• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    電催化氮集成二氧化碳還原反應(yīng)合成有機氮化合物

    2024-08-26 00:00:00孔燕危偉徐樂凱陳晨
    物理化學(xué)學(xué)報 2024年8期
    關(guān)鍵詞:電催化

    摘要:以化石能源如煤、石油和天然氣為主要能源的社會發(fā)展模式,不僅導(dǎo)致不可再生資源枯竭,還引發(fā)大氣中CO2濃度持續(xù)上升的問題。隨著人們對能源結(jié)構(gòu)認(rèn)識的深化和生態(tài)環(huán)境保護意識的增強,尋求有效的清潔CO2固定和轉(zhuǎn)化技術(shù)已成為研究熱點。這些技術(shù)可利用太陽能、風(fēng)能、潮汐能和地?zé)崮艿瓤稍偕茉?,促進人工碳循環(huán)、碳儲存,并緩解環(huán)境惡化。在眾多CO2固定和催化轉(zhuǎn)化技術(shù)中,常溫常壓下的CO2還原技術(shù)受到可再生能源的驅(qū)動,有助于人工碳循環(huán)、碳儲存,減輕環(huán)境退化。目前,水溶液中的電催化CO2還原研究已取得顯著進展,但在制造其他重要的有機小分子,如尿素、酰胺、胺及其衍生物,甚至氨基酸方面,仍有未開發(fā)的潛力。這些產(chǎn)品在肥料、化學(xué)品合成、醫(yī)藥化學(xué)和航空工業(yè)等領(lǐng)域有廣泛應(yīng)用,引起了廣泛研究興趣。通過氮集成的電催化CO2還原反應(yīng)制造有機氮化合物,能顯著提高CO2電還原技術(shù)的實際應(yīng)用價值,同時也為生物小分子的起源提供參考,因此具有重要意義。然而,該過程涉及CO2和含氮無機物的電化學(xué)耦合,包含多步電子和質(zhì)子轉(zhuǎn)移過程,因此面臨著緩慢的動力學(xué)和復(fù)雜的反應(yīng)機制。在本綜述中,我們詳細(xì)討論了氮集成電催化CO2還原生成不同產(chǎn)物的具體反應(yīng)路徑和合理的催化劑設(shè)計策略,這對于指導(dǎo)高效電催化劑的設(shè)計至關(guān)重要。盡管已經(jīng)通過一系列策略取得了一定的研究進展,但仍然存在一些需要解決的挑戰(zhàn),這限制了它們在大規(guī)模實際應(yīng)用中的發(fā)展。最后,我們對該領(lǐng)域的發(fā)展限制和改進的可能方向進行了討論,希望這能有助于氮集成電催化CO2還原反應(yīng)催化劑的進一步發(fā)展。

    關(guān)鍵詞:CO2還原反應(yīng);含氮化合物;有機氮化合物;電催化;C-N偶聯(lián)

    中圖分類號:O643

    Abstract: The social development model relying on coal, oil, natural gas,and other fossil fuels as the primary energy sources has not only hastenedthe depletion of non-renewable resources but also led to a continuousincrease in atmospheric CO2 concentration. As human society’sunderstanding of energy structures deepens and environmentalconsciousness grows, the pursuit of effective clean CO2 capture andcatalytic conversion technologies has become a research priority. This isessential for promoting adjustments to the energy mix and achieving globalcarbon neutrality through artificial carbon cycling. Among the various CO2capture and catalytic conversion technologies, electrochemical catalyticCO2 reduction (CO2RR) at ambient temperature and pressure holdspromise for advancing artificial carbon cycling, carbon storage, and mitigating environmental degradation. This technologycan be driven by intermittent renewable energy sources such as solar energy, wind energy, tidal power, geothermal energy,etc. Furthermore, using water as a clean proton source, a wide array of chemicals can be synthesized. While recent studieshave made significant progress in CO2RR within aqueous solutions, there remains untapped potential in generating otherimportant small organic molecules like urea, amides, amines, derivatives, and even amino acids. These compounds areof great interest due to their widespread applications in fertilizers, chemical synthesis, pharmaceuticals, and the aerospaceindustry. The electrocatalytic synthesis of organonitrogen compounds through N-integrated CO2RR (NCR) is consideredcrucial for improving the practical applications and offering a reference for biological small molecules. However, NCRinvolves multi-step electron and proton transfer processes, leading to current challenges, including slow kinetics and acomplex reaction mechanism. In this review, we delve into the detailed reaction pathways and the rational design ofcatalysts for different NCR products, which are vital for developing highly efficient electrocatalysts. Although some progresshas been made through various strategies, there are still challenges to overcome, limiting their large-scale practicalapplications. The discussion concludes by addressing these existing limitations and outlining potential avenues for futureimprovements. We hope that this feature article will be instrumental in the development of novel electrocatalysts for NCR.

    Key Words: CO2 reduction reaction; Nitrogenous species; Organonitrogen compound; Electrocatalysis;C-N coupling

    1 Introduction

    The societal development model reliant on coal, oil, naturalgas, and other fossil fuels as its primary energy sources has notonly accelerated the depletion of non-renewable resources butalso led to a continuous surge in atmospheric CO2 concentration.This substantial CO2 emission has disrupted the carbon cyclewithin the ecosystem and caused a range of severeenvironmental issues, including the greenhouse effect, glacierand permafrost melting, and seawater acidification 1,2. As humansociety’s understanding of energy structures deepens andenvironmental awareness grows, the quest for effective andclean CO2 capture and catalytic conversion technology hasbecome a research priority. The goal is to promote adjustmentsto the energy mix and achieve global carbon neutrality throughartificial carbon cycling 3,4. Among the numerous CO2 captureand catalytic conversion technologies, electrochemical catalyticCO2 reduction (CO2RR) at ambient temperature and pressureholds promise for advancing artificial carbon cycling, carbonstorage, and mitigating environmental degradation. Thistechnology can be powered by intermittent renewable energysources such as solar energy, wind energy, tidal power,geothermal energy, etc. 5. Furthermore, water serves as a cleansource of protons, enabling the synthesis of various chemicals.In recent years, thanks to the relentless efforts of advancedscientific researchers, the development of CO2RR in aqueoussolutions has made significant strides and achieved fruitfulresults 6,7. However, the research is still in its early stages, withCO2RR primarily yielding products such as CO, HCOOH, CH4,C2H4, C2H5OH, and so on 8,9. Electrochemical CO2RR shouldn’tbe limited to just C, H, and O atoms; many other crucial smallcarbon-containing organic molecules used in the chemicalindustry can also be produced via electrochemical CO2RR, suchas urea, amides, amines, and even amino acids 10. Therefore,integrating bond-forming reactions involving N atoms intoelectrocatalytic CO2RR (NCR) to produce organonitrogencompounds is desirable. These target compounds are ofsignificant interest due to their widespread applications infertilizers, chemical synthesis, pharmaceutical chemistry, andthe aerospace industry (Fig. 1) 11,12. Thus, converting CO2 intohigher-value products to promote the industrialization of CO2RRis a critical consideration.

    To synthesize organonitrogen compounds using mild andenvironmentally friendly technology, electrochemical synthesismethods have been developed. These methods utilize CO2 andN2, NO3?, NO2?, or NH3 as the carbon and nitrogen sources,respectively 13. However, this approach involves a multi-stepprocess of electron and proton transfer, posing challenges due toslow dynamics and a complex reaction mechanism. For instance,moderate *CO adsorption promotes the C-N coupling process,while less *CO adsorption leads to the desorption of gaseousbyproduct CO. Strengthening *CO adsorption increases theprotonation process for CH4 formation, and even adsorption sitepoisoning can result in H―H bond coupling formation of byproductsH2 14,15. Therefore, achieving specific product preparation with high selectivity involves optimizing theregulation of specific adsorption species. Current research in thisfield is still at a relatively early stage. In CO2RR, C-C couplingis usually accompanied by a significant reduction ofintermediates 16–18. When N-containing compounds areintroduced, the N-intermediates involved in the C-N couplingare often nucleophilic, making them prone to attack the partiallypositively charged *C = O. On one hand, this makes itchallenging to retain carboxyl groups in the product structure,and on the other hand, it makes carboxyl groups that may formsusceptible to attack and conversion into amides by Ncontainingintermediates 19,20.

    2 Reaction mechanisms of NCR

    C-N coupling reaction was a chemical reaction in which Catom and N atom form a stable covalent bond. The process wascritically important in life as the underpinning for the productionof many essential biomolecules such as proteins and nucleicacids 21–24. Understanding and realizing C-N coupling throughcatalytic chemistry is of paramount importance. In this process,CO2 and nitrogenous species undergo a series of cascadereactions: CO2 can be reduced to C-intermediates like *CO,*COOH, *CO2?, and *CCO 25–30, while nitrogenous species can be reduced to N-intermediates like NN, *NH2, and *NO2. Theseintermediates then react to ultimately form a C―N bond 31–34.

    However, the specific reaction pathways and mechanisms ofC-N coupling are highly complex, resulting in multiple potentialroutes for synthesizing urea alone. In theory, a wide range ofproducts can be generated from C-N coupling, includingimportant chemicals such as amines, urea, nitrogenousheterocyclic compounds, and even vital bioactive substanceslike amino acids and amino alcohols 35–37. This chaptersummarizes the main reaction pathways of electrocatalytic C-Ncoupling based on current research achievements (Fig. 2).

    Due to the variety of nitrogenous species involved in C-Ncoupling reactions with CO2, urea synthesis can proceed throughvarious mechanisms 38. The specific reaction mechanismremains somewhat debated, but it’s established that catalystssignificantly influence the reaction rate and selectivity. Onesuggested mechanism involves the formation of intermediates*CO2NO2 through the coupling reaction between *NO2 and*CO2 species, which is crucial for the electrocatalytic reductionof urea. After protonation of *NO2 in *CO2NO2 to form*CO2NH2, further protonation results in the *COOHNH2intermediate. The subsequent reaction of *COOHNH2spontaneously proceeds thermodynamically, yielding urea 39.Another mechanism proposes that the *OCNO intermediate isalso key to the electrocatalytic reduction of C-N coupling withCO2, with the stable nitrogenous species reduction product *NOpromoting *OCNO to enhance the selectivity of urea production 40.The *NH and *CO species produced through the reduction ofNH3 and CO2 can also couple to form a pivotal intermediate,*NHCO, for urea synthesis 41,42. Additionally, due to thematching of molecular orbitals between *CO and *N2,intermediates are formed through the reaction of *N2 and *CO2,with *CO2 reduced to *CO via proton coupling. The C-Ncoupling of *CO and *N2 can also generate the key intermediate*NCON for urea synthesis 33. Some research suggests thatduring urea synthesis, *COOH plays a critical role. The amineintermediate *NH2 and the carboxyl group intermediate *COOH undergo a coupling reaction process to generate urea 43,44.There’s also a mechanism involving the C-N coupling of theamine intermediate (*NH2), carbonyl intermediate (*CO), andcarboxyl intermediate (*COOH) to produce urea 34. In thispathway, the amine, carbonyl, and carboxyl intermediatesworked together to form a C―N bond, which then lead to theformation of urea. There was increasing literature coverage ofthe electrocatalytic reduction of CO2 for C-N coupling in thesynthesis of urea. The exploration of the mechanism for ureasynthesis has been become increasingly clear due to advancedcharacterization methods.

    Reports on the synthesis of amides via electrocatalytic C-Ncoupling are relatively few, and research on its mechanism isalso limited 44. CO2 is reduced to *CO2 on the catalyst surface,forming an active carbon intermediate. Subsequently, the lonepair electrons of the nitrogen atom in NH3 attack the Cintermediate,leading to the formation of formamide. As shownin Fig. 3, the electro-synthesis process of acetamide is similar tothe formation mechanism of formamide, with CO2 being reducedto *CO2 on the catalyst surface. Two *CO2 molecules thenundergo a coupling reaction, resulting in a *C = C = Ointermediate, which is both the starting material of the reactionand a critical step in amide formation. The lone pair electrons ofthe N atom in NH3 then attack the median carbon in the C2intermediate, forming acetamide. It was important to note that ahighly reduced C2 intermediate was the crucial factor in theselectivity of acetamide because these of the intermediates aspart of the synthetic pathway of acetamide. However, forformamide, a highly reduced C2 intermediate didn’t participatein its synthesis pathway, and therefore the selectivity offormamide didn’t increase to the same extent. Overall, theformation of both formamide and acetamide involved thereduction of CO2 and reaction with NH3, wherein the lone pairelectrons of the N atom in NH3 play a key role 45. The discoveryof these reaction pathways provided foundational understandingto further optimize and improve the synthesis of high selectivitycatalysts.

    Based on recent reports, amines were generated during theelectro-catalytic reduction of CO2 and the reduction reaction ofNO3? 46. CO2 and NO3? were respectively reduced to aldehydecompounds and hydroxylamine intermediates, whichspontaneously condensed to form oxime-aldehyde compounds.Oxime-aldehyde compounds, the key intermediates in carbonnitrogencoupling reactions, were ultimately converted into target amine compounds after a series of reduction reactions.Specifically, for the synthesis of methylamine, formaldehyde(HCHO) and hydroxylamine (NH2OH) intermediates were firstproduced via the electro-catalytic reduction of CO2. Theformaldehyde and hydroxylamine intermediates thenspontaneously condensed, forming an oxime-aldehydecompound. The oxime-aldehyde compound underwent anelectrochemical reduction reaction to produce methylamine(CH3NH2). During this process, hydroxylamine, being the mostreduced intermediate, may serve as N-intermediate for C-Ncoupling 35. For the synthesis of ethylamine, via the integrationof CO2 reduction reaction with NO3?, acetaldehyde (CH3CHO)and hydroxylamine intermediates were produced. Similar to thesynthesis of methylamine, acetaldehyde and hydroxylamineintermediates spontaneously condensed to form an oximealdehydecompound. The oxime-aldehyde compound thenunderwent a series of reduction reactions, includingelectrochemical reduction and autoreduction reactions, toultimately yield ethylamine (CH3CH2NH2) 46. The mainmechanisms for carbon-nitrogen coupling to form aminecompounds included the generation of aldehyde compounds andhydroxylamine intermediates, the spontaneous condensation toform oxime-aldehyde compounds, and a series of reductionreactions leading to the final target amine compounds in Fig. 4.It was worth noting that the current reports on the coupledreactions of CO2 reduction and nitrogenous species reductionwere relatively scarce, and the mechanisms of many couplingswere not clearly elucidated, particularly the reaction steps andintermediates under different nitrogen source conditions, whichremain uncertain. Of course, the electrocatalytic C-N couplingreaction was still a relatively new field, and more experimentsand theoretical explorations were needed to detail themechanism of C-N coupling reactions. There was in urgent needof the development of advanced catalysts with superior C-Ncoupling selectivity and exploration of reaction mechanisms.The study of electrocatalytic C-N coupling still faced difficultiesdue to the lack of in-depth understanding, but it was also filled with new opportunities and challenges. In particular, the directelectrocatalytic synthesis of important value products such asamino acids or amines from CO2 and nitrogenous species maybring a significant challenge that could potentially triggerrevolutionary technological changes in human societydevelopment. Therefore, understanding and designing highlyselective catalysts based on reaction mechanisms was especiallyimportant.

    3 Urea synthesis

    Urea, as a significant fertilizer, provided nutrients for morethan half of the global population. Industrial production of NH3for urea synthesis was commonly achieved through the Haber-Bosch process, with about 80% of the ammonia being used forurea production. This process involved energy-intensivereactions under harsh conditions of high pressure andtemperature, accounting for over 2% of global energyconsumption 47–49. Consequently, exploring the electrochemicalproduction of urea from CO2, which offers relatively mildconditions, has garnered interest. In the electrocatalytic synthesisof urea, two primary factors affected the selectivity and yield ofurea: the adsorption behavior of the carbon and nitrogenousspecies on the catalyst surface, and the concurrent reduction tofacilitate the formation of intermediates necessary for ureasynthesis 50–52. Here, we summarized the material characteristicsthat influence urea synthesis, including active sites, charge,defects, and coordination structures. We believed thatcomparative analysis of these findings will enhance ourunderstanding of C-N coupling, which was crucial for furtheroptimizing the reaction system.

    3.1 Regulation of active sites

    To achieve efficient urea production, limitations of selectiveadsorption and activation of carbon or nitrogen reactants can beovercome by introducing single atom metals into the catalyst,enhancing reaction sites for C-N coupling and its inhibitoryeffects on side reactions 42,53–55. Leverett et al. presented apioneering application of single-atom catalysts in the field ofelectro-synthesis of urea 56. They successfully immobilized Cusingle atoms onto a graphene support through a solutionimpregnation-annealing approach, resulting in a Cu-N-Ccoordination configuration that facilitates efficient reduction ofCO2 and NO3?. The coordination structure of the single-atomcatalyst transformed from Cu-N4 to Cu-N4?x-C with an increasein pyrolysis temperature. The former configuration preferredCO2 reduction, while achieved higher yields. The Cu-N4?x-Csingle-atom catalyst achieved a remarkable FE of 28% for ureaproduction with the yield of 1800 μg?h?1?mg?1 at ?0.9 V vs.reversible hydrogen electrode (RHE). The observation ofpreferential formation of the *COOH intermediate at the Cu-N4site during the electrocatalytic process underlines its crucial roleas the rate-determining step for CO2 reduction and ureasynthesis. Zhang et al. fabricated N-coordinated transition metalatomic sites anchoring on a porous carbon framework via pyrolysis of coordination polymer, and subsequentlysuccessfully synthesized a diatomic catalyst with Fe-Ni pairs atan atomic distance of 0.25 nm (Fig. 5a,b) 57. The separated Fe-N4 and Ni-N4 sites worked synergistically to enhance theadsorption and activation of NO3? and CO2, triggering a plethoraof activated C- and N-species and increasing the possibility ofthese intermediates encountering and coupling to produce thecrucial C ― N bond. In situ synchrotron radiation Fouriertransform infrared (SR-FTIR) tests observed infrared bands at~1978 and ~2170 cm?1, corresponding to the stretching vibrationsof N=O and C=O 58,59, respectively, demonstrating the coactivationbinding of nitrate ions and carbon dioxide on thecatalyst. Furthermore, the prominent infrared band at ~1694cm?1 belongs to *NHCO, which is closely related to ureageneration (Fig. 5c). Subsequently, *NHCO and *NO rapidlycombined to form the key intermediate *NHCONO (Fig. 5d).The urea synthesis performance reached 20.2 mmol?h?1?g?1, witha corresponding Faraday efficiency (FE) of 17.8% under 0.1mol?L?1 KHCO3 electrolyte. Kong et al. loaded different metalsingle atoms onto porous boron nitride materials (M/p-BN),allowing the metal single atoms to form asymmetric active siteswith two adjacent boron atoms 60. Density functional theory(DFT) calculations showed that both Fe/p-BN and Co/p-BNmaterials exhibit excellent catalytic performance. They utilizedthe strong and weak electronic polarization effects to fullyactivate nitrogen molecules, reducing the kinetic barrier for C-Ncoupling and exhibiting good selectivity for the NCON*intermediate.

    The incorporation of Fe-based nanoparticles into the catalyst,resulting in dual active sites, provides an unexpected boost to theproduction of urea. Geng et al. successfully modified crystallineFe3O4 and carbon-coated amorphous Fe (Fe(a)@C) onto carbonnanotube (CNT) carriers through a liquid-phase laser irradiationstrategy 61. By utilizing these two iron-based active componentsas dual active sites, they were able to enhance the adsorption andactivation of NO3? and CO2 in a synergistic manner. The in situFTIR measurements detected the stretching vibrations of the CNbond, confirming the formation of Fe2+-urea complexes throughthe O atom in C=O and the N atom in N―H. Furthermore, DFTcalculations revealed that Fe3O4 promotes the reduction of CO2to the *CO intermediate, while Fe(a)@C was conducive to theformation of the *NH2 intermediate. In 0.1 mol?L?1 KNO3electrolyte, the urea yield of Fe(a)@C-Fe3O4/CNTs was 1341.3± 112.6 μg?h?1?mgcat?1 with a FE of 16.5% ± 6.1% at ?0.65 V.

    Non-metallic electrocatalysts have also attracted considerableattention in the field of electrocatalytic synthesis of urea due totheir high structural adjustability 62. Liu et al. fabricated fluorinedopedcarbon nanotubes (F-CNT) as an electrocatalyst for ureasynthesis (Fig. 5e) 63. The incorporation of F atom, a highlyelectronegative element, introduced positive charges into thecarbon framework. These F-doped materials exhibited inhibitionof the hydrogen evolution reaction and improvedelectroreduction of CO2 and NO?3. DFT calculations indicatedthat the fluorine-doped graphite external layer provided plentiful“C-F2” active sites, which facilitated the formation of reactionintermediates such as *CO and *NH2, thereby promoting C―Ncoupling. The calculated energy of formation for *CONH2 on FCNTand undoped CNT were ?1.32 and ?0.07 eV, respectively(Fig. 5f). At an applied potential of ?0.65 V, the F-CNTelectrocatalyst demonstrated a urea productivity of 6.36mmol?h?1?gcat?1, accompanied by a FE of 18%. The potential useof silicon-infused graphene-analogous carbon nitride (SiC6N6)as an electrocatalyst for urea synthesis was investigated by Royet al. using first-principles estimations 64. The incorporation oftwo Si atoms into the C6N6 framework was found to enhanceCO2 adsorption and its subsequent reduction to CO under acidicconditions. The formed CO species then reacted with activatedN ― N bonds, resulting in the formation of *N(CO)N*.Furthermore, the application of an optimal confining potentialfacilitated the conversion of activated *N2 ― COOH to*N(CO)N*. Urea synthesis exhibited a significantly lowerelectrochemical initiation potential compared to ammoniasynthesis or hydrogen evolution reactions, with a theoretical FEapproaching 100%.

    3.2 Regulation of charge

    The electron transfer facilitated the formation of criticalintermediates, reducing the energy barrier for C-N coupling andenhancing the catalytic performance of urea electro-synthesis.Meng et al. developed a Cu@Zn core-shell nanowire structureby oxidizing a copper mesh anode followed by calcination toobtain cuprous oxide (Fig. 6a) 65. A hydrothermal method wasemployed to grow zinc oxide nanorods on the surface of thecuprous oxide, which was then electrochemically reduced toform the Cu@Zn core-shell structure. By virtue of Cu’s higherwork function (4.63 eV) compared to Zn (4.30 eV), the transferof electrons from zinc to copper reduced the electronconcentration around Zn, thus facilitating the reduction process.Differential electrochemical mass spectrometry, attenuatedFTIR and DFT calculations corroborated the transfer ofelectrons from Zn to Cu, promoting the formation of *NH2 and*CO intermediates (Fig. 6b,c). At ?1.02 V, the Cu@Zn catalyst exhibited urea productivity and FE of 7.29 μmol?cm?2?h?1 and9.28%, respectively. Xiong et al. conducted a study using DFTto explore the catalytic performance of α-borane catalystsmodified with various single metal atoms, such as Ti, Cr, Nb,Mo, and Ta. Their findings revealed a strong correlation betweenthe catalytic activity and the d-band center and charge density ofthe active center atom 66. The generation of *NCON on Nb@α-B was observed as the highest limiting potential reaction step(?1.45 V), involving the formation of *CO and *N2 andsubsequent C ― N bond coupling. On the other hand, theformation of *CO*NH2NH2 with the lowest limiting potential(?0.16 V) occurred through the elementary reaction stepinvolving *CO and *NHNH2 along the *CO pathway. Zhang etal. successfully achieved in situ growth of Co-Ni bimetallicoxides (Co-NiOx@GDY) on the surface of graphdiyne (GDY),harnessing the interface and molecular interactions betweenGDY and metal oxides to facilitate charge transfer 67. Themolecular signals on the catalyst surface were investigated atdifferent potentials using an in situ SR-FTIR, including thecharacteristic stretching vibration of C ≡ C (associated withGDY), CO2 adsorption peak, N―H bonds, C=O stretchingsignal, and O―H, the signals of bending and wagging of N―Hbonds provided evidence for the formation of *NH2intermediates (Fig. 6d). The incorporation of GDY can markedlyenhance the charge transfer within the sample, resulting in asubstantial improvement in conductivity and an increase in thenumber of active sites. The multi-step process involved thecoupling of protons along with the corresponding electrontransfer, leading to the formation of the crucial *NH2intermediate. Co-NiOx@GDY exhibits a urea yield of 913.2μg?h?1?mgcat?1 and 64.3% of FE at ?0.7 V. Yuan et al.successfully synthesized a highly conductive Co-PMDA-2-mbIM (PMDA = pyromellitic dianhydride; 2-mbIM = 2-methylbenzimidazole) MOF catalyst (Fig. 6e), which exhibits a ureayield of 14.47 mmol?h?1?g?1 with a FE of 48.97% at 0.5 V 68. Thecatalyst exhibits host-guest molecular interactions, leading to theconversion of a fraction of high-spin Co3+ ions within the CoO6octahedra to intermediate-spin Co4+ states. Additionally,localized electrophilic and nucleophilic regions are formed.Specifically, N2, rich in electrons, adsorbed onto electrophilic Cosites within the CoO6 octahedra, whereas electron-deficient CO2molecules adsorb onto nucleophilic N sites within the Co-PMDA-2-mbIM framework. This adsorption process generated*N=N* and *CO intermediates. Notably, electrons present inthe σ orbital of *N=N* species can efficiently occupy the egorbitals of high-spin Co3+ ions, effectively facilitating the C-Ncoupling reaction and resulting in the formation of *NCON*urea precursors (Fig. 6f). Yuan et al. successfully synthesized aMott-Schottky heterojunction structure of Bi-BiVO4, whichexhibits a urea yield of 5.91 mmol?h?1?g?1 with a FE of 12.55%at ?0.4 V 34. This structure demonstrated self-driven chargetransfer and the formation of a space charge region. Remarkably,it facilitated the adsorption and activation of CO2 and N2molecules at specific nucleophilic and electrophilic sites 69,while effectively preventing CO poisoning and the formation of*NNH intermediates. Consequently, this mechanism ensured theexothermic coupling between *N=N* intermediates and CO,leading to the formation of *NCON* urea precursors. Liu et al.focused on the Cu(100) crystal surface in a neutral electrolyteand employed molecular dynamics simulations to investigate thefundamental reasons behind C-N coupling 70. The simulationstook into account both the electrode potential and the dynamicnature of the solvent. It was revealed that *NH and *CO arecrucial precursor species for the formation of C―N bonds at lowoverpotentials. However, at high overpotentials, the competingreduction of CO2 narrows the potential range for urea synthesis.Under these conditions, C-N coupling is achieved through theadsorption of *NH and solvated CO species. Yang et al.investigated the theoretical aspects of urea synthesis via C-Ncoupling on the Cu (111) crystal surface 71. The first C―N bondformation during the catalytic process was achieved directlythrough the coupling of CO2 molecules in the gas phase, withoutinvolving any intermediates resulting from CO2 reduction (suchas *COOH and *CO). The reaction followed the Eley-Ridealmechanism and only required a single active site. The relativelysmall deformation energies of CO2 and N1 (the surface-boundnitrogen intermediate) resulted in faster C-N coupling dynamics,and the interaction between the two species was attributed tocharge transfer from N1 to CO2.

    3.3 Regulation of defect

    Defects played a pivotal role in catalysts design, exertingsignificant influences on their catalytic performance andstability. These defects had the ability to modulate the selectivityof catalysts, enabling the selective generation of desired productsunder specific reaction conditions. Additionally, defects caninduce alterations in the diffusion properties of catalysts, leadingto enhanced rates of adsorption and diffusion of reactants on thecatalyst surface, thereby bolstering the overall reaction rate.Consequently, when designing and synthesizing catalysts, it wasimperative to comprehensively consider the impact of defects inorder to achieve catalytic performance that is both moreefficient, stable, and selective.

    In a recent investigation, Liu et al. utilized a one-step chemicalreduction method to facilitate the self-assembly of exposed (111)facet AuCu alloy nanowires into nanofibers in the presence of a4-aminopyridine solution (Fig. 7a) 72. The resulting nanofiberswere then employed for the electroreduction synthesis of ureafrom NO2? and CO2, ultimately yielding a productivity of 3.889mg?h?1?mgcat?1. Remarkably, the nanofibers demonstrated a FEof 24.7% at ?1.55 V, showcasing their ability to promote desiredchemical transformations (Fig. 7b,c). The distinctive onedimensionalstructure exhibited anisotropic characteristics andpossessed a large specific surface area, thereby facilitatingimproved utilization of bimetallic atoms, expediting chargetransfer rates, and preventing the undesirable occurrences ofcatalyst aggregation and dissolution. Furthermore, it wasdetermined that the AuCu nanofibers harbored structural defectssuch as twin boundaries and stacking faults, which serve ascatalytically active sites. Huang et al. conducted a comparativeanalysis of the electrocatalytic rates for urea production using 10different metals 73. Zn emerged as the most efficient catalystamong the tested metals. Subsequently, ZnO nanosheets weresubjected to electrochemical reduction, leading to the formationof Zn nanobelts. These Zn nanobelts were employed as catalystsfor the electrochemical synthesis of urea from NO and CO2. Theelectrochemical reduction process resulted in the disappearanceof the reduction peak in the polarization curve (Fig. 7d). Inaddition, in situ X-ray diffraction (XRD) spectra indicated aprogressive decline in the ZnO diffraction peaks over time, whilethe intensity of the Zn diffraction peaks steadily increased (Fig.7e). Notably, during the electrocatalytic reaction, NO and CO2were separately reduced to *NH2 and *CO intermediates, whichsubsequently underwent coupling reactions to form ureamolecules. The achieved optimum urea production rate wasdetermined to be 15.13 mmol?h?1?g?1, accompanied by FE of11.26%. Krzywda et al. utilized surface-enhanced Ramanspectroscopy and mass spectrometry to reveal the formation ofsoluble active species similar to Cu―C≡N on the Cu electrodesurface during the presence of NO3? and CO2 74. The appearanceof this active species was found to be a key contributing factorto the surface restructuring of Cu. Additionally, Cu-Bi bimetalliccatalysts were designed by Wu et al. to investigate the impact ofdefects on the performance of urea electro synthesis 39,75.

    The study examined two distinct reaction mechanisms termeddistal, wherein protonation occurs at the terminal nitrogen atom,and alternating, where protonation alternates between two Natoms76. It was found that the determining steps varied forcatalysts without defects and those with metal defects in Cu-Bi:in the former case, the determining steps for both distal andalternating mechanisms were identified as *NN + *CO →*NCON* with a barrier energy of 2.63 eV. Conversely, for thelatter case, the determining step for the distal mechanisminvolved *NCON* → NHHCON (barrier energy: 0.78 eV), andfor the alternating mechanism, it involved *NH + *CO →*NCON* (barrier energy: 0.76 eV) (Fig. 7f). In comparison toseveral control samples, the Cu-Bi alloy with defects exhibited amaximum urea concentration of 0.45 ± 0.06 mg?L?1 at ?0.4 V vs.RHE, accompanied by a FE of 8.7% ± 1.7%. Lv et al. havepresented their investigation on the application of hydrogenatedindium hydroxide (In(OH)3) electrocatalyst with exposed {100}crystal facets in the electro synthesis of urea 39. The adsorptionof CO2 onto the catalyst induces an N-type to P-typesemiconductor transition, leading to the formation of a holeenrichedlayer on the catalyst surface, which effectivelysuppresses the hydrogen evolution reaction. The {100} crystalfacets exhibit the lowest energy barrier, thus promoting the C-Ncoupling reaction of *NO2 and *CO2 intermediates. Remarkably,the yield of urea reached 533.1 μg?h?1?mg?1 at ?0.6 V vs. RHE,accompanied by high FE (53.4%). Meanwhile, the impact ofoxygen vacancies on the electro synthesis of urea usinghydroxyindium oxide (InOOH) catalyst was investigated by thesame group 77. Employing a combination of in situ FTIRspectroscopy and theoretical calculations, it was revealed thatthe protonation of *CO2NH2 represents the rate-determining stepin urea synthesis. Furthermore, the presence of O vacancies wasobserved to reconstruct the electronic structure of the activesurface sites, resulting in a reduction of the energy barrier for the*CO2NH2 → *COOHNH2 conversion. Notably, the InOOHcatalyst with O vacancies demonstrated a commendable ureaproduction rate of 592.5 μg?h?1?mgcat?1, accompanied by FE of51%. Wei et al. have successfully improved the catalyticefficiency of cerium dioxide (CeO2) by introducing a significantnumber of oxygen vacancies (VO) on its surface 78, resulting inan impressive urea production rate of 943.6 mg?h?1?g?1.Intermediate *NO can undergo adsorption on oxygen vacanciesand subsequently couple with *CO, forming *OCNOintermediates that effectively avoid the protonation reaction of*NO. In situ and vibrational spectroscopic analyses wereperformed to compare the evolution of intermediates duringelectrocatalytic reactions. The presence of *OCNOintermediates observed on the VO-CeO2 catalyst confirmed thatoxygen vacancy-mediated changes to the reaction pathways canoccur. Conversely, the selectivity for C-N coupling was less inthe absence of oxygen vacancies, and the proton-coupledelectron transfer of *NO continued as the primary reactionmechanism.

    4 Amides synthesis

    Benefiting from the extensive research and application of Cucatalysts for CO2 electroreduction with excellent C2 productselectivity, coupling intermediates of C2 products withintermediates of nitrogen reduction could greatly broaden therange of C-N coupling products, of which amide was greatproduct of high economic value. Li and his co-worker usedcommercially available Cu or CuO particles as electrocatalysts(Fig. 8a,b), using CO2 as the carbon source to generateformamide and acetamide as the main C―N products, with themaximum FE of formamide and acetamide being 0.4% and 10%respectively (at ?0.58 V, corresponding to partial currentdensities of 0.2 and 2.2 mA?cm?2, respectively) 45. Throughinfrared spectroscopy analysis, new vibrational bands related tothe reaction of CO2 and NH3 were observed. Under thecoexistence of CO2 and NH3, positive and negative bands relatedto carbonates and ammonium salts appeared. These spectralfeatures are consistent with the features of *COO and *COOHintermediates observed in previous studies, supporting theformation pathway of formamide and acetamide (Fig. 8c,d).Preliminary mechanistic studies suggested that theelectrochemical synthesis pathways of formamide and formateshare the same initial *CO2 intermediate, which forms productscontaining C―N bonds through nucleophilic attack by NH3,while the authors also studied C-N coupling with NO3? or NO2? asthe nitrogen source instead of NH3 (Fig. 8e,f). Althoughacetamide and formamide were produced, the catalyticselectivity and activity were significantly reduced. Although thiswork did not innovate in materials, it updated the understandingof the utilization of CO2 resources and provided a mechanisticexplanation. The key steps of the reaction were the activation ofthe *CO2 intermediate and the nucleophilic attack by NH3. Bydeveloping catalysts with higher selectivity through thismechanism, synthesis of products with different selectivity maybe achieved, offering innovative avenues for the sustainable useand development of CO2 resources.

    5 Amines synthesis

    Molecular catalysts possessed well-defined active sites andtunable fine structures, allowing performance optimizationbased on the reaction mechanism, but their application inCO2RR was extremely inadequate. Among them, cobaltphthalocyanine (CoPc) was often used as an efficient catalyst forreducing CO2 to CO 79,80.

    However, Wang et al. found that the immobilization of CoPcon carbon nanotubes could firstly convert CO2 to CO through atwo-electron process, and CO was continuously reduced toMeOH through a four-electron-four-proton process, following adomino process (Fig. 9a,b) 81. At present, CoPc was the onlycatalyst other than Cu-based catalysts that achieved synthesis ofMeOH through electrochemical CO2RR with an appreciablecurrent density (Fig. 9c).

    On this basis, their group introduced the nitrogenous species(NO3?) into the CO2RR system and successfully realized thesynthesis of methylamine in aqueous medium in Fig. 9d 35. As shown in Fig. 9e, the average FE (methylamine) was ~12%, andthe catalytic activity could be maintained for more than 16 h at?0.92 V. The whole reaction process involved the 14-electronsand 15-protons transformation process. And the formationprocess of methylamine molecules was an 8-step catalyticcascade process, which was realized by the coupling behavior ofadjacent C-intermediates and N-intermediates on the catalystsurface. The key step in forming C-N coupling is the overflowof hydroxylamine from the NO3? reduction reaction, and thespontaneous and rapid reaction with the formaldehyde from theCO2RR to form formaldoxime, which is further reduced tomethylamine. The condensation reaction had fast kinetics andgreat thermodynamics, as a suitable step for the coupling of twointermediates under ambient conditions. This work provided asuccessful example of sustainable synthesis of alkylamines frominorganic carbon and nitrogen species. Then they exploited thiskey pathway of aldehyde-aldoxime-amine in C-N couplingprocess to synthesize more complex amines.Oxide-derived Cu catalysts were obtained from theelectroreduction of CuO nanoparticle, and they firstly achievedelectrochemical conversion of CO2 and NO3? to ethylamine 46, a20-electron and 21-proton reduction cascade process (Fig. 9f).Although the current FE and yield were far from satisfactory,this provided an excellent reaction pathway to synthesize aminesby NCR, which had great guiding significance for mechanismresearch and product scope expansion.

    6 Conclusion and outlook

    Catalyzing the C-N coupling reaction between the greenhousegas CO2 and nitrogenous species (such as N2, NO3?, NO2?, or NH3)to produce high-value organonitroge compounds (Table 1)through electrochemical processes has expanded the range ofreactants and products within the CO2RR domain. Thisadvancement contributes significantly to the realization ofcarbon and nitrogen recycling, thereby mitigating environmentalpollution 38,82. In this featured article, a comprehensiveexploration of the NCR (Nitrogen-Carbon Reaction) mechanismis undertaken, a critical aspect in the development of efficientelectrocatalysts. Furthermore, the article compiles rationaldesign strategies for catalysts tailored to different productoutcomes, encompassing synthesis and optimizationapproaches. While considerable research progress has beenachieved through the aforementioned strategies, certainchallenges remain, constraining their viability for large-scalepractical applications. The article delves into the currentlimitations and explores potential directions for future enhancements.

    6.1 Robust competing reactions

    Electrocatalytic NCR has primarily been conducted inaqueous solutions, which are susceptible to the competinghydrogen evolution reaction (HER). This leads to lowerutilization of active hydrogen, resulting in reduced FaradaicEfficiency (FE) for the desired product. Additionally, theactivity of C-N coupling has not proven to be as effective whencompared to the self-reduction of C-intermediates and Nintermediates83. Currently, the electroreduction of nitrogenousspecies is not as well-developed as the CO2RR. Many catalystsexhibit low reaction rates and require high overpotentials.Therefore, to enhance the efficiency of the C-N coupling step, itis crucial to match the generation rates of active N-intermediatespecies and C-intermediate species. To address this challenge forvarious reactants with distinct chemical compositions, anintuitive strategy involves optimizing independent active sites toaccommodate diverse reactants 84–86. One site tailored forCO2RR can increase the binding strength and retention rate ofCO2-reducing intermediates on the surface, allowing theseintermediates to remain in place for a sufficient duration toundergo coupling, rather than desorbing as CO or otherbyproducts. The other active site designed for nitrogenousspecies reduction should exhibit ideal adsorption properties forN-intermediate species and guide their nucleophilic addition to*CO. Consequently, the development of dual active-sitecatalysts, with each site independently optimized for CO2 andnitrogenous species reduction, while also facilitating C-Ncoupling by positioning these two active sites in close proximity,has emerged as the most effective strategy.

    6.2 Indistinct NCR mechanism

    Mechanism research plays a pivotal role in guiding futurecatalyst design and shaping the trajectory of reactiondevelopment. It is particularly valuable for kinetic analysis of theC-N coupling step and the self-reduction reaction of the couplingintermediate. The key focus here is on optimizing the bindingstrength between the coupling intermediates and the catalysts,thereby facilitating the chemical coupling required for NCR.This approach offers significant guidance for enhancingcoupling efficiency 34,87. However, the NCR process is intricate,encompassing a multi-step electron-proton transfer process,making it challenging to elucidate a clear reaction mechanism.Hence, the application of advanced in situ characterizationtechniques is necessary to dynamically monitor the actualcatalytic reaction pathways. Techniques such as in situ Ramanspectroscopy and infrared spectroscopy are employed to trackthe transformation of adsorbed species on the catalyst’s surfaceduring NCR. Additionally, in situ electron microscopy and Xrayabsorption spectroscopy (XAS) are utilized to explorechanges in the structure and composition of the catalysts. Bycombining these experimental observations with theoreticalcalculations to simulate the catalytic NCR process, it becomespossible to verify the adsorption and desorption behaviors ofcritical intermediates (such as *COOH and *CO) at the catalyst’sinterface. Moreover, capturing the key intermediates involved inC-N coupling enhances our understanding of the NCR mechanism at a deeper level.

    6.3 Limited product scope

    The approach showcased in this article has successfullyenabled the production of organonitrogen compounds, primarilyencompassing urea, amides, amines, and their derivatives,through the electrocatalytic C-N coupling process in CO2RR.Notably, a small quantity of serine was obtained through theelectroreduction of CO2 and NH3 on the chiral Cu surface 88. Thisdiscovery highlighted the significance of carbonyl structures,such as H2CO-CO*, in the reaction mechanism. The synthesisof amino acids has significantly augmented the practicalapplication potential of CO2RR technology and offered insightsinto the origins of small biological molecules. Consequently, theregulation and equilibrium of adsorption and coupling behaviorsbetween carbon species and nitrogen species on the catalyst’ssurface, as well as the identification of coupling driving forcesand active sites, have proven beneficial for generating a morediverse range of organonitrogen compounds. This expansion ofthe application scope of electrocatalytic CO2RR holds promisefor various applications.

    References

    (1) Mongo, M.; Belaid, F.; Ramdani, B. Environ. Sci. Policy 2021, 118,1. doi: 10.1016/j.envsci.2020.12.004

    (2) Wang, H.; Zhang, R. Sustain. Prod. Consump. 2022, 29, 259.doi: 10.1016/j.spc.2021.10.016

    (3) Li, W.; Yin, Z.; Gao, Z.; Wang, G.; Li, Z.; Wei, F.; Wei, X.; Peng, H.;Hu, X.; Xiao, L.; et al. Nat. Energy 2022, 7, 835.doi: 10.1038/s41560-022-01092-9

    (4) Li, S.; Chen, W.; Dong, X.; Zhu, C.; Chen, A.; Song, Y.; Li, G.; Wei,W.; Sun, Y. Nat. Commun. 2022, 13, 3080.doi: 10.1038/s41467-022-30733-6

    (5) Wang, X.; Jiang, Y.; Mao, K.; Gong, W.; Duan, D.; Ma, J.; Zhong, Y.;Li, J.; Liu, H.; Long, R.; et al. J. Am. Chem. Soc. 2022, 144, 22759.doi: 10.1021/jacs.2c11109

    (6) Ma, W. C.; He, X. Y.; Wang, W.; Xie, S. J.; Zhang, Q. H.; Wang, Y.Chem. Soc. Rev. 2021, 50, 12897. doi: 10.1039/D1CS00535A

    (7) Birdja, Y. Y.; Perez-Gallent, E.; Figueiredo, M. C.; Gottle, A. J.;Calle-Vallejo, F.; Koper, M. T. M. Nat. Energy 2019, 4, 732.doi: 10.1038/s41560-019-0450-y

    (8) Wang, G. X.; Chen, J. X.; Ding, Y. C.; Cai, P. W.; Yi, L. C.; Li, Y.;Tu, C. Y.; Hou, Y; Wen, Z. H.; Dai, L. M. Chem. Soc. Rev. 2021, 50,4993. doi: 10.1039/D0CS00071J

    (9) Pan, F.; Yang, Y. Energy Environ. Sci. 2020, 13, 2275.doi: 10.1039/D0EE00900H

    (10) Ting, L. R. L.; Garcia-Muelas, R.; Martin, A. J.; Veenstra, F. L. P.;Chen, S. T.; Peng, Y.; Per, E. Y. X.; Pablo-Garcia, S.; Lopez, N.;Perez-Ramirez, J.; et al. Angew. Chem. Int. Ed. 2020, 59, 21072.doi: 10.1002/anie.202008289

    (11) Chang, X.; Malkani, A.; Yang, X.; Xu, B. J. Am. Chem. Soc. 2020,142, 2975. doi: 10.1021/jacs.9b11817

    (12) Tang, C.; Zheng, Y.; Jaronec, M.; Qiao, S. Z. Angew. Chem., Int. Ed.2021, 60, 19572. doi: 10.1002/anie.202101522

    (13) Suryanto, B. H. R.; Du, H. L.; Wang, D. B.; Chen, J.; Simonov, A. N.;MacFarlane, D. R. Nat. Catal. 2019, 2, 290.doi: 10.1038/s41929-019-0252-4

    (14) Chen, G.; Yuan, Y. F.; Jiang, H.; Ren, S. Y.; Ding, L. X.; Ma, L.; Wu,T. P.; Lu, J.; Wang, H. H. Nat. Energy 2020, 5, 605.doi: 10.1038/s41560-020-0654-1

    (15) Peter, A. A.; Norskov, J. L. J. Phys. Chem. Lett. 2012, 3, 251.doi: 10.1021/jz201461P

    (16) Ma, W.; Xie, S.; Liu, T.; Fan, Q.; Ye, J.; Sun, F.; Jiang, Z.; Zhang, Q.;Cheng, J.; Wang, Y. Nat. Catal. 2020, 3, 478.doi: 10.1038/s41929-020-0450-0

    (17) Li, L.; Ozden, A.; Guo, S.; de Arquer, F. P. G.; Wang, C.; Zhang, M.;Zhang, J.; Jiang, H.; Wang, W.; Dong, H.; et al. Nat. Commun. 2021,12, 5223. doi: 10.1038/s41467-021-25573-9

    (18) Zheng, T.; Liu, C.; Guo, C.; Zhang, M.; Li, X.; Jiang, Q.; Xue, W.; Li,H.; Li, A.; Pao, C.-W.; et al. Nat. Nanotechnol. 2021, 16, 1386.doi: 10.1038/s41565-021-00974-5

    (19) Jiang, M. M.; Zhu, M. F.; Wang, M. J.; He, Y.; Luo, X. J.; Wu, C. J.;Zhang, L. Y.; Jin, Z. ACS Nano 2023, 17, 3209.doi: 10.1021/acsnano.2c11046

    (20) Li, J. N.; Zhang, Y. X.; Kuruvinashetti, K.; Kornienko, N. Nat. Rev.Chem. 2022, 6, 303. doi: 10.1038/s41570-022-00379-5

    (21) Bogdanov, D.; Ram, M.; Aghahosseini, A; Gulagi, A.; Oyewo A.;Child, M.; Caldera, U.; Sadovskaia, K.; Farfan, J.; Barbosa. L.; et al.Energy 2021, 227, 120467. doi: 10.1016/j.energy.2021.120467

    (22) Lagadec, M. F.; Grimaud, A. Nat. Mater. 2020, 19, 1140.doi: 10.1038/s41563-020-0788-3

    (23) Shin, H.; Hansen, K. U.; Jiao, F. Nat. Sustain. 2021, 4, 911.doi: 10.1038/s41893-021-00739-x

    (24) De Luna, P.; Hahn, C.; Higgins, D.; Jaffer, S.; Jaramillo, T.; SargentE. Science 2019, 364, eaav3506. doi: 10.1126/science.aav3506

    (25) Li, J.; Kornienko, N. Chem. Sci. 2022, 13, 3957.doi: 10.1039/d1sc06590d

    (26) Eller, K.; Henkes, E.; Rossbacher, R.; Hoke, H.Amines, Aliphatic. Ullmann’s Encyclopedia of Industrial Chemistry;Wiley-VCH: Weinheim, Germany; 2000, 2, 647.doi: 10.1002/14356007.a02_001

    (27) Vogt, P. F.; Gerulis, J. Amines, Aromatic. Ullmann's Encyclopedia ofIndustrial Chemistry; Wiley-VCH: Weinheim, Germany; 2000, 2,699. doi: 10.1002/14356007.a02_037

    (28) Rothgery, E. F. Kirk-Othmer Encyclopedia of Chemical TechnologyWiley-VCH, Hoboken, USA; 2004, 13, 562.doi: 10.1002/0471238961.0825041819030809.a01.pub2

    (29) Booth, G. Nitro Compounds, Aromatic, Ullmann’s Encyclopedia ofIndustrial Chemistry; Wiley-VCH, New York, NY, USA; 2000, 24,301. doi: 10.1002/14356007.a17_411

    (30) McIsaac, G. F.; David, M. B.; Gertner, G. Z.; Goolsby, D. A. Nature2001, 414, 166. doi: 10.1038/35102672

    (31) Boyer, E. W.; Alexander, R. B.; Parton, W. J.; Li, C.;Butterbach-Bahl, K.; Donner, S. D.; Skaggs, R. W.; Grosso, S. J. D.Ecol. Appl. 2006, 16, 2123.

    doi: 10.1890/1051-0761(2006)016[2123:MDITAA]2.0.CO;2(32) Kayan, D. B.; Koleli, F. Appl. Catal. B: Environ. 2016, 181, 88.doi: 10.1016/j.apcatb.2015.07.045

    (33) Chen, C.; Zhu, X.; Wen, X.; Zhou, Y.; Zhou, L.; Li, H.; Tao, L.; Li,Q.; Du, S.; Liu, T.; et al. Nat. Chem. 2020, 12, 717.doi: 10.1038/s41557-020-0481-9

    (34) Yuan, M.; Chen, J.; Bai, Y.; Liu, Z.; Zhang, J.; Zhao, T.; Wang, Q.;Li, S.; He, H.; Zhang, G. Angew. Chem. Int. Ed. 2021, 60, 10910.doi: 10.1002/ange.202101275

    (35) Wu, Y.; Jiang, Z.; Lin, Z.; Liang, Y.; Wang, H. Nat. Sustain. 2021, 4,725. doi: 10.1038/s41893-021-00705-7

    (36) Shibata, M.; Yoshida, K.; Furuya, N. J. Electroanal. Chem. 1995,387, 143. doi: 10.1016/0022-0728(95)03992-P

    (37) Xian, J.; Li, S.; Su, H.; Liao, P.; Wang, S.; Zhang, Y.; Yang, W.; Yang,J.; Sun, Y.; Jia, Y.; et al. Angew. Chem. Int. Ed. 2023, 62,e202304007. doi: 10.1002/anie.202304007

    (38) Tao, Z.; Rooney, C. L.; Liang, Y.; Wang, H. J. Am. Chem. Soc. 2021,143, 19630. doi: 10.1021/jacs.1c10714

    (39) Lv, C.; Zhong, L.; Liu, H.; Fang, Z.; Yan, C.; Chen, M.; Kong, Y.;Lee, C.; Liu, D.; Li, S.; et al. Nat. Sustain. 2021, 4, 868.doi: 10.1038/s41893-021-00741-3

    (40) Wei, X.; Wen, X.; Liu, Y.; Chen, C.; Xie, C.; Wang, D.; Qiu, M.; He,N.; Zhou, P.; Chen, W.; et al. J. Am. Chem. Soc. 2022, 144, 11530.doi: 10.1021/jacs.2c03452

    (41) Zhang, X.; Zhu, X.; Bo, S.; Chen, C.; Qiu, M.; Wei, X.; He"N.; Xie,C.; Chen, W.; Zheng, J.; et al. Nat. Commun. 2022, 13, 5337.doi: 10.21203/rs.3.rs-1588933/v1

    (42) Meng, N.; Huang, Y.; Liu, Y.; Yu, Y.; Zhang, B. Cell Rep. Phys. Sci.2021, 2, 100378. doi: 10.1016/j.xcrp.2021.100378

    (43) Guo, C.; Zhou, W.; Lan, X.; Wang, Y.; Li, T.; Han, S.; Yu, Y.; Zhang,B. J. Am. Chem. Soc. 2022, 144,16006. doi: 10.1021/jacs.2c05660

    (44) Jouny, M.; Lv, J. J.; Cheng, T.; Ko, B. H.; Zhu, J. J.; Goddard, W. A.;Jiao, F. Nat. Chem. 2019, 11, 846. doi: 10.1038/s41557-019-0312-z

    (45) Chernyshova, I.; Somasundaran, P.; Ponnurangam, S. Proc. Natl.Acad. Sci. U. S. A., 2018, 115, E9261. doi: 10.1073/pnas.1802256115

    (46) Tao, Z. X.; Wu, Y. S.; Wu, Z. S.; Shang, B.; Rooney, B.; Wang, H. L.J. Energy Chem. 2022, 65, 367. doi: 10.1016/j.jechem.2021.06.007

    (47) Kyriakou, V.; Garagounis, I.; Vourros, A.; Vasileiou, E.; Stoukides,M. Joule 2020, 4, 142. doi: 10.1016/j.joule.2019.10.006

    (48) Wu, Y.; Chen, C.; Yan, X.; Sun, X.; Zhu, Q.; Li, P.; Li, Y.; Liu, S.;Ma, J.; Huang, Y.; et al. Angew. Chem. Int. Ed. 2021, 60, 20803.doi: 10.1002/anie.202105263

    (49) Martín, A. J.; Shinagawa, T.; Pérez-Ramírez, J. Chem 2019, 5, 263.doi: 10.1016/j.chempr.2018.10.010

    (50) Smith, C.; Hill, A. K.; Torrente-Murciano, L. Energy Environ. Sci.2020, 13, 331. doi: 10.1039/c9ee02873k

    (51) Peng, J.; Wang, X.; Wang, Z.; Liu, B.; Zhang, P.; Li, X.; Li, N. Chin.J. Struc. Chem. 2022, 41, 2209094.doi: 10.14102/j.cnki.0254-5861.2022-0100

    (52) Wang, J.; Yao, Z.; Hao, L.; Sun, Z. Curr. Opin. Green Sust. 2022, 37,100648. doi: 10.1016/j.cogsc.2022.100648

    (53) Feng, Y.; Yang, H.; Zhang, Y.; Huang, X.; Li, L.; Cheng, T.; Shao, Q.Nano Lett. 2020, 20, 8282. doi: 10.1021/acs.nanolett.0c03400

    (54) Zhu, X.; Zhou, X.; Jing, Y.; Li, Y. Nat. Commun. 2021, 12, 4080.doi: 10.1038/s41467-021-24400-5

    (55) Pan, Y.; Lin, R.; Chen, Y.; Liu, S.; Zhu, W.; Cao, X.; Chen, W.; Wu,K.; Cheong, W.-C.; Wang, Y.; et al. J. Am. Chem. Soc. 2018, 140,4218. doi: 10.1021/jacs.8b00814

    (56) Leverett, J.; Tran-Phu, T.; Yuwono, J, A.; Kumar, P.; Kim, C.; Zhai,Q.; Han, C.; Qu, J.; Cainey, J.; Simonov, A. N.; et al. Adv. EnergyMater. 2022, 12, 2201500. doi: 10.1002/aenm.202201500

    (57) Zhang, X.; Zhu, X.; Bo, S.; Chen, C.; Qiu, M.; Wei, X.; He, N.; Chen,W.; Zheng, J.; Chen, P.; et al. Nat. Commun. 2022, 13, 5337.doi: 10.1038/s41467-022-33066-6

    (58) Hadjiivanov, K.; Ivanova, E.; Daturi, M.; Saussey, J.; Lavalley, J. C.Chem. Phys. Lett. 2003, 370, 712.doi: 10.1016/s0009-2614(03)00173-8

    (59) Fan, L.; Luo, C.; Li, X.; Lu, F.; Qiu, H.; Sun, M. J. Hazard. Mater.2012, 215, 272. doi: 10.1016/j.jhazmat.2012.02.068

    (60) Kong, L.; Jiao, D.; Wang, Z.; Liu, Y.; Shang, Y.; Yin, L.; Cai, Q.;Zhao, J. Chem. Eng. J. 2023, 451, 138885.doi: 10.1016/j.cej.2022.138885

    (61) Geng, J.; Ji. S.; Jin, M.; Zhang, C.; Xu, M.; Wang, G.; Liang, C.;Zhang, H. Angew. Chem. Int. Ed. 2022, 62, e202210958.doi: 10.1002/anie.202210958

    (62) Hu, C.; Dai, L. Adv. Mater. 2019, 31, 1804672.doi: 10.1002/adma.201804672

    (63) Liu, X.; Kumar, P.; Chen, Q.; Zhao, L.; Ye, F.; Ma, X.; Liu, D.; Chen,X.; Dai, L.; Hu, C. Appl. Catal. B. Environ. 2022, 316, 121618.doi: 10.1016/j.apcatb.2022.121618

    (64) Roy, P.; Pramanik, A.; Sarkar, P. J. Phys. Chem. Lett. 2021, 12,10837. doi: 10.1021/acs.jpclett.1c03242

    (65) Meng, N.; Ma, X.; Wang, C.; Wang, Y.; Yang, R.; Shao, J.; Huang, Y.;Xu, Y.; Zhang, B.; Yu, Y. ACS Nano 2022, 16, 9095.doi: 10.1021/acsnano.2c01177

    (66) Xiong, Z.; Xiao, Y.; Shen, C. Chem. Mater. 2022, 34, 9402.doi: 10.1021/acs.chemmater.2c01572

    (67) Zhang, D.; Xue, Y.; Zheng, X.; Zhang, C.; Li, Y. Natl. Sci. Rev. 2023,10, nwac209. doi: 10.1093/nsr/nwac209

    (68) Yuan, M.; Chen, J.; Zhang, H.; Li, Q.; Zhou, L.; Yang, C.; Liu, R.;Liu, Z.; Zhang, S.; Zhang, G. Energy. Environ. Sci. 2022, 15, 2084.doi: 10.1039/d1ee03918k

    (69) Zhao, D.; Yu, K.; Song, P.; Feng, W.; Hu, B.; Cheong, W.-C.;Zhuang, Z.; Liu, S.; Sun, K.; et al. Energy Environ. Sci. 2022, 15,3795. doi: 10.1039/D2EE00878E

    (70) Liu, X.; Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Nat. Commun.2022, 13, 5471. doi: 10.1038/s41467-022-33258-0

    (71) Yang, G.; Hsieh, C.; Ho, Y.; Kuo, T.; Kwon, Y.; Lu, Q.; Cheng, M.ACS Catal. 2022, 12, 11494. doi: 10.1021/acscatal.2c02346

    (72) Liu, S.; Yin, S.; Wang, Z.; Xu, Y.; Li, X.; Wang, L.; Wang, H. CellRep. Phys. Sci. 2022, 3: 100869. doi: 10.1016/j.xcrp.2022.100869

    (73) Huang, Y.; Yang, R.; Wang, C.; Meng, N.; Shi, Y.; Yu, Y.; Zhang, B.ACS Energy Lett. 2022, 7, 284. doi: 10.1021/acsenergylett.1c02471

    (74) Krzywda, P.; Paradelo Rodríguez A.; Benes, N.; Mei, B.; Mul, G.Appl. Catal. B Environ. 2022, 316, 121512.doi: 10.1016/j.apcatb.2022.121512

    (75) Wu, W.; Yang, Y.; Wang, Y.; Lu, T.; Dong, Q.; Zhao, J.; Niu, J.; Liu,Q.; Hao, Z.; Song, S. Chem. Catal. 2022, 2, 3225.doi: 10.1016/j.checat.2022.09.012

    (76) Zhang, Y.; Jiao, L.; Yang, W.; Xie, C.; Jiang, H.-L. Angew. Chem. Int.Ed. 2021, 60, 7607. doi: 10.1002/anie.202016219

    (77) Yuan, M.; Zhang, H.; Xu, Y.; Liu, R.; Wang, R.; Zhao, T.; Zhang, J.;Liu, Z.; He, H.; Yang, C.; Zhang, S.; Zhang, G. Chem Catal. 2022, 2,309. doi: 10.1016/j.checat.2021.11.009

    (78) Yang, S.; Zhang, W.; Pan, G.; Chen, J.; Deng, J.; Chen, K.; Xie, X.;Han, D.; Dai, M.; Niu, L. Angew. Chem. Int. Ed. 2023, 62,e202312076. doi: 10.1002/anie.202312076

    (79) Yang, C. H.; Gao, Z. Q.; Wang, D. J.; Li, S. Y.; Li, J. J.; Zhu, Y. T.;Wang, H. Q.; Yang, W. J.; Gao, X. J.; Zhang, Z. C.; et al. Sci. ChinaMater. 2022, 65, 155. doi: 10.1007/s40843-021-1749-5

    (80) Wang, R.; Wang, X. Y.; Weng, W. J.; Yao, Y.; Kidkhunthod, P.; Wang,C. C.; Hou, Y.; Guo, J. Angew. Chem. Int. Ed. 2021, 61, e202115503.doi: 10.1002/anie.202115503

    (81) Wu, Y. S.; Jiang, Z.; Lu, X.; Liang, Y. Y.; Wang, H. L. Nature 2019,575, 639. doi: 10.1038/s41586-019-1760-8

    (82) Chen, C.; He, N. H.; Wang, S. Y. Small Sci. 2021, 1, 2100070.doi: 10.1002/smsc.202100070

    (83) Cao, N.; Quan, Y. L.; Guan, A. X.; Yang, C.; Ji, Y. L.; Zheng, G. F.J. Colloid Interface Sci. 2020, 577, 109.doi: 10.1016/j.jcis.2020.05.014

    (84) Li, Y.; Chen, C.; Cao, R.; Pan, Z.; He, H.; Zhou, K. Appl. Catal. B2020, 268, 118747. doi: 10.1016/j.apcatb.2020.118747

    (85) Jiao, J.; Lin, R.; Liu, S.; Cheong, W.-C.; Zhang, C.; Chen, Z.; Pan, Y.;Tang, J.; Wu, K.; Hung, S.-F.; et al. Nat. Chem. 2019, 11, 222.doi: 10.1038/s41557-018-0201-x

    (86) Jiang, K.; Siahrostami, S.; Zheng, T.; Hu, Y.; Hwang, S.; Stavitski, E.;Peng, Y.; Dynes, J.; Gangisetty, M.; Su, D.; et al. Energy Environ. Sci.2018, 11, 893. doi: 10.1039/C7EE03245E

    (87) Yuan, M. L.; Chen, J. W.; Bai, Y. L.; Liu, Z. J.; Zhang, J. X.; Zhao, T.K.; Shi, Q. N.; Li, S. W.; Wang, X.; Zhang, G. J. Chem. Sci. 2021, 12,6048. doi: 10.1039/D1SC01467F

    (88) Fang, Y. X.; Liu, X.; Liu, Z. P.; Han, L.; Ai, J.; Zhao, G.; Terasaki, O.;Cui, C. H.; Yang, J. Z.; Liu, C. Y.; et al. Chem 2023, 9, 460.doi: 10.1016/j.chempr.2022.10.017

    國家重點研發(fā)計劃(2021YFF0500503), 國家自然科學(xué)基金(21925202、21872076), 氣候變化和碳中和國際聯(lián)合行動項目資助

    猜你喜歡
    電催化
    熔融鹽法制備Mo2CTx MXene及其電催化析氫性能
    大化所開發(fā)CO2電催化制單原子合金催化劑
    Pd-Ag合金納米線的可見光輔助簡易合成及其對乙醇的電催化氧化
    Ti基IrO2+Ta2O5梯度化涂層電極的制備及其電催化性能
    微波輻照快速合成Pd/石墨烯納米復(fù)合材料及其對甲醇氧化的電催化性能
    電催化氧化法處理抗生素制藥廢水的實驗研究
    填充床電極反應(yīng)器在不同電解質(zhì)中有機物電催化氧化的電容特性
    電催化氧化技術(shù)深度處理染料廢水研究
    非負(fù)載Pt納米顆粒催化劑的電催化氧還原性能研究
    雙犧牲模板法制備一維管狀Pt-Mn3O4-C復(fù)合物及其優(yōu)越的甲醇電催化氧化性能
    少妇的逼水好多| 一进一出抽搐gif免费好疼| 桃红色精品国产亚洲av| 精品久久久久久久久亚洲 | 日韩欧美国产一区二区入口| 日本在线视频免费播放| 久久亚洲真实| 欧美日本亚洲视频在线播放| av黄色大香蕉| 十八禁人妻一区二区| 国产野战对白在线观看| 国产在视频线在精品| 亚洲七黄色美女视频| 91字幕亚洲| 国产综合懂色| 搡老妇女老女人老熟妇| 国产一区二区在线观看日韩| 午夜视频国产福利| 亚洲七黄色美女视频| 91久久精品电影网| 免费av观看视频| 国产中年淑女户外野战色| 最近视频中文字幕2019在线8| 国产高潮美女av| 午夜激情欧美在线| 美女xxoo啪啪120秒动态图 | 永久网站在线| 免费一级毛片在线播放高清视频| 欧美xxxx性猛交bbbb| 在线观看美女被高潮喷水网站 | 淫妇啪啪啪对白视频| 美女cb高潮喷水在线观看| 在线免费观看的www视频| 日本五十路高清| 欧美最新免费一区二区三区 | 一级作爱视频免费观看| 免费电影在线观看免费观看| 免费av不卡在线播放| 免费人成在线观看视频色| 国产中年淑女户外野战色| 久久久久久国产a免费观看| 日韩精品青青久久久久久| 国产精品不卡视频一区二区 | 国产美女午夜福利| 国产精品日韩av在线免费观看| av天堂在线播放| 欧美最新免费一区二区三区 | 真实男女啪啪啪动态图| 男女之事视频高清在线观看| 丰满的人妻完整版| 人妻夜夜爽99麻豆av| 欧美乱色亚洲激情| 亚洲精品乱码久久久v下载方式| 俄罗斯特黄特色一大片| 窝窝影院91人妻| 噜噜噜噜噜久久久久久91| 天堂√8在线中文| 国产精品不卡视频一区二区 | 精品日产1卡2卡| 毛片一级片免费看久久久久 | 久久香蕉精品热| 人妻丰满熟妇av一区二区三区| 一进一出抽搐动态| 欧美三级亚洲精品| 国内久久婷婷六月综合欲色啪| 免费搜索国产男女视频| av欧美777| 国内精品一区二区在线观看| 中文字幕久久专区| 成年免费大片在线观看| 欧美日韩乱码在线| 国产主播在线观看一区二区| 免费av不卡在线播放| av专区在线播放| 亚洲成a人片在线一区二区| avwww免费| 亚洲精品在线美女| 小说图片视频综合网站| 在线观看免费视频日本深夜| 日本成人三级电影网站| 日韩精品中文字幕看吧| 在线观看舔阴道视频| 麻豆av噜噜一区二区三区| 18美女黄网站色大片免费观看| 国产私拍福利视频在线观看| 亚洲av五月六月丁香网| 级片在线观看| 国产精华一区二区三区| 亚洲精品色激情综合| 韩国av一区二区三区四区| 婷婷丁香在线五月| 俺也久久电影网| 少妇被粗大猛烈的视频| 国内精品美女久久久久久| netflix在线观看网站| 美女高潮的动态| 国产一区二区在线av高清观看| 亚洲自拍偷在线| 午夜视频国产福利| 女人被狂操c到高潮| 日本a在线网址| 国产野战对白在线观看| 白带黄色成豆腐渣| 观看免费一级毛片| 免费在线观看成人毛片| www.www免费av| 少妇的逼好多水| 日韩欧美三级三区| 一a级毛片在线观看| 每晚都被弄得嗷嗷叫到高潮| 亚洲成人免费电影在线观看| 91在线观看av| 脱女人内裤的视频| 久久国产精品人妻蜜桃| 精品日产1卡2卡| 中文字幕精品亚洲无线码一区| 高清毛片免费观看视频网站| 在线观看美女被高潮喷水网站 | 欧美日韩黄片免| 国产v大片淫在线免费观看| 亚洲欧美激情综合另类| 欧美成狂野欧美在线观看| 18禁在线播放成人免费| 色综合站精品国产| 88av欧美| 国产精品一及| 两个人的视频大全免费| 内射极品少妇av片p| 日日摸夜夜添夜夜添小说| 国产视频内射| 一区二区三区免费毛片| 90打野战视频偷拍视频| 一a级毛片在线观看| 不卡一级毛片| 99久国产av精品| 能在线免费观看的黄片| 91久久精品国产一区二区成人| 男女床上黄色一级片免费看| 亚洲精品成人久久久久久| 老鸭窝网址在线观看| 成人av一区二区三区在线看| 激情在线观看视频在线高清| av在线老鸭窝| 一级av片app| 亚洲欧美清纯卡通| 日韩av在线大香蕉| 综合色av麻豆| 国产一区二区在线观看日韩| 小蜜桃在线观看免费完整版高清| 亚洲av不卡在线观看| 欧美激情在线99| 亚洲av电影在线进入| 少妇丰满av| 色在线成人网| 中文字幕av成人在线电影| 日本黄色视频三级网站网址| 国产白丝娇喘喷水9色精品| 色5月婷婷丁香| 99久久精品一区二区三区| 蜜桃久久精品国产亚洲av| 成年女人毛片免费观看观看9| 亚洲人与动物交配视频| 99riav亚洲国产免费| 日本a在线网址| 极品教师在线免费播放| 午夜福利免费观看在线| 丰满乱子伦码专区| 亚洲无线在线观看| 成人特级av手机在线观看| 日本精品一区二区三区蜜桃| 一进一出好大好爽视频| 欧美黄色片欧美黄色片| 男女床上黄色一级片免费看| 久久婷婷人人爽人人干人人爱| 男人舔奶头视频| 丰满的人妻完整版| 欧美性感艳星| 欧美色视频一区免费| 免费黄网站久久成人精品 | 久久人人精品亚洲av| 亚洲精品色激情综合| 性色av乱码一区二区三区2| 男插女下体视频免费在线播放| 色av中文字幕| 午夜免费男女啪啪视频观看 | 日韩亚洲欧美综合| 欧美高清性xxxxhd video| 国产伦精品一区二区三区四那| 国产精品国产高清国产av| 亚洲专区中文字幕在线| 精品一区二区免费观看| 俄罗斯特黄特色一大片| 国产亚洲精品久久久com| 夜夜夜夜夜久久久久| 九色国产91popny在线| 99国产精品一区二区三区| 身体一侧抽搐| 久久这里只有精品中国| 亚洲无线在线观看| 夜夜爽天天搞| 日本黄色片子视频| 怎么达到女性高潮| 757午夜福利合集在线观看| 国语自产精品视频在线第100页| 永久网站在线| 亚洲乱码一区二区免费版| 日韩欧美一区二区三区在线观看| 久久精品综合一区二区三区| 90打野战视频偷拍视频| 精品免费久久久久久久清纯| 国产精华一区二区三区| 国产视频内射| 淫妇啪啪啪对白视频| 国产精品99久久久久久久久| 在线a可以看的网站| ponron亚洲| 欧美午夜高清在线| 国产一区二区三区在线臀色熟女| 青草久久国产| xxxwww97欧美| 丰满人妻熟妇乱又伦精品不卡| 午夜日韩欧美国产| 欧美日韩综合久久久久久 | 成人鲁丝片一二三区免费| 国产在视频线在精品| 人人妻人人看人人澡| av福利片在线观看| 欧美日本亚洲视频在线播放| 国产一区二区激情短视频| 亚洲七黄色美女视频| 一级毛片久久久久久久久女| 中国美女看黄片| 免费看日本二区| 欧美一级a爱片免费观看看| 亚洲无线观看免费| 动漫黄色视频在线观看| 老女人水多毛片| 真人做人爱边吃奶动态| 亚洲av五月六月丁香网| 久久欧美精品欧美久久欧美| 搡女人真爽免费视频火全软件 | 日韩欧美 国产精品| 神马国产精品三级电影在线观看| 国产主播在线观看一区二区| 国产一区二区激情短视频| 国模一区二区三区四区视频| 免费在线观看成人毛片| 国产aⅴ精品一区二区三区波| 好看av亚洲va欧美ⅴa在| 国产老妇女一区| 此物有八面人人有两片| 久久久久久久久久黄片| 我要搜黄色片| 成年人黄色毛片网站| 99热6这里只有精品| 别揉我奶头 嗯啊视频| 亚洲成av人片在线播放无| 午夜福利在线观看免费完整高清在 | 国产精品一区二区免费欧美| 婷婷亚洲欧美| 亚洲精品日韩av片在线观看| 亚洲最大成人av| 国产真实乱freesex| 九色国产91popny在线| 免费av不卡在线播放| 亚洲美女视频黄频| 91在线精品国自产拍蜜月| 色视频www国产| 久久久久久久久中文| 精品不卡国产一区二区三区| 丁香欧美五月| 国产三级黄色录像| 久久午夜亚洲精品久久| 91麻豆av在线| 国产亚洲精品av在线| 全区人妻精品视频| 久久久久久久久大av| 日日干狠狠操夜夜爽| 日本撒尿小便嘘嘘汇集6| 精品国内亚洲2022精品成人| 亚洲电影在线观看av| 免费av毛片视频| 色播亚洲综合网| 国产在视频线在精品| 亚洲av二区三区四区| 久久这里只有精品中国| 国产精品久久视频播放| 国产单亲对白刺激| 国产伦一二天堂av在线观看| 欧美+亚洲+日韩+国产| 床上黄色一级片| 午夜激情欧美在线| 久久久久久久久久成人| 亚洲美女黄片视频| 一级毛片久久久久久久久女| 老司机午夜十八禁免费视频| 亚洲午夜理论影院| 神马国产精品三级电影在线观看| a级毛片a级免费在线| 最新在线观看一区二区三区| netflix在线观看网站| 亚洲精品一区av在线观看| 在线观看美女被高潮喷水网站 | 天堂av国产一区二区熟女人妻| 91久久精品电影网| 久久精品综合一区二区三区| 久久久久性生活片| 韩国av一区二区三区四区| 深夜a级毛片| 精品免费久久久久久久清纯| 成熟少妇高潮喷水视频| 伦理电影大哥的女人| 亚洲成人中文字幕在线播放| 欧美成人性av电影在线观看| 99热这里只有精品一区| 免费无遮挡裸体视频| 久久精品国产自在天天线| 日韩欧美一区二区三区在线观看| 天美传媒精品一区二区| 成人鲁丝片一二三区免费| 国产探花极品一区二区| 美女大奶头视频| 欧美成人性av电影在线观看| 亚洲男人的天堂狠狠| 亚洲av二区三区四区| 国产欧美日韩精品亚洲av| 51国产日韩欧美| 国产午夜精品论理片| 91av网一区二区| 午夜福利在线观看吧| 看免费av毛片| 在线观看av片永久免费下载| 亚洲av电影在线进入| 欧美中文日本在线观看视频| 一个人看视频在线观看www免费| 日韩成人在线观看一区二区三区| 日本a在线网址| 亚洲美女搞黄在线观看 | 在线观看午夜福利视频| 久久草成人影院| 亚洲专区国产一区二区| 久久中文看片网| 国产成人aa在线观看| 久久久久精品国产欧美久久久| 久久99热6这里只有精品| 国产视频内射| 在线看三级毛片| 在线免费观看不下载黄p国产 | 国产精品av视频在线免费观看| 18+在线观看网站| 国产成人a区在线观看| 日韩欧美精品v在线| 中国美女看黄片| 人妻丰满熟妇av一区二区三区| 亚洲美女视频黄频| 级片在线观看| 男女床上黄色一级片免费看| 免费在线观看日本一区| 天堂√8在线中文| 人妻丰满熟妇av一区二区三区| 五月玫瑰六月丁香| av专区在线播放| 精品久久国产蜜桃| 9191精品国产免费久久| 国内毛片毛片毛片毛片毛片| 欧美激情国产日韩精品一区| a级毛片a级免费在线| 国产在线男女| or卡值多少钱| 内射极品少妇av片p| 男女之事视频高清在线观看| 老熟妇乱子伦视频在线观看| 欧美成人一区二区免费高清观看| 亚洲国产高清在线一区二区三| 俺也久久电影网| 日本黄色视频三级网站网址| 国产淫片久久久久久久久 | 欧美xxxx黑人xx丫x性爽| 一级黄色大片毛片| 男人和女人高潮做爰伦理| 亚洲电影在线观看av| 成年人黄色毛片网站| av在线蜜桃| 成人性生交大片免费视频hd| 久久欧美精品欧美久久欧美| 欧美中文日本在线观看视频| av欧美777| 别揉我奶头 嗯啊视频| 一进一出好大好爽视频| 国内精品久久久久精免费| 99在线人妻在线中文字幕| 免费在线观看日本一区| 中文字幕熟女人妻在线| 熟妇人妻久久中文字幕3abv| 69av精品久久久久久| 白带黄色成豆腐渣| 男人的好看免费观看在线视频| 成年女人看的毛片在线观看| 久9热在线精品视频| 精品人妻偷拍中文字幕| 最新在线观看一区二区三区| 色噜噜av男人的天堂激情| 久久伊人香网站| 久久中文看片网| 午夜精品一区二区三区免费看| 亚洲18禁久久av| 美女被艹到高潮喷水动态| 久久久久久大精品| 日本熟妇午夜| 最后的刺客免费高清国语| 亚洲第一区二区三区不卡| 久久久国产成人免费| 嫩草影视91久久| 成年免费大片在线观看| 国内揄拍国产精品人妻在线| 又黄又爽又刺激的免费视频.| 88av欧美| 午夜日韩欧美国产| 日日干狠狠操夜夜爽| 婷婷精品国产亚洲av| 亚洲五月婷婷丁香| 又粗又爽又猛毛片免费看| 桃色一区二区三区在线观看| 欧美bdsm另类| 国产在线精品亚洲第一网站| 国产精品三级大全| 欧美绝顶高潮抽搐喷水| 中国美女看黄片| 国产极品精品免费视频能看的| 一级作爱视频免费观看| 日本与韩国留学比较| 成熟少妇高潮喷水视频| 免费电影在线观看免费观看| 天堂av国产一区二区熟女人妻| 听说在线观看完整版免费高清| 亚洲va日本ⅴa欧美va伊人久久| 一个人观看的视频www高清免费观看| 欧美日韩综合久久久久久 | 免费看日本二区| 搡女人真爽免费视频火全软件 | 亚洲欧美日韩高清专用| 日韩欧美国产一区二区入口| 成熟少妇高潮喷水视频| 久久久久久久久久黄片| 欧美高清成人免费视频www| 69人妻影院| 亚洲经典国产精华液单 | 久久欧美精品欧美久久欧美| 非洲黑人性xxxx精品又粗又长| 亚洲欧美日韩无卡精品| 国产在视频线在精品| 精品午夜福利在线看| av专区在线播放| 亚洲av一区综合| 国产白丝娇喘喷水9色精品| 男插女下体视频免费在线播放| 日韩免费av在线播放| 能在线免费观看的黄片| 美女大奶头视频| 99久久成人亚洲精品观看| 色综合亚洲欧美另类图片| 黄色丝袜av网址大全| 久久人人爽人人爽人人片va | 国产黄a三级三级三级人| 国产熟女xx| 老鸭窝网址在线观看| 身体一侧抽搐| 亚洲一区高清亚洲精品| 免费av毛片视频| 国产欧美日韩精品一区二区| 嫩草影院新地址| 九九在线视频观看精品| 久久久久性生活片| 中文字幕av成人在线电影| 国产精品伦人一区二区| 91麻豆精品激情在线观看国产| 99热精品在线国产| 超碰av人人做人人爽久久| .国产精品久久| 午夜精品久久久久久毛片777| 久久人人精品亚洲av| 国产av一区在线观看免费| 麻豆国产97在线/欧美| 久久精品国产亚洲av涩爱 | 欧美又色又爽又黄视频| 国产精品久久电影中文字幕| 国产国拍精品亚洲av在线观看| 亚洲一区二区三区不卡视频| 一区二区三区免费毛片| 久久精品人妻少妇| 内地一区二区视频在线| 色哟哟·www| 亚洲最大成人中文| 午夜精品在线福利| 日韩成人在线观看一区二区三区| 老女人水多毛片| 久久久精品欧美日韩精品| 国产白丝娇喘喷水9色精品| 欧美乱妇无乱码| 亚洲精品一区av在线观看| 国内久久婷婷六月综合欲色啪| 亚洲精品粉嫩美女一区| 欧美激情久久久久久爽电影| 精品一区二区三区视频在线| 18禁黄网站禁片免费观看直播| 国产色爽女视频免费观看| 听说在线观看完整版免费高清| .国产精品久久| bbb黄色大片| 3wmmmm亚洲av在线观看| 免费人成在线观看视频色| 69人妻影院| 国内精品美女久久久久久| 欧美中文日本在线观看视频| 亚洲精品色激情综合| 国产午夜精品论理片| 最后的刺客免费高清国语| 国产精品久久久久久亚洲av鲁大| 亚洲不卡免费看| 国产一区二区亚洲精品在线观看| 免费无遮挡裸体视频| 久99久视频精品免费| 亚洲精品成人久久久久久| 午夜精品一区二区三区免费看| 日本免费a在线| 久久精品91蜜桃| 欧美3d第一页| 天堂动漫精品| 757午夜福利合集在线观看| 好男人在线观看高清免费视频| 美女大奶头视频| 亚洲在线观看片| 日本a在线网址| 国产精品一区二区性色av| 久久精品国产99精品国产亚洲性色| 欧美黄色片欧美黄色片| 老司机深夜福利视频在线观看| 成年人黄色毛片网站| 成人三级黄色视频| 国产探花在线观看一区二区| 欧美一区二区国产精品久久精品| 婷婷亚洲欧美| 热99re8久久精品国产| 九九久久精品国产亚洲av麻豆| 窝窝影院91人妻| 夜夜爽天天搞| 欧美又色又爽又黄视频| 一本精品99久久精品77| 黄色视频,在线免费观看| 在线天堂最新版资源| 日本黄色片子视频| 天堂动漫精品| 国产精品国产高清国产av| 欧美日韩福利视频一区二区| 草草在线视频免费看| 免费av观看视频| 嫁个100分男人电影在线观看| 日本与韩国留学比较| 亚洲av成人精品一区久久| 成人特级黄色片久久久久久久| 久久99热6这里只有精品| 日韩欧美三级三区| 亚洲va日本ⅴa欧美va伊人久久| 99在线视频只有这里精品首页| eeuss影院久久| 麻豆一二三区av精品| 18美女黄网站色大片免费观看| 亚洲精品一区av在线观看| 亚洲av成人精品一区久久| 欧美成人性av电影在线观看| 精品人妻偷拍中文字幕| 中文字幕人妻熟人妻熟丝袜美| 俄罗斯特黄特色一大片| 国内精品美女久久久久久| 亚洲av电影不卡..在线观看| 99久国产av精品| 亚洲国产欧美人成| 久久国产精品影院| 欧美3d第一页| 99在线人妻在线中文字幕| h日本视频在线播放| 老司机午夜十八禁免费视频| 精品乱码久久久久久99久播| 少妇熟女aⅴ在线视频| 久久久久国内视频| 美女大奶头视频| 国产av麻豆久久久久久久| 18美女黄网站色大片免费观看| 午夜福利18| 成人欧美大片| 午夜老司机福利剧场| 国产精品影院久久| 精品一区二区三区av网在线观看| 国产高清有码在线观看视频| 亚洲精品亚洲一区二区| 又黄又爽又刺激的免费视频.| 一区二区三区四区激情视频 | 日本撒尿小便嘘嘘汇集6| 国产成年人精品一区二区| 老熟妇乱子伦视频在线观看| 在线看三级毛片| 国产欧美日韩精品亚洲av| .国产精品久久| 国产单亲对白刺激| 国产精品日韩av在线免费观看| 在线天堂最新版资源| 亚洲av不卡在线观看| 中文字幕熟女人妻在线| 三级国产精品欧美在线观看| 欧美国产日韩亚洲一区| 一个人免费在线观看电影| 大型黄色视频在线免费观看| 九色国产91popny在线| 免费搜索国产男女视频| 久久人人精品亚洲av|