• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    含Benzo[a]azulene 單元的鋸齒狀梯形共軛聚合物的表面在位合成

    2024-08-26 00:00:00吳名輝MarkusMühlinghaus李雪超徐超婕陳強張海明KlausMüllen遲力峰
    物理化學學報 2024年8期

    摘要:梯形共軛聚合物(CLPs)因其獨特的光電性質而受到廣泛關注。絕大多數CLPs是通過溶液方法合成的,但近年來,在超高真空環(huán)境中進行的表面原位合成策略逐漸嶄露頭角,成為CPL合成的新方法。表面原位合成方法能夠克服傳統(tǒng)溶液合成的限制,如隨著聚合度增加而受限的溶解度和結構穩(wěn)定性,從而實現復雜共軛結構的精確合成。Azulene衍生物是在表面合成非苯型CLPs的有吸引力的前體。與傳統(tǒng)的只含六元環(huán)的CLPs相比,使用烷基取代的azulene作為前體分子,有望獲得具有復雜骨架結構的CLPs,從而調控其電子性質,但目前很少有人探索這種策略。本文報道了3,3'-二溴-2,2’-二甲基-1,1’-聯薁(DBMA)在Au(111)表面上的熱化學反應。在室溫的Au(111)襯底上,我們發(fā)現沉積的分子在重構表面的fcc (面心立方堆積)區(qū)域形成無定型的聚集體,并在100 °C以下保持形貌不變。當退火溫度高于150 °C后,DBMA發(fā)生脫溴反應并與金原子絡合形成具有復雜空間立體結構的2,2’-二甲基-1,1’-聯薁有機金屬聚合物,并展現出迥異的圖像特征。隨后在更高溫度下退火,有機金屬聚合物脫去金屬原子并經歷碳碳偶聯反應。該過程伴隨著甲基與相鄰薁單元之間的分子內環(huán)化反應,形成了含有benzo[a]azulene單元的梯形共軛聚合物。有趣的是,我們發(fā)現當一側甲基參與反應并在聚合物中形成六元環(huán)時,會顯著地彎折聚合物鏈,使得另一側甲基與薁單元之間的距離增加,并抑制預期的環(huán)化過程。我們通過鍵分辨掃描探針顯微鏡對反應過程中的相關結構進行了研究,發(fā)現反應結果與反應中間結構的應力關聯緊密。我們的結果表明,烷基取代的azulene前體可應用于非苯型碳納米結構的表面合成,并有望實現擴展的非苯型二維碳納米結構。

    關鍵詞:表面在位合成;薁;非苯型碳納米結構;梯形共軛聚合物;掃描探針顯微鏡;鍵分辨原子力顯微鏡

    中圖分類號:O649

    Abstract: Conjugated ladder polymers (CLPs) haveattracted broad interest due to their intriguing opticaland electronic properties. While many of these CLPshave been synthesized using solution-basedreactions, on-surface synthesis under high vacuumconditions has gradually gained prominence in recentdecades. This new approach holds promise forovercoming some of the limitations of conventionalsolution-based methods, such as the low solubility and stability of newly formed large π-conjugated systems. Azulenederivatives are attractive precursors for on-surface synthesis of CLPs that incorporate non-benzenoid moieties. The useof alkyl-substituted azulene precursors shows potential in providing CLPs with more complex backbone structures andmodulated electronic properties compared to traditional CLPs that containing solely of six-membered rings. However, thisstrategy has been scarcely explored to date. In this study, we report on the thermal reactions of 3,3’-dibromo-2,2’-dimethyl-1,1’-biazulenyl (DBMA) on Au(111) surfaces. At room temperature, we observed that the deposited molecules formedamorphous aggregates in the fcc (face center cubic) regions of the reconstructed Au(111) surface, remaining unchangedbelow 100 °C. Debromination of DBMA was induced above 150 °C, leading to the formation of 1,1’-biazulenyl-2,2’-dimethyl-3,3’-diyls-Au organometallic polymers. These polymers exhibited complex stereostructures and distinct imaging features.At higher temperatures, the organometallic polymer underwent C―C coupling, followed by dehydrocyclization betweenthe methyl groups and the adjacent azulene units, resulting in the ladder polymer containing benzo[a]azulene units.Interestingly, we observed that the formation of hexagonal rings between the methyl groups and the adjacent azulene unitscaused the polymeric chain to bend, increasing the distance between the corresponding reaction sites (methyl group andazulene) on the other side of the polymer chain. Due to the ring strain, the second ring closure did not occur within theazulene dimer as expected. Instead, this methyl group cyclized toward the other azulene unit, resulting in CLPs with achevron shape and the absence of long-range periodicity. The evolution of related chemical species and the structures ofCLPs were analyzed using scanning tunneling microscopy (STM) and bond-resolved atomic force microscopy (BR-AFM),and the reaction mechanism was discussed. This study thus demonstrates the feasibility of utilizing alkyl-substitutedazulenic precursors in the synthesis of non-benzenoid carbon nanostructures on surfaces and suggests the possibility ofdeveloping two-dimensional nanostructures containing non-benzenoid units through on-surface azulene chemistry.

    Key Words: On-surface synthesis; Azulene; Non-benzenoid carbon nanostructure; Conjugated ladder polymer;Scanning probe microscopy; Bond-resolved atomic force microscopy

    1 Introduction

    Conjugated ladder polymers (CLPs) have attracted broadinterest due to their intriguing optical and electronic properties,including a low bandgap, intense light absorption, and highcharge-carrier mobility. These properties arise from their fullyconjugated, rigid backbone and unique electronic bandstructures 1–4. Potential applications range from field-effecttransistors and organic light-emitting diodes to single molecularelectronic devices 5. While many CLPs have been synthesizedusing solution reactions 6, on-surface synthesis under highvacuum conditions has only gradually gained prominence in therecent decade. This novel approach holds promise forovercoming some of the limitations associated with conventionalsolution-based methods, such as the low solubility and stabilityof newly formed large π-conjugated systems and limited reactiontypes for ring formation through direct C(sp3)―C(sp2) coupling 7–13.Despite successful engineering of on-surface synthesizedcovalent ribbons, the conversion of these 1D chains into 2Dnanoarchitectures remains a rarely reported challenge 14.

    CLPs with various widths and edge geometries have beensynthesized on metal surfaces using rationally designedmolecular precursors 15–19. While most previously reported CLPsare composed of benzene rings, CLPs containing non-benzenoid aromatic moieties have been theoretically investigated for theirsuperior optoelectrical response, charge-carrier transport, andtunable magnetic properties 20–28. Nevertheless, the controlledincorporation of non-benzenoid moieties into the CLP backboneremains a big challenge.

    Azulene is a nonalternant aromatic hydrocarbon composed offused pentagonal and heptagonal carbon rings. Azulenederivatives have attracted considerable attention as precursorsfor on-surface synthesis of non-benzenoid carbonnanostructures 29–32. Fan et al. reported the first on-surfacesynthesis of 2,6-polyazulene, achieved through Ullmanncoupling of 2,6-dibromoazulene as a key step. These azulenepolymers undergo lateral fusion at elevated temperatures,resulting in non-benzenoid carbon nanostructures containingperiodic six-membered rings or four- and seven-memberedrings 30 (Scheme 1a). Subsequently, Hou et al. reported the onsurfacereactions of 3,3’-dibromo-1,1’-biazulenyl (DBDA) onAu(111), yielding curved non-benzenoid carbon nanostructuresdue to the rotational freedom of azulene moieties along thebridging C―C bonds, as well as the rearrangement of azuleneunits at elevated temperatures 31 (Scheme 1b). The precursormolecules in these cases are all halogenated azulenes, and thecarbon nanostructure’s skeleton could only originate from cyclodehydrogenation of the azulene moieties. We anticipatethat by introducing alkyl substituents at appropriate positions ofazulene precursors, cyclization involving new C(sp3)―C(sp2)bonds could yield more complex non-benzenoid CLPs withtunable electronic properties 30.

    In this study, we report the synthesis of CLPs containing nonbenzenoidbenzo[a]azulene moieties on an Au(111) surfaceunder ultrahigh vacuum conditions. To achieve this, we firstsynthesized the monomer 3,3’-dibromo-2,2’-dimethyl-1,1’-biazulenyl (DBMA), featuring two methyl groups on the fivememberedrings, in a solution. After sublimation onto Au(111)surfaces, DBMA underwent debromination at 150 °C, withthe diradical intermediate stabilized by Au atoms, resultingin the formation of 1,1’-biazulenyl-2,2’-dimethyl-3,3’-diyls-Auorganometallic polymers. At higher temperatures, theorganometallic polymer underwent C―C coupling, followed bydehydrocyclization between the methyl groups and the adjacentazulene, leading to the ladder polymer containingbenzo[a]azulene units. Notably, the formation of hexagonalrings between methyl groups and the adjacent azulene bent thepolymeric chain, increasing the distance between thecorresponding reaction sites (methyl group and azulene) on theother side of the polymer chain. Due to the resulting ring strain,the second ring-closure did not occur within the azulene dimeras expected. Instead, this methyl group cyclized toward the otherazulene unit, resulting in CLPs with a chevron shape. Theevolution of related chemical species and the structures of CLPswere analyzed using scanning tunneling microscopy (STM) andbond-resolved atomic force microscopy (BR-AFM) to elucidatethe reaction pathway.

    2 Experimental methods

    2.1 Synthesis of DBMA

    2-Methylazulene (1) was initially synthesized following theliterature procedure, employing readily available startingmaterials 33,34. Subsequently, selective bromination at the 1,3-position was carried out using N-bromosuccinimide, yielding1,3-dibromo-2-methylazulene (2) as a dark blue solid in asatisfactory yield. To synthesize DBMA, we employed aYamamoto coupling reaction with a sub-stoichiometric amountof bis(1,5-cyclooctadiene)nickel (Ni(cod)2). This approach waschosen to suppress the formation of higher oligomers and tomaintain the integrity of the bromo groups for the on-surfacereaction. The utilization of 0.6 equivalents of Ni(cod)2 facilitatedthe formation of DBMA within 1.5 h, yielding a mixturecomprising the target product, unreacted starting material 2, anda small portion of higher oligomers. DBMA was subsequentlyeasily purified through silica gel chromatography. Furtherpurification was achieved by subjecting the compound torecrystallization five times, resulting in a highly pure precursorsuitable for on-surface studies. (Additional details regarding thesynthesis are provided in Scheme 2 and the supplementarymaterials).

    2.2 STM/AFM characterizations

    In this experiment, a low-temperature scanning tunneling microscope (LT-STM) from Scienta Omicron, Germany,operating at a temperature of 4.6 K, was utilized. Theexperimental setup was housed within an ultra-high vacuumchamber with a base pressure of 5 × 10?8 Pa. To prepare thesingle crystal Au(111) substrate, it underwent a cleaning processinvolving argon ion sputtering and subsequent thermal annealingto achieve a flat surface. A K-cell organic molecular beamepitaxy device (OMBE) from Kentax GmbH was employed todeposit DBMA onto the Au(111) surface at room temperature.The sample was then subjected to gradual annealing, includingsteps at 150, 180, 210, 250, and 300 °C, with each temperaturebeing maintained for a duration of 30 min. For bond-resolvedcharacterization, tungsten tips were modified with CO moleculesusing the ramping method as described by Bartel et al. 35.

    3 Results and discussion

    To investigate the on-surface reactions, we initially sublimedthe precursor DBMA onto an Au(111) surface held at roomtemperature. This resulted in the deposition of moleculesforming amorphous aggregations aligned along thereconstruction line on the fcc region (Fig. 1a). An individualDBMA molecule displayed a stereoscopic adsorptionconfiguration on the surface (Fig. 1b,c). Although we couldn’tunequivocally identify the azulene moiety, the observedmolecular size (1.3 ± 0.1 nm in length and 0.9 ± 0.1 nm in width)closely matched the azulene dimer in the reference 31.Furthermore, we verified the presence of unobstructed precursormolecules by detaching a couple of DBMA molecules, as shownin Fig. 1d,e. This observation suggested that the debrominationreaction likely did not occur during the deposition. However, toconfirm this conclusion, further spectroscopic measurements,such as X-ray photoelectron spectroscopy, would be necessary.

    Subsequently, we subjected the sample to stepwise annealingto trace the on-surface reactions of DBMA. At annealingtemperatures below 100 °C, no significant changes wereobserved in the STM images. When the substrate was annealedto 150 °C, we began to observe some straight chains withperiodic protrusions (Fig. 2a). The average distance betweenthese protrusions was measured to be 1.8 ± 0.1 nm (Fig. 2b,c),which aligned well with the estimated size of an Au-mediatedstructure containing a periodicity of 2 nm. Additionally, someshort fragments dispersed on the surface appeared darker thanthe protrusions (Fig. 2d,e). The periodicity of such structureswas determined to be 2.4 ± 0.1 nm in length and 1.2 ± 0.1 nm inwidth, and they were identified as Au-mediated dimers with aflat configuration. As the temperature increased, the Aumediatedpolymeric chains became distorted, and the brightprotrusions in STM images gradually disappeared, as illustratedby the statistics in Fig. 2f. This indicated the planarization ofinitially non-planar structures during annealing.

    At a substrate temperature of 300 °C, the contrast in STMimages became uniform, suggesting complete planarization.Interestingly, within those long but twisted polymeric chains,some periodic structures (as labeled in white circles in Fig. 3a)were observed. The periodicity of these chain structures wasmeasured to be 0.74 ± 0.05 nm in Fig. 3b, corresponding to theperiodicity of the demetallized polymer structure (approximately0.78 nm). Bond-resolved AFM imaging indicated that themethyl group reacted with a neighboring seven-membered ring,forming only one six-membered ring as presented in Fig. 3d(also known as poly-benzo[a]azulene in Scheme 1c).Furthermore, we noticed some bright contrasts near the sevenmemberedring of azulene units (blue circles in Fig. 3c). Giventhat Br atoms are likely to desorb from the surface at thistemperature, the much higher signal intensity might be attributedto the attachment of an individual Au adatom 35. Our AFMsimulation results, as shown in Fig. S1 (Supporting Information),unequivocally demonstrate the image features when an Auadatom is considered around the structure. This bondingpreference indicated the possibility of an unpaired electron atthis specific position when the methyl group participated in the cyclization.

    In addition to the previously mentioned structure, we alsoobserved some defective chain structures (white circles inFig. 3a) that differed from the short-ordered polybenzo[a]azulene. By resolving the atomic arrangement of thesedefects (Fig. 3e and 3f), we could gain further insights into thereaction behavior of DBMA on Au(111). One typical defectresulted from the enantiotropy of DBMA precursors, as shownin Fig. S2. The presence of cis-isomers led to noticeable chaindistortion. Moreover, bond-resolved AFM imaging indicatedthat some defective structures exhibited key features of polynaphtha[ab]azulene, where the methyl group formed two sixmemberedrings, each adjacent to a seven-membered ring (redcircle in Fig. 3g). However, there was apparent chain distortiondue to the built-up strain in this structure. An additional fivememberedring formed because the two adjacent sevenmemberedrings came too close to each other. Conversely, thedistance between two adjacent seven-membered rings expandedtoo much for C―C coupling. We concluded that theunsuccessful evolution of poly-naphtha[ab]azulene from polybenzo[a]azulene was due to such a strain effect (A schematicdescription of the possible process is shown in Scheme 1c).Therefore, we propose that a larger substituent than a methylgroup, such as ethyl or iso-propyl, would be advantageous inrelieving the strain and facilitating ribbon formation usingazulene derivatives.

    4 Conclusions

    An azulene derivative, DBMA, featuring two pre-installedmethyl groups, was synthesized in solution and thoroughlyexamined on Au(111) surface using bond-resolved scanningprobe microscopy. This investigation aimed to explore the onsurfacesynthesis of non-benzenoid CLPs. Short-range orderedpoly-benzo[a]azulene structures were successfully obtained.However, the strategy of methyl substitution did not proveeffective in the transformation from poly-benzo[a]azulene topoly-benzo[ab]azulene. The introduction of additional methylgroups had the advantage of promoting the linear alignment ofthe precursors due to steric hindrance. However, this approachresulted in relatively weak molecule-substrate interactions, as evidenced by the non-planar adsorption of azulene units and theformation of defective arrangements in the resulting products.Furthermore, through the analysis of the defective ribbonstructures, we concluded that the introduction of excessivestrain, which occurs when two fused six-membered rings areformed during the hypothetical twofold dehydrogenation of amethyl group, had an adverse effect. This strain not onlydisrupted the long-range ordering of poly-benzo[a]azulene butalso encouraged unwanted dehydrogenative coupling on oneside while hindering the creation of desired polynaphtha[ab]azulene and the long-range ordering of polybenzo[a]azulene. Moreover, we believe that the organizedazulenic chain polymers may pave the way for the developmentof two-dimensional nanoarchitectures characterized by nonbenzenoidrings.

    Author Contributions: Conceptualization, L.C. and K.M.;Methodology, M.W., M.M. and X.L.; Validation, H.Z.; DataCuration, M.W., M.M., X.L.; Writing – Original DraftPreparation, M.W.; Writing – Review amp; Editing, X.L., C.X.,Q.C. and H.Z.; Visualization, M.W.; Supervision, K.M. andL.C.; Project Administration, L.C.; Funding Acquisition, L.C.

    Supporting Information: available free of charge via the internet at http://www.whxb.pku.edu.cn.

    References

    (1) Grimsdale, A. C.; Müllen, K. Macromol. Rapid Commun. 2007, 28,1676. doi: 10.1002/marc.200700247

    (2) Lee, J.; Kalin, A. J.; Yuan, T. Y.; Al-Hashimi, M.; Fang, L. Chem. Sci.2017, 8, 2503. doi: 10.1039/c7sc00154a

    (3) Scherf, U. J. Mater. Chem. 1999, 9, 1853. doi: 10.1039/a900447e(4) Yu, L. P.; Chen, M.; Dalton, L. R. Chem. Mater. 1990, 2, 649.doi: 10.1021/cm00012a013

    (5) Leng, M.; Fang, L. Processing of Conjugated Ladder Polymers. InLadder Polymers; Xia, Y.; Yamaguchi M.; Luh, T.-Y.; Eds. Wiley-VCH: online edition; 2023; pp. 97–120.doi: 10.1002/9783527833306.ch4

    (6) Lee, J. B. Asian J. Org. Chem. 2023, 12, e202300104.doi: 10.1002/ajoc.202300104

    (7) Li, X.; Niu, K.; Zhang, J.; Yu, X.; Zhang, H.; Wang, Y.; Guo, Q.;Wang, P.; Li, F.; Hao, Z.; et al. Natl. Sci. Rev. 2021, 8, nwab093.doi: 10.1093/nsr/nwab093

    (8) Pawlak, R.; Meyer, E.; Anindya, K. N.; Shimizu, T.; Liu, J. C.;Sakamaki, T.; Shang, R.; Rochefort, A.; Nakamura, E. J. Phys. Chem.C 2022, 126, 19726. doi: 10.1021/acs.jpcc.2c05866

    (9) Sun, K. W.; Ji, P. H.; Zhang, J. J.; Wang, J. X.; Li, X. C.; Xu, X.;Zhang, H. M.; Chi, L. F. Small 2019, 15, 1804526doi: 10.1002/smll.201804526

    (10) Sun, K. W.; Li, X. C.; Chen, L.; Zhang, H. M.; Chi, L. F. J. Phys.Chem. C 2020, 124, 11422. doi: 10.1021/acs.jpcc.0c01272

    (11) Tang, Y. N.; Ejlli, B.; Niu, K. F.; Li, X. C.; Hao, Z. M.; Xu, C. J.;Zhang, H. M.; Rominger, F.; Freudenberg, J.; Bunz, U. H. F.; Müllen,K.; Chi, L. F. Angew. Chem. Int. Ed. 2022, 61, e202204123.doi: 10.1002/anie.202204123

    (12) Yu, X.; Cai, L. L.; Bao, M. L.; Sun, Q.; Ma, H. H.; Yuan, C. X.; Xu,W. Chem. Commun. 2020, 56, 1685. doi: 10.1039/c9cc07421j

    (13) Cai, J.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.;Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X.; Müllen, K.; Fasel,R.; et al. Nature 2010, 466, 470. doi: 10.1038/nature09211

    (14) Fan, Q.; Yan, L.; Tripp, M. W.; Krej?í, O.; Dimosthenous, S.;Kachel, S. R.; Chen, M.; Foster, A. S.; Koert, U.; Liljeroth, P.;Gottfried, J. M. Science 2021, 372, 852.doi: 10.1126/science.abg4509

    (15) de la Torre, B.; Matěj, A.; Sánchez-Grande, A.; Cirera, B.; Mallada,B.; Rodríguez-Sánchez, E.; Santos, J.; Mendieta-Moreno, J. I.;Edalatmanesh, S.; Lauwaet, K.; et al. Nat. Commun. 2020, 11, 4567.doi: 10.1038/s41467-020-18371-2

    (16) Li, D.; Qiu, X.; Li, S.; Ren, Y.; Zhu, Y.; Shu, C.; Hou, X.; Liu, M.;Shi, X.; Qiu, X.; Liu, P. J. Am. Chem. Soc. 2021, 143, 12955.doi: 10.1021/jacs.1c05586

    (17) Di Giovannantonio, M.; Urgel, J. I.; Beser, U.; Yakutovich, A. V.;Wilhelm, J.; Pignedoli, C. A.; Ruffieux, P.; Narita, A.; Müllen, K.;Fasel, R. J. Am. Chem. Soc. 2018, 140, 3532.doi: 10.1021/jacs.8b00587

    (18) Jiménez-Martín, A.; Villalobos, F.; Mallada, B.; Edalatmanesh, S.;Matěj, A.; Cuerva, J. M.; Jelínek, P.; Campa?a, A. G.; La Torre, B.D. Chem. Sci. 2023, 14, 1403. doi: 10.1039/d2sc04722e

    (19) Liu, M.; Liu, M.; She, L.; Zha, Z.; Pan, J.; Li, S.; Li, T.; He, Y.; Cai,Z.; Wang, J.; Zheng, Y.; Qiu, X.; Zhong, D. Nat. Commun. 2017, 8,14924. doi: 10.1038/ncomms14924

    (20) Bravo, S.; Correa, J.; Chico, L.; Pacheco, M. Sci. Rep. 2018, 8,11070. doi: 10.1038/s41598-018-29288-8

    (21) Cervenka, J.; Flipse, C. F. J. Phys. Rev. B 2009, 79, 195429.doi: 10.1103/PhysRevB.79.195429

    (22) Deyerling, J.; Portner, M.; Dordevic, L.; Riss, A.; Bonifazi, D.;Auwarter, W. J. Phys. Chem. C 2022, 126, 8467.doi: 10.1021/acs.jpcc.2c00912

    (23) Mallada, B.; de la Torre, B.; Mendieta-Moreno, J. I.; Nachtigallová,D.; Matěj, A.; Matou?ek, M.; Mutombo, P.; Brabec, J.; Veis, L.;Cadart, T.; et al. J. Am. Chem. Soc. 2021, 143, 14694.doi: 10.1021/jacs.1c06168

    (24) Mishra, S.; Beyer, D.; Berger, R.; Liu, J. Z.; Groning, O.; Urgel, J. I.;Müllen, K.; Ruffieux, P.; Feng, X. L.; Fasel, R. J. Am. Chem. Soc.2020, 142, 1147. doi: 10.1021/jacs.9b09212

    (25) Mishra, S.; Fatayer, S.; Fernandez, S.; Kaiser, K.; Pena, D.; Gross, L.ACS Nano 2022, 16, 3264. doi: 10.1021/acsnano.1c11157

    (26) Peres, N. M. R.; Guinea, F.; Castro Neto, A. H. Phys. Rev. B 2006,73, 125411. doi: 10.1103/PhysRevB.73.125411

    (27) Xin, H. S.; Gao, X. K. ChemPlusChem. 2017, 82, 945.doi: 10.1002/cplu.201700039

    (28) Xin, H. S.; Hou, B.; Gao, X. K. Acc. Chem. Res. 2021, 54, 1737.doi: 10.1021/acs.accounts.0c00893

    (29) Fan, Q.; Martin-Jimenez, D.; Ebeling, D.; Krug, C. K.; Brechmann,L.; Kohlmeyer, C.; Hilt, G.; Hieringer, W.; Schirmeisen, A.;Gottfried, J. M. J. Am. Chem. Soc. 2019, 141, 17713.doi: 10.1021/jacs.9b08060

    (30) Hou, I. C. Y.; Sun, Q.; Eimre, K.; Di Giovannantonio, M.; Urgel, J.I.; Ruffieux, P.; Narita, A.; Fasel, R.; Mullen, K. J. Am. Chem. Soc.2020, 142, 10291. doi: 10.1021/jacs.0c03635

    (31) Zeng, H. N.; Png, Z. M.; Xu, J. Chem. Asian J. 2020, 15, 1904.doi: 10.1002/asia.202000444

    (32) Alder, R. W.; Whiteside, R. W.; Whittaker, G.; Wilshire, C. J. Am.Chem. Soc. 1979, 101, 629. doi: 10.1021/ja00497a024

    (33) Alder, R. W.; Wilshire, C. J. Chem. Soc., Perkin Trans. 1975, 13,1464. doi: 10.1039/p29750001464

    (34) Bartels, L.; Meyer, G.; Rieder, K. H. Phys. Rev. Lett. 1998, 80, 2004.doi: 10.1103/PhysRevLett.80.2004

    (35) Mohn, F.; Repp, J.; Gross, L.; Meyer, G.; Dyer, M. S.; Persson, M.Phys. Rev. Lett. 2010, 105, 266102.doi: 10.1103/PhysRevLett.105.266102

    國家自然科學基金(51821002, 22072103, 22161132026), 蘇州納米科技協(xié)同創(chuàng)新中心, 江蘇省高等學校重點學科建設項目(PAPD), 高等學校學科創(chuàng)新引智計劃(“111”計劃)以及江蘇省卓越博士后計劃資助

    欧美精品啪啪一区二区三区 | 色综合欧美亚洲国产小说| 亚洲国产av影院在线观看| 精品免费久久久久久久清纯 | 亚洲五月婷婷丁香| 母亲3免费完整高清在线观看| 亚洲一码二码三码区别大吗| 51午夜福利影视在线观看| 天堂中文最新版在线下载| 久久久久久久久久久久大奶| 母亲3免费完整高清在线观看| 美女主播在线视频| 欧美日韩视频高清一区二区三区二| 在线 av 中文字幕| 国产在线一区二区三区精| 99re6热这里在线精品视频| 母亲3免费完整高清在线观看| 亚洲国产欧美在线一区| 一区二区三区乱码不卡18| 成年av动漫网址| 国产一区二区三区综合在线观看| 婷婷色综合大香蕉| 黄色毛片三级朝国网站| 亚洲国产精品国产精品| 香蕉丝袜av| 色婷婷av一区二区三区视频| 日本欧美国产在线视频| 一区福利在线观看| 亚洲精品日韩在线中文字幕| 久久久久久久久免费视频了| 中文字幕制服av| 99re6热这里在线精品视频| 久久性视频一级片| 50天的宝宝边吃奶边哭怎么回事| 晚上一个人看的免费电影| 一本一本久久a久久精品综合妖精| 人成视频在线观看免费观看| 一级毛片电影观看| 男人爽女人下面视频在线观看| 国产在线观看jvid| 久久久亚洲精品成人影院| xxx大片免费视频| 亚洲自偷自拍图片 自拍| 新久久久久国产一级毛片| 90打野战视频偷拍视频| 十分钟在线观看高清视频www| 色播在线永久视频| 国产在线观看jvid| 免费看十八禁软件| 黄色a级毛片大全视频| 久久精品久久久久久久性| 国产一卡二卡三卡精品| 美女主播在线视频| 一本综合久久免费| 亚洲欧美色中文字幕在线| 免费女性裸体啪啪无遮挡网站| 亚洲av男天堂| 亚洲欧美中文字幕日韩二区| 亚洲国产看品久久| 国产黄色免费在线视频| 搡老乐熟女国产| 亚洲欧美清纯卡通| 下体分泌物呈黄色| 亚洲人成电影免费在线| 波多野结衣一区麻豆| 精品欧美一区二区三区在线| 国产精品一区二区免费欧美 | 日本a在线网址| 少妇人妻 视频| 亚洲精品国产色婷婷电影| 午夜福利影视在线免费观看| 啦啦啦啦在线视频资源| 亚洲国产毛片av蜜桃av| 久久天堂一区二区三区四区| 夫妻性生交免费视频一级片| 国产成人影院久久av| bbb黄色大片| 亚洲成人免费电影在线观看 | 久久久久久亚洲精品国产蜜桃av| 国产视频首页在线观看| 一级毛片我不卡| 激情视频va一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 在线精品无人区一区二区三| 亚洲国产欧美一区二区综合| 精品国产一区二区久久| 亚洲综合色网址| 久久99热这里只频精品6学生| 国产精品久久久久成人av| 亚洲av综合色区一区| 日本欧美视频一区| 日本黄色日本黄色录像| 亚洲黑人精品在线| 精品国产一区二区久久| 国产一区二区 视频在线| 超碰成人久久| www.自偷自拍.com| 18禁国产床啪视频网站| 中文字幕人妻丝袜制服| 亚洲一卡2卡3卡4卡5卡精品中文| 国产男女内射视频| 9191精品国产免费久久| 亚洲精品国产区一区二| 一区二区日韩欧美中文字幕| 99精国产麻豆久久婷婷| 欧美成狂野欧美在线观看| 亚洲国产欧美在线一区| 丝袜美足系列| 亚洲精品中文字幕在线视频| 搡老岳熟女国产| 看十八女毛片水多多多| 汤姆久久久久久久影院中文字幕| 亚洲精品乱久久久久久| 亚洲色图综合在线观看| 欧美日韩精品网址| 涩涩av久久男人的天堂| 99国产精品免费福利视频| 色精品久久人妻99蜜桃| 久久久久久亚洲精品国产蜜桃av| 亚洲 欧美一区二区三区| 777久久人妻少妇嫩草av网站| av在线app专区| 日韩,欧美,国产一区二区三区| 大型av网站在线播放| 色婷婷av一区二区三区视频| av国产精品久久久久影院| 亚洲专区国产一区二区| 亚洲第一av免费看| 国产成人精品在线电影| 亚洲人成电影观看| 大片电影免费在线观看免费| 国产免费一区二区三区四区乱码| 亚洲精品中文字幕在线视频| 国产91精品成人一区二区三区 | 老司机影院成人| 亚洲图色成人| 国产成人一区二区在线| 满18在线观看网站| 天天躁夜夜躁狠狠久久av| 菩萨蛮人人尽说江南好唐韦庄| 午夜久久久在线观看| www日本在线高清视频| 午夜免费观看性视频| 色94色欧美一区二区| 国产福利在线免费观看视频| 制服诱惑二区| 十分钟在线观看高清视频www| 久久热在线av| 亚洲成人手机| 黄网站色视频无遮挡免费观看| 亚洲国产毛片av蜜桃av| 亚洲九九香蕉| 亚洲国产av影院在线观看| www日本在线高清视频| 欧美老熟妇乱子伦牲交| 女警被强在线播放| 少妇 在线观看| 久久鲁丝午夜福利片| 日韩伦理黄色片| 一本久久精品| 黄片小视频在线播放| bbb黄色大片| 不卡av一区二区三区| 国产欧美日韩一区二区三 | 爱豆传媒免费全集在线观看| 亚洲欧美一区二区三区久久| 男人舔女人的私密视频| 国产午夜精品一二区理论片| 日本a在线网址| 最新在线观看一区二区三区 | 欧美日韩亚洲国产一区二区在线观看 | 视频在线观看一区二区三区| 久久九九热精品免费| 国产男女内射视频| 在线观看免费高清a一片| 一边摸一边做爽爽视频免费| 天天影视国产精品| 久久女婷五月综合色啪小说| 日本午夜av视频| 啦啦啦在线免费观看视频4| tube8黄色片| 免费人妻精品一区二区三区视频| 不卡av一区二区三区| 国产伦理片在线播放av一区| 各种免费的搞黄视频| 黄色视频在线播放观看不卡| 黑丝袜美女国产一区| 国产亚洲午夜精品一区二区久久| 飞空精品影院首页| a级片在线免费高清观看视频| 免费在线观看黄色视频的| 欧美精品啪啪一区二区三区 | 亚洲九九香蕉| av国产精品久久久久影院| 亚洲第一av免费看| 国产精品秋霞免费鲁丝片| 久久人人爽av亚洲精品天堂| 亚洲中文字幕日韩| 在线观看人妻少妇| 日韩熟女老妇一区二区性免费视频| 最黄视频免费看| 色视频在线一区二区三区| 精品久久久精品久久久| 国产精品国产三级国产专区5o| 国产精品国产av在线观看| 亚洲欧美一区二区三区黑人| 首页视频小说图片口味搜索 | 国产精品一区二区在线观看99| 欧美日韩一级在线毛片| 亚洲,一卡二卡三卡| 亚洲欧美日韩另类电影网站| 欧美97在线视频| 精品免费久久久久久久清纯 | 色婷婷久久久亚洲欧美| 久久久国产欧美日韩av| 久久久国产精品麻豆| 国产极品粉嫩免费观看在线| 国精品久久久久久国模美| 飞空精品影院首页| 国产在线视频一区二区| 一区二区av电影网| 久久青草综合色| 亚洲av成人不卡在线观看播放网 | 亚洲激情五月婷婷啪啪| 欧美久久黑人一区二区| 少妇精品久久久久久久| 国产色视频综合| av不卡在线播放| www.999成人在线观看| av网站在线播放免费| 亚洲精品国产av蜜桃| 久久久亚洲精品成人影院| 国产免费一区二区三区四区乱码| 国产欧美日韩一区二区三 | 国产人伦9x9x在线观看| 美女中出高潮动态图| 日本一区二区免费在线视频| 秋霞在线观看毛片| 伊人亚洲综合成人网| 大片免费播放器 马上看| 热99久久久久精品小说推荐| 亚洲精品国产一区二区精华液| 天天躁夜夜躁狠狠躁躁| 亚洲熟女精品中文字幕| 亚洲三区欧美一区| 一级,二级,三级黄色视频| netflix在线观看网站| 91麻豆精品激情在线观看国产 | 午夜日韩欧美国产| 国产欧美亚洲国产| 欧美日韩视频高清一区二区三区二| 日韩视频在线欧美| 精品一区二区三区四区五区乱码 | 成年美女黄网站色视频大全免费| xxxhd国产人妻xxx| 尾随美女入室| 免费av中文字幕在线| 97在线人人人人妻| 日本午夜av视频| 亚洲欧美一区二区三区国产| 国产一区二区激情短视频 | 亚洲五月色婷婷综合| 国产高清不卡午夜福利| 国产精品免费大片| 999精品在线视频| 少妇被粗大的猛进出69影院| 国产亚洲av片在线观看秒播厂| 中文精品一卡2卡3卡4更新| 一级毛片女人18水好多 | 久久99一区二区三区| 久久久精品国产亚洲av高清涩受| 日本欧美国产在线视频| www.999成人在线观看| 国产97色在线日韩免费| 国产日韩欧美视频二区| 精品人妻熟女毛片av久久网站| 后天国语完整版免费观看| 色播在线永久视频| av视频免费观看在线观看| 欧美日韩视频精品一区| 91精品国产国语对白视频| 自线自在国产av| 视频区欧美日本亚洲| 人人妻人人澡人人看| 91精品国产国语对白视频| 女人高潮潮喷娇喘18禁视频| 国产亚洲精品久久久久5区| 欧美国产精品一级二级三级| 建设人人有责人人尽责人人享有的| www.av在线官网国产| 国产精品三级大全| 99久久人妻综合| 欧美日韩成人在线一区二区| 99国产精品一区二区三区| 国产不卡av网站在线观看| 后天国语完整版免费观看| 真人做人爱边吃奶动态| 国产免费又黄又爽又色| 男女下面插进去视频免费观看| 多毛熟女@视频| 超碰97精品在线观看| 成人亚洲精品一区在线观看| 18禁黄网站禁片午夜丰满| 2021少妇久久久久久久久久久| h视频一区二区三区| 免费观看人在逋| 欧美精品av麻豆av| 国产日韩欧美亚洲二区| 日韩一卡2卡3卡4卡2021年| 免费在线观看影片大全网站 | 日日爽夜夜爽网站| 一本一本久久a久久精品综合妖精| 一本—道久久a久久精品蜜桃钙片| 久久久久久久大尺度免费视频| 免费高清在线观看视频在线观看| 亚洲精品成人av观看孕妇| 亚洲国产精品一区二区三区在线| 在现免费观看毛片| 久久中文字幕一级| √禁漫天堂资源中文www| 亚洲中文字幕日韩| 国产精品一区二区在线不卡| 精品欧美一区二区三区在线| 一级黄色大片毛片| 久久av网站| 操美女的视频在线观看| 水蜜桃什么品种好| 女人久久www免费人成看片| 国产欧美日韩综合在线一区二区| 啦啦啦在线免费观看视频4| 欧美在线黄色| 久9热在线精品视频| 91精品伊人久久大香线蕉| av在线app专区| 亚洲黑人精品在线| 国产日韩一区二区三区精品不卡| 欧美 日韩 精品 国产| 久久精品人人爽人人爽视色| 2018国产大陆天天弄谢| 精品少妇一区二区三区视频日本电影| 亚洲久久久国产精品| 女人精品久久久久毛片| 国产精品国产三级国产专区5o| 18禁国产床啪视频网站| 日韩一卡2卡3卡4卡2021年| 一区二区三区四区激情视频| 人人澡人人妻人| 91成人精品电影| 国产亚洲精品久久久久5区| 在线av久久热| 久久久久国产精品人妻一区二区| 人人妻人人澡人人爽人人夜夜| 夫妻午夜视频| 狠狠精品人妻久久久久久综合| 久久免费观看电影| netflix在线观看网站| 欧美变态另类bdsm刘玥| 老司机午夜十八禁免费视频| 亚洲中文日韩欧美视频| 久久久精品免费免费高清| 香蕉国产在线看| 欧美 亚洲 国产 日韩一| 99re6热这里在线精品视频| xxx大片免费视频| 狠狠精品人妻久久久久久综合| 亚洲一码二码三码区别大吗| 热re99久久国产66热| 亚洲人成网站在线观看播放| 久久这里只有精品19| 亚洲成人免费电影在线观看 | 久久午夜综合久久蜜桃| tube8黄色片| 欧美日韩视频精品一区| 欧美日韩av久久| 大香蕉久久网| 久久影院123| av在线老鸭窝| 别揉我奶头~嗯~啊~动态视频 | 中文字幕制服av| 久久天躁狠狠躁夜夜2o2o | 大陆偷拍与自拍| 久久国产精品人妻蜜桃| 国产野战对白在线观看| 中文欧美无线码| 在现免费观看毛片| 午夜福利免费观看在线| 丰满人妻熟妇乱又伦精品不卡| 三上悠亚av全集在线观看| 母亲3免费完整高清在线观看| av在线播放精品| 午夜影院在线不卡| 99精品久久久久人妻精品| 亚洲专区国产一区二区| 欧美日韩综合久久久久久| 伦理电影免费视频| 国产真人三级小视频在线观看| 最黄视频免费看| 日韩一区二区三区影片| 国产亚洲精品久久久久5区| 免费在线观看日本一区| 国产主播在线观看一区二区 | av在线app专区| 成年人黄色毛片网站| 欧美精品啪啪一区二区三区 | 国产伦理片在线播放av一区| 日韩av免费高清视频| 18禁观看日本| 亚洲一区二区三区欧美精品| 欧美 亚洲 国产 日韩一| 看十八女毛片水多多多| 亚洲精品国产色婷婷电影| 涩涩av久久男人的天堂| 中文欧美无线码| 黄色视频在线播放观看不卡| 女人久久www免费人成看片| 亚洲av电影在线观看一区二区三区| av在线app专区| 中文字幕人妻熟女乱码| 九色亚洲精品在线播放| 90打野战视频偷拍视频| 黑人猛操日本美女一级片| 精品亚洲成a人片在线观看| 精品国产乱码久久久久久小说| 少妇 在线观看| 免费观看av网站的网址| 亚洲,一卡二卡三卡| 日韩欧美一区视频在线观看| 极品人妻少妇av视频| 美女视频免费永久观看网站| 国产女主播在线喷水免费视频网站| 日韩免费高清中文字幕av| 国产在线一区二区三区精| 中国美女看黄片| 国产在视频线精品| 日本黄色日本黄色录像| 777米奇影视久久| 十八禁高潮呻吟视频| 欧美日韩成人在线一区二区| 欧美日韩国产mv在线观看视频| 1024香蕉在线观看| 成人国语在线视频| 国产欧美日韩一区二区三区在线| 国产精品 国内视频| 亚洲精品国产av成人精品| 五月开心婷婷网| www.精华液| 亚洲专区中文字幕在线| 这个男人来自地球电影免费观看| 最近手机中文字幕大全| 欧美人与善性xxx| 熟女少妇亚洲综合色aaa.| 亚洲国产毛片av蜜桃av| 免费观看a级毛片全部| 下体分泌物呈黄色| 少妇裸体淫交视频免费看高清 | 五月天丁香电影| 捣出白浆h1v1| 男女边吃奶边做爰视频| 好男人电影高清在线观看| 两性夫妻黄色片| 丝袜脚勾引网站| 视频区欧美日本亚洲| 国产精品一区二区在线不卡| 精品国产一区二区三区四区第35| 久久久精品国产亚洲av高清涩受| 九色亚洲精品在线播放| 国产成人精品无人区| 色播在线永久视频| 99国产精品免费福利视频| 男女国产视频网站| 日韩精品免费视频一区二区三区| 十分钟在线观看高清视频www| 亚洲专区中文字幕在线| 视频在线观看一区二区三区| 女性被躁到高潮视频| 色网站视频免费| 日日爽夜夜爽网站| 午夜福利,免费看| 欧美大码av| 久久狼人影院| 99热网站在线观看| 亚洲 国产 在线| 久久九九热精品免费| 日韩 亚洲 欧美在线| 永久免费av网站大全| 国产在视频线精品| 久久女婷五月综合色啪小说| 50天的宝宝边吃奶边哭怎么回事| 80岁老熟妇乱子伦牲交| av网站在线播放免费| av线在线观看网站| bbb黄色大片| 每晚都被弄得嗷嗷叫到高潮| 最新的欧美精品一区二区| 中文字幕精品免费在线观看视频| 精品久久久久久久毛片微露脸 | 日本vs欧美在线观看视频| 久久久久久久大尺度免费视频| 欧美亚洲 丝袜 人妻 在线| 777久久人妻少妇嫩草av网站| 欧美精品一区二区大全| 91九色精品人成在线观看| 国产高清不卡午夜福利| 久久影院123| 免费少妇av软件| 各种免费的搞黄视频| 国产日韩欧美亚洲二区| 一区二区av电影网| 亚洲av在线观看美女高潮| 麻豆国产av国片精品| 久久精品久久久久久久性| 久久精品亚洲av国产电影网| 99热全是精品| 婷婷色麻豆天堂久久| 精品少妇一区二区三区视频日本电影| 国产精品久久久久久人妻精品电影 | 亚洲成人国产一区在线观看 | 午夜福利,免费看| 成人影院久久| 免费看不卡的av| 伦理电影免费视频| 亚洲精品一二三| av一本久久久久| 国产av一区二区精品久久| 国产精品一区二区在线不卡| 1024香蕉在线观看| 丰满人妻熟妇乱又伦精品不卡| 久久久精品免费免费高清| 午夜激情久久久久久久| 女人高潮潮喷娇喘18禁视频| av福利片在线| 午夜精品国产一区二区电影| 欧美人与性动交α欧美精品济南到| 性色av一级| 成人手机av| 久久久久久久大尺度免费视频| 69精品国产乱码久久久| 国产无遮挡羞羞视频在线观看| 亚洲五月婷婷丁香| 在线观看www视频免费| 国产成人影院久久av| 亚洲精品第二区| 亚洲人成电影观看| 妹子高潮喷水视频| 国产熟女午夜一区二区三区| 免费在线观看影片大全网站 | 亚洲色图综合在线观看| 女性生殖器流出的白浆| 亚洲成人手机| 国产亚洲精品久久久久5区| 亚洲自偷自拍图片 自拍| 男女免费视频国产| 黄色视频在线播放观看不卡| 人体艺术视频欧美日本| 一本久久精品| 最近最新中文字幕大全免费视频 | 欧美精品人与动牲交sv欧美| 亚洲自偷自拍图片 自拍| 性色av乱码一区二区三区2| 超碰成人久久| 中国美女看黄片| 日韩一区二区三区影片| 两性夫妻黄色片| 久久人人97超碰香蕉20202| 免费不卡黄色视频| 极品少妇高潮喷水抽搐| 国产一区亚洲一区在线观看| h视频一区二区三区| 国产片内射在线| 亚洲视频免费观看视频| 亚洲欧洲精品一区二区精品久久久| 日韩欧美一区视频在线观看| 亚洲情色 制服丝袜| 国产欧美亚洲国产| 精品高清国产在线一区| 19禁男女啪啪无遮挡网站| 啦啦啦中文免费视频观看日本| 免费高清在线观看日韩| 中文字幕精品免费在线观看视频| 香蕉丝袜av| 高清欧美精品videossex| 精品福利永久在线观看| 久久人人爽人人片av| 视频在线观看一区二区三区| 亚洲欧美激情在线| 免费高清在线观看视频在线观看| 国产一级毛片在线| 别揉我奶头~嗯~啊~动态视频 | 女人高潮潮喷娇喘18禁视频| 日本一区二区免费在线视频| 久久久久久久国产电影| 国产极品粉嫩免费观看在线| 亚洲少妇的诱惑av| 大片电影免费在线观看免费| 久久亚洲精品不卡| 伦理电影免费视频| 十八禁网站网址无遮挡| 午夜福利视频精品| 丝袜美腿诱惑在线| 少妇 在线观看| 日本色播在线视频| 久久久久久久国产电影| 亚洲国产av新网站| 国产日韩欧美在线精品| av网站在线播放免费| 精品人妻在线不人妻| 亚洲精品国产色婷婷电影| 久久精品国产亚洲av涩爱| 99国产精品99久久久久| 老司机影院毛片| 欧美性长视频在线观看| av网站免费在线观看视频| 亚洲精品在线美女| 欧美人与性动交α欧美精品济南到| www.自偷自拍.com|