    (271) Mo, Q.-L.; Li, J.-L.; Xu, S.-R.; Wang, K.; Ge, X.-Z.; Xiao, Y.; Wu,G.; Xiao, F.-X. Adv. Funct. Mater. 2023, 33, 2210332.doi: 10.1002/adfm.202210332

    (272) Mo, Q.-L.; Lin, X.; Wei, Z.-Q.; Dai, X.-C.; Hou, S.; Li, T.; Xiao,F(xiàn).-X. J. Mater. Chem. A 2020, 8, 16392. doi: 10.1039/d0ta05297c

    (273) Mo, Q.-L.; Xu, S.-R.; Li, J.-L.; Shi, X.-Q.; Wu, Y.; Xiao, F.-X.Small 2023, 19, 2300804. doi: 10.1002/smll.202300804

    (274) Mo, Q.-L.; D. X. -C.; Xiao, F.-X. Small 2023, 19, 2302372.doi: 10.1002/smll.202302372

    (275) Tang, B.; Zhu, S.-C.; Liang, H.; Li, S.; Liu, B.-J.; Xiao, F.-X.J. Mater. Chem. A 2022, 10, 4032. doi: 10.1039/d1ta10284b

    (276) Wei, Z.-Q.; Dai, X.-C.; Hou, S.; Li, Y.-B.; Huang, M.-H.; Li, T.;Xu, S.; Xiao, F.-X. J. Mater. Chem. A 2020, 8, 177.doi: 10.1039/c9ta11579j

    (277) Wei, Z.-Q.; Hou, S.; Zhu, S.-C.; Xiao, Y.; Wu, G.; Xiao, F.-X. Adv.Funct. Mater. 2022, 32, 2106228. doi: 10.1002/adfm.202106338

    (278) Xiao, F.-X.; Liu, B. Nanoscale 2017, 9, 17118.doi: 10.1039/c7nr06697j

    (279) Xiao, Y.; Mo, Q.-L.; Wu, G.; Wang, K.; Ge, X.-Z.; Xu, S.-R.;Li, J.-L.; Wu, Y.; Xiao, F.-X. J. Mater. Chem. A 2023, 11, 2402.doi: 10.1039/d2ta08547j

    (280) Xu, S.; Huang, M.-H.; Li, T.; Wei, Z.-Q.; Li, X.; Dai, X.-C.;Hou, S.; Fu, X.-Y.; Xiao, F.-X. J. Mater. Chem. A 2020, 8, 8360.doi: 10.1039/d0ta02122a

    (281) Zeng, Z.; Li, T.; Li, Y.-B.; Dai, X.-C.; Huang, M.-H.; He, Y.;Xiao, G.; Xiao, F.-X. J. Mater. Chem. A 2018, 6, 24686.doi: 10.1039/c8ta08841a

    (282) Zeng, Z.; Li, Y.-B.; Chen, S.; Chen, P.; Xiao, F.-X. J. Mater. Chem.A 2018, 6, 11154. doi: 10.1039/c8ta02802h

    (283) Zeng, Z.; Xiao, F.-X.; Phan, H.; Chen, S.; Yu, Z.; Wang, R.;Thuc-Quyen, N.; Tan, T. T. Y. J. Mater. Chem. A 2018, 6, 1700.doi: 10.1039/c7ta09119b

    (284) Zhu, S.-C.; Wang, Z.-C.; Tang, B.; Liang, H.; Liu, B.-J.;Li, S.; Chen, Z.; Cheng, N.-C.; Xiao, F.-X. J. Mater. Chem. A2022, 10, 11926. doi: 10.1039/d2ta02755k

    國家自然科學(xué)基金(21703038, 22072025)資助項(xiàng)目

    猜你喜歡
    電荷轉(zhuǎn)移
    ZnCoP/CdLa2S4肖特基異質(zhì)結(jié)的構(gòu)建促進(jìn)光催化產(chǎn)氫
    ZnO/D-A共軛聚合物S型異質(zhì)結(jié)高效光催化產(chǎn)H2O2及其電荷轉(zhuǎn)移動力學(xué)研究
    揭示S型電荷轉(zhuǎn)移機(jī)理
    一例具有可逆熱誘導(dǎo)電荷轉(zhuǎn)移行為的二維氰基橋聯(lián)WⅤ?CoⅡ配合物
    共軛單元調(diào)控三苯胺類敏化染料電子激發(fā)性質(zhì)的計算研究
    從軌道作用角度研究S…π非共價作用結(jié)構(gòu)特征
    廣州化工(2020年5期)2020-03-31 07:43:36
    考慮Duschinsky轉(zhuǎn)動效應(yīng)的電荷轉(zhuǎn)移速率理論
    染料敏化太陽電池新材料及規(guī)模制備研究2013年度進(jìn)展報告
    科技資訊(2016年5期)2016-08-13 17:02:25
    發(fā)光光譜研究不同粒徑CdS量子點(diǎn)與鈷肟分子間的電荷轉(zhuǎn)移
    常壓微等離子體陽極與離子溶液界面的電荷轉(zhuǎn)移反應(yīng)
    色婷婷久久久亚洲欧美| 亚洲国产精品成人久久小说| 亚洲怡红院男人天堂| 色吧在线观看| 中国三级夫妇交换| 啦啦啦中文免费视频观看日本| 亚洲va在线va天堂va国产| av免费观看日本| 国产av不卡久久| 六月丁香七月| 美女视频免费永久观看网站| 美女被艹到高潮喷水动态| 精品国产露脸久久av麻豆| 久久精品国产自在天天线| 国产欧美另类精品又又久久亚洲欧美| 好男人视频免费观看在线| 一级av片app| 免费人成在线观看视频色| 亚洲成色77777| 中文欧美无线码| av一本久久久久| 老司机影院成人| 别揉我奶头 嗯啊视频| 不卡视频在线观看欧美| 日韩伦理黄色片| 免费大片18禁| 亚洲精品456在线播放app| 波多野结衣巨乳人妻| 两个人的视频大全免费| 国产欧美另类精品又又久久亚洲欧美| 中文乱码字字幕精品一区二区三区| 97在线人人人人妻| 全区人妻精品视频| 亚洲国产欧美在线一区| 下体分泌物呈黄色| 赤兔流量卡办理| 人妻夜夜爽99麻豆av| 亚洲av.av天堂| 在线观看免费高清a一片| 国产v大片淫在线免费观看| 欧美人与善性xxx| 婷婷色麻豆天堂久久| 精品午夜福利在线看| 成人无遮挡网站| 性色av一级| 成年av动漫网址| 国产欧美日韩一区二区三区在线 | 夜夜看夜夜爽夜夜摸| 特大巨黑吊av在线直播| 亚洲美女视频黄频| 免费高清在线观看视频在线观看| 午夜福利在线观看免费完整高清在| 国产毛片a区久久久久| 日韩精品有码人妻一区| 99热国产这里只有精品6| av国产免费在线观看| 汤姆久久久久久久影院中文字幕| 永久免费av网站大全| 肉色欧美久久久久久久蜜桃 | 免费高清在线观看视频在线观看| 中文字幕av成人在线电影| 国产毛片a区久久久久| 精品人妻一区二区三区麻豆| 免费大片18禁| 国产一区二区三区av在线| 只有这里有精品99| 2022亚洲国产成人精品| 亚洲精品自拍成人| 2021天堂中文幕一二区在线观| 久久99精品国语久久久| 国产免费福利视频在线观看| 在线看a的网站| 人体艺术视频欧美日本| 久久99热这里只有精品18| 久久99热这里只频精品6学生| 欧美丝袜亚洲另类| 天天一区二区日本电影三级| 亚洲综合色惰| 久久久久网色| 亚洲欧美成人精品一区二区| 免费观看a级毛片全部| 观看美女的网站| 又爽又黄无遮挡网站| 十八禁网站网址无遮挡 | 日本黄大片高清| 精品午夜福利在线看| 五月天丁香电影| 国产免费又黄又爽又色| 蜜臀久久99精品久久宅男| 噜噜噜噜噜久久久久久91| 国产中年淑女户外野战色| 看黄色毛片网站| 亚洲精品视频女| 国产视频首页在线观看| 18禁动态无遮挡网站| 岛国毛片在线播放| 日韩大片免费观看网站| 亚洲欧美中文字幕日韩二区| 中文资源天堂在线| 日韩精品有码人妻一区| 毛片女人毛片| kizo精华| 草草在线视频免费看| 欧美成人一区二区免费高清观看| 国产日韩欧美在线精品| av在线观看视频网站免费| 97在线视频观看| 久久久色成人| 成人鲁丝片一二三区免费| 中文资源天堂在线| 纵有疾风起免费观看全集完整版| 亚洲av福利一区| 成年人午夜在线观看视频| 人妻 亚洲 视频| 国产极品天堂在线| 日日摸夜夜添夜夜爱| av线在线观看网站| 在线看a的网站| 亚洲精品国产成人久久av| a级毛色黄片| 国产欧美亚洲国产| 777米奇影视久久| 国产美女午夜福利| 免费大片黄手机在线观看| 精品一区二区免费观看| 乱系列少妇在线播放| 久久亚洲国产成人精品v| 欧美日韩精品成人综合77777| 美女内射精品一级片tv| 精品一区二区三卡| 国产 一区精品| 在线观看免费高清a一片| 真实男女啪啪啪动态图| 一区二区三区精品91| av在线播放精品| 国产久久久一区二区三区| 欧美三级亚洲精品| 欧美性感艳星| 欧美高清性xxxxhd video| av天堂中文字幕网| 男女国产视频网站| av线在线观看网站| 2022亚洲国产成人精品| 成人无遮挡网站| 久久精品熟女亚洲av麻豆精品| 亚洲精品乱码久久久久久按摩| 久久人人爽av亚洲精品天堂 | 国产白丝娇喘喷水9色精品| 色吧在线观看| 最近的中文字幕免费完整| 人人妻人人爽人人添夜夜欢视频 | 国产黄片美女视频| 97在线视频观看| 久热久热在线精品观看| 亚洲电影在线观看av| a级毛片免费高清观看在线播放| 女人被狂操c到高潮| 美女cb高潮喷水在线观看| 美女高潮的动态| 亚洲av二区三区四区| 国产精品一及| 国产69精品久久久久777片| 国产黄片美女视频| 国产高清国产精品国产三级 | 成年版毛片免费区| 欧美国产精品一级二级三级 | 国产中年淑女户外野战色| 黄色一级大片看看| 国产一区二区亚洲精品在线观看| 中文字幕免费在线视频6| 成年女人看的毛片在线观看| 国产高清有码在线观看视频| 欧美一级a爱片免费观看看| 九草在线视频观看| 日韩中字成人| 97精品久久久久久久久久精品| 内射极品少妇av片p| 亚洲国产精品专区欧美| 成年免费大片在线观看| 色网站视频免费| 国产一区二区亚洲精品在线观看| 高清在线视频一区二区三区| 日日啪夜夜撸| 最近手机中文字幕大全| 伊人久久精品亚洲午夜| 国产成年人精品一区二区| 久久99热6这里只有精品| 夫妻性生交免费视频一级片| 超碰av人人做人人爽久久| 中文字幕人妻熟人妻熟丝袜美| 22中文网久久字幕| 精品久久久精品久久久| 日韩国内少妇激情av| 一本色道久久久久久精品综合| 少妇熟女欧美另类| 大陆偷拍与自拍| av一本久久久久| 99久久人妻综合| 国产乱人视频| 一本久久精品| 99久久九九国产精品国产免费| 九色成人免费人妻av| 男人狂女人下面高潮的视频| 亚洲精品aⅴ在线观看| 校园人妻丝袜中文字幕| 少妇的逼水好多| 国产精品av视频在线免费观看| 乱系列少妇在线播放| 国产成人精品福利久久| 国产视频首页在线观看| 国产色婷婷99| 少妇人妻久久综合中文| 亚洲精品成人av观看孕妇| 亚洲经典国产精华液单| 日韩强制内射视频| 亚洲国产精品国产精品| 神马国产精品三级电影在线观看| 18禁在线无遮挡免费观看视频| 午夜免费观看性视频| 国产 一区精品| 色婷婷久久久亚洲欧美| 三级男女做爰猛烈吃奶摸视频| 成人特级av手机在线观看| 九九爱精品视频在线观看| 国产爱豆传媒在线观看| 免费观看的影片在线观看| 亚洲国产精品999| 黑人高潮一二区| 女人被狂操c到高潮| 在线看a的网站| 亚洲欧美日韩卡通动漫| kizo精华| 一级a做视频免费观看| 狠狠精品人妻久久久久久综合| 亚洲av欧美aⅴ国产| 天天躁日日操中文字幕| 亚洲欧美成人精品一区二区| 国产黄a三级三级三级人| 中文字幕制服av| 精品人妻偷拍中文字幕| 热99国产精品久久久久久7| 天天一区二区日本电影三级| 亚洲av电影在线观看一区二区三区 | 精品久久久久久久人妻蜜臀av| 久久久成人免费电影| 麻豆精品久久久久久蜜桃| 国产有黄有色有爽视频| 在线观看免费高清a一片| 国产成人午夜福利电影在线观看| 日韩三级伦理在线观看| 中文字幕制服av| 亚洲一区二区三区欧美精品 | 午夜日本视频在线| 男人爽女人下面视频在线观看| h日本视频在线播放| 舔av片在线| 又黄又爽又刺激的免费视频.| 欧美日韩精品成人综合77777| 亚洲成人久久爱视频| h日本视频在线播放| av在线天堂中文字幕| 亚洲在线观看片| 亚洲欧美成人综合另类久久久| 免费黄色在线免费观看| 亚洲电影在线观看av| 女人十人毛片免费观看3o分钟| 国产精品国产av在线观看| 最近最新中文字幕免费大全7| 成人二区视频| 国产黄频视频在线观看| 精品人妻熟女av久视频| 亚洲精品aⅴ在线观看| 欧美xxxx黑人xx丫x性爽| 伦精品一区二区三区| 精品久久久久久久久av| 国产成人a区在线观看| 少妇丰满av| 国产精品一二三区在线看| 寂寞人妻少妇视频99o| 美女内射精品一级片tv| 国产精品.久久久| 欧美一区二区亚洲| 亚洲欧美成人精品一区二区| 精品一区在线观看国产| 欧美变态另类bdsm刘玥| 久久久久久国产a免费观看| 久久久a久久爽久久v久久| 日本午夜av视频| 久久久久性生活片| freevideosex欧美| 亚洲欧美一区二区三区国产| 国内精品美女久久久久久| 国产免费视频播放在线视频| 亚洲国产日韩一区二区| 欧美另类一区| 免费看日本二区| 在线a可以看的网站| 中国三级夫妇交换| 毛片女人毛片| 精品亚洲乱码少妇综合久久| 插逼视频在线观看| 爱豆传媒免费全集在线观看| 青青草视频在线视频观看| 国产精品伦人一区二区| av在线观看视频网站免费| 午夜爱爱视频在线播放| 午夜福利网站1000一区二区三区| 成人无遮挡网站| 五月开心婷婷网| 日韩成人av中文字幕在线观看| 久久久欧美国产精品| 大片电影免费在线观看免费| 夜夜爽夜夜爽视频| 一级片'在线观看视频| videos熟女内射| 亚洲欧洲国产日韩| 婷婷色av中文字幕| 街头女战士在线观看网站| 在线免费观看不下载黄p国产| 身体一侧抽搐| 在现免费观看毛片| 国产精品一区二区性色av| 一本久久精品| 高清午夜精品一区二区三区| 国产亚洲av嫩草精品影院| av天堂中文字幕网| 最后的刺客免费高清国语| 国产精品一区二区三区四区免费观看| 久久6这里有精品| 人妻一区二区av| 久久久久久久午夜电影| 国产又色又爽无遮挡免| 综合色av麻豆| 80岁老熟妇乱子伦牲交| av一本久久久久| 久久这里有精品视频免费| 久久人人爽人人爽人人片va| 可以在线观看毛片的网站| 亚洲美女视频黄频| 99热6这里只有精品| 欧美日本视频| 菩萨蛮人人尽说江南好唐韦庄| 简卡轻食公司| 国产色爽女视频免费观看| 大陆偷拍与自拍| 狂野欧美激情性xxxx在线观看| 久久精品国产亚洲av天美| 久久99精品国语久久久| 最近手机中文字幕大全| 特级一级黄色大片| 免费电影在线观看免费观看| 成人鲁丝片一二三区免费| av天堂中文字幕网| 亚洲精品色激情综合| 一级黄片播放器| 大香蕉久久网| 美女主播在线视频| 欧美成人a在线观看| 蜜桃亚洲精品一区二区三区| 成人免费观看视频高清| 99热国产这里只有精品6| av国产久精品久网站免费入址| 夜夜爽夜夜爽视频| 国产永久视频网站| 日韩av免费高清视频| 中文字幕制服av| 日本熟妇午夜| 99久久中文字幕三级久久日本| 日韩 亚洲 欧美在线| 22中文网久久字幕| a级毛色黄片| 2021天堂中文幕一二区在线观| 建设人人有责人人尽责人人享有的 | 少妇的逼水好多| 综合色av麻豆| 99re6热这里在线精品视频| 一级毛片久久久久久久久女| 人妻制服诱惑在线中文字幕| 亚洲高清免费不卡视频| 成人亚洲欧美一区二区av| 国模一区二区三区四区视频| 亚洲欧美精品自产自拍| 精品人妻熟女av久视频| 只有这里有精品99| 亚洲av不卡在线观看| 精华霜和精华液先用哪个| 亚洲国产成人一精品久久久| 亚洲伊人久久精品综合| 欧美日韩亚洲高清精品| 免费av毛片视频| 精品人妻一区二区三区麻豆| 777米奇影视久久| 欧美潮喷喷水| 亚洲av电影在线观看一区二区三区 | 又粗又硬又长又爽又黄的视频| 青春草视频在线免费观看| 亚洲内射少妇av| 一级爰片在线观看| 99久久中文字幕三级久久日本| 直男gayav资源| 高清日韩中文字幕在线| 免费人成在线观看视频色| 欧美少妇被猛烈插入视频| 国产精品不卡视频一区二区| 一区二区三区四区激情视频| 99精国产麻豆久久婷婷| 亚洲国产色片| 欧美亚洲 丝袜 人妻 在线| 久久99热6这里只有精品| 亚洲天堂av无毛| 成年av动漫网址| 美女国产视频在线观看| 国产探花在线观看一区二区| 噜噜噜噜噜久久久久久91| 欧美+日韩+精品| 国产黄片视频在线免费观看| 在线a可以看的网站| 毛片女人毛片| 男人舔奶头视频| 免费看av在线观看网站| 99久久精品热视频| 亚洲三级黄色毛片| 久久ye,这里只有精品| 国产又色又爽无遮挡免| 日韩强制内射视频| www.av在线官网国产| 午夜亚洲福利在线播放| 国产男女超爽视频在线观看| 男人和女人高潮做爰伦理| 国产永久视频网站| 亚洲精品456在线播放app| 搡女人真爽免费视频火全软件| 极品少妇高潮喷水抽搐| 亚洲欧洲日产国产| 一个人看视频在线观看www免费| 午夜福利视频精品| 身体一侧抽搐| 麻豆精品久久久久久蜜桃| 亚洲精品成人久久久久久| 亚洲精品一区蜜桃| 亚洲内射少妇av| 欧美日本视频| 性插视频无遮挡在线免费观看| 全区人妻精品视频| 少妇 在线观看| 国产 一区精品| 直男gayav资源| 欧美精品国产亚洲| 人人妻人人看人人澡| 久久99热这里只频精品6学生| 波野结衣二区三区在线| 麻豆成人午夜福利视频| 91aial.com中文字幕在线观看| 九九爱精品视频在线观看| 黑人高潮一二区| 看黄色毛片网站| 69人妻影院| 成人亚洲欧美一区二区av| 中文乱码字字幕精品一区二区三区| 午夜福利在线在线| 欧美成人午夜免费资源| 日韩av免费高清视频| 国产伦在线观看视频一区| 嫩草影院入口| 欧美xxⅹ黑人| 建设人人有责人人尽责人人享有的 | 国产黄色免费在线视频| 精品99又大又爽又粗少妇毛片| 97超视频在线观看视频| 91精品一卡2卡3卡4卡| 卡戴珊不雅视频在线播放| 欧美日韩一区二区视频在线观看视频在线 | 国产淫语在线视频| 观看美女的网站| 欧美区成人在线视频| 乱系列少妇在线播放| 亚洲国产成人一精品久久久| 久久99蜜桃精品久久| 免费黄网站久久成人精品| 97超视频在线观看视频| 在线播放无遮挡| 一个人观看的视频www高清免费观看| 色综合色国产| 一区二区三区乱码不卡18| 中文天堂在线官网| 如何舔出高潮| 777米奇影视久久| 中国美白少妇内射xxxbb| av卡一久久| 国产高潮美女av| 欧美3d第一页| 免费不卡的大黄色大毛片视频在线观看| 看黄色毛片网站| 丝袜美腿在线中文| 我的老师免费观看完整版| 成人鲁丝片一二三区免费| 国产精品久久久久久精品电影| 美女被艹到高潮喷水动态| 最近中文字幕高清免费大全6| 全区人妻精品视频| 国产视频内射| 99久久中文字幕三级久久日本| 看黄色毛片网站| 男男h啪啪无遮挡| 亚洲av欧美aⅴ国产| 欧美 日韩 精品 国产| 亚洲自偷自拍三级| 精品少妇黑人巨大在线播放| 日本一二三区视频观看| 久久99蜜桃精品久久| 新久久久久国产一级毛片| 91久久精品国产一区二区三区| 白带黄色成豆腐渣| 在线免费十八禁| 日韩中字成人| 欧美潮喷喷水| 国产免费视频播放在线视频| av网站免费在线观看视频| 亚洲av不卡在线观看| 国产成人精品婷婷| www.av在线官网国产| 成年人午夜在线观看视频| 日本午夜av视频| 国产色婷婷99| 国精品久久久久久国模美| 成人毛片60女人毛片免费| 免费看av在线观看网站| 国产精品人妻久久久影院| 欧美激情国产日韩精品一区| 国内精品宾馆在线| 精华霜和精华液先用哪个| 中文字幕亚洲精品专区| 午夜激情久久久久久久| www.av在线官网国产| 亚洲欧美中文字幕日韩二区| 视频区图区小说| 精品久久久久久久人妻蜜臀av| 国产成人a∨麻豆精品| 日韩一本色道免费dvd| 久久精品国产亚洲av天美| 成人特级av手机在线观看| 欧美最新免费一区二区三区| 亚洲人与动物交配视频| www.色视频.com| 欧美老熟妇乱子伦牲交| 一本久久精品| 精品人妻视频免费看| 黄色欧美视频在线观看| 免费观看无遮挡的男女| 日韩av不卡免费在线播放| 熟妇人妻不卡中文字幕| 综合色av麻豆| 国产有黄有色有爽视频| 国产精品伦人一区二区| 一边亲一边摸免费视频| 一个人看的www免费观看视频| 99热6这里只有精品| 一级毛片 在线播放| 亚洲,欧美,日韩| 久久久色成人| 在线观看一区二区三区| 国产精品国产av在线观看| 丰满少妇做爰视频| 免费看a级黄色片| 观看免费一级毛片| 校园人妻丝袜中文字幕| 91久久精品电影网| 丝瓜视频免费看黄片| 舔av片在线| 欧美xxⅹ黑人| 中文字幕免费在线视频6| 精品一区在线观看国产| 欧美日韩一区二区视频在线观看视频在线 | 日韩一区二区视频免费看| 亚洲高清免费不卡视频| 自拍偷自拍亚洲精品老妇| 一级爰片在线观看| 国产成人免费无遮挡视频| 亚洲av国产av综合av卡| 国产精品麻豆人妻色哟哟久久| 最近中文字幕高清免费大全6| 男的添女的下面高潮视频| 亚洲精品一区蜜桃| 欧美日韩视频高清一区二区三区二| 国产免费一级a男人的天堂| 九九爱精品视频在线观看| 我要看日韩黄色一级片| 永久网站在线| 中文字幕亚洲精品专区| 国产视频首页在线观看| 国产午夜福利久久久久久| 欧美成人精品欧美一级黄| 有码 亚洲区| 九九在线视频观看精品| 男人狂女人下面高潮的视频| 亚洲欧洲日产国产| 国产熟女欧美一区二区| 极品教师在线视频| 精品一区在线观看国产| 日本-黄色视频高清免费观看| 精品99又大又爽又粗少妇毛片| 久久久精品欧美日韩精品| 免费观看av网站的网址| 在线亚洲精品国产二区图片欧美 | 免费av不卡在线播放| 久久99热6这里只有精品| 一边亲一边摸免费视频| 色网站视频免费| 极品教师在线视频| 日韩强制内射视频| 日本黄大片高清| 直男gayav资源| 亚洲精品久久午夜乱码| 午夜日本视频在线| 午夜精品一区二区三区免费看|