倪倍倍 代夢(mèng) 畢曉林 趙志臣 岳旺 隋忠國(guó)
摘要:為研究2,3-吲哚醌(isatin, ISA)治療少弱精癥的可能作用靶點(diǎn)和作用機(jī)制,基于公共數(shù)據(jù)庫(kù)分別獲取ISA作用靶點(diǎn)和少弱精癥相關(guān)疾病靶點(diǎn),確定交集靶點(diǎn),采用Cytoscape 軟件獲取核心靶點(diǎn)。通過(guò)GO功能富集和KEGG通路分析交集靶點(diǎn),采用分子對(duì)接預(yù)測(cè)ISA與靶點(diǎn)蛋白的結(jié)合能力。研究結(jié)果顯示,ISA干預(yù)少弱精癥主要涉及氧化應(yīng)激、細(xì)胞凋亡和炎癥等生物學(xué)過(guò)程,并與p53信號(hào)通路、細(xì)胞衰老通路和IL-17信號(hào)通路密切相關(guān);經(jīng)篩選確定8個(gè)核心靶點(diǎn),ISA與其中6個(gè)核心靶點(diǎn)穩(wěn)定結(jié)合。這表明,ISA可能通過(guò)作用于核心靶點(diǎn)CASP3、TP53、ESR1、PTGS2、TNF和ANXA5,調(diào)控p53信號(hào)通路和IL-17信號(hào)通路發(fā)揮抗少弱精癥作用。
關(guān)鍵詞:2,3-吲哚醌;網(wǎng)絡(luò)藥理學(xué);少弱精癥;分子對(duì)接
中圖分類(lèi)號(hào):R963
文獻(xiàn)標(biāo)志碼:A
不孕不育作為全球公共衛(wèi)生問(wèn)題,影響約15%的夫婦,其中男性因素約占一半[1]。少弱精癥是造成男性不育主要因素,其發(fā)生率約占男性不育癥患者75%左右,嚴(yán)重影響男性生殖健康[2]。少弱精癥包括少精癥(oligospermia)和弱精癥(asthenozoospermia),以精子密度和活動(dòng)力下降為特征。少弱精癥的發(fā)生與精漿異常、環(huán)境、精索靜脈曲張等因素相關(guān)[3],具體發(fā)病機(jī)制仍未完全闡明,且缺乏有效的治療藥物[4],亟待開(kāi)發(fā)抗少弱精癥新藥。2,3-吲哚醌(isatin,ISA)作為廣泛存在于動(dòng)植物體內(nèi)天然小分子化合物,是人體組織和體液中一種重要內(nèi)源性生物活性物質(zhì)[5]。研究發(fā)現(xiàn),ISA具有抗氧化應(yīng)激、抗凋亡、抗炎、抗腫瘤、抗衰老、神經(jīng)保護(hù)和抗菌等多種生物學(xué)活性[6]。哺乳動(dòng)物大鼠各組織中ISA呈特異性分布,輸精管和精囊中ISA濃度最高且百倍高于其他組織[7-8]。這一現(xiàn)象提示ISA可能對(duì)精子有特殊保護(hù)作用。本課題組前期動(dòng)物實(shí)驗(yàn)結(jié)果顯示,ISA可改善少弱精癥模型大鼠精子活動(dòng)力及促進(jìn)精子發(fā)生,但作用機(jī)制尚不明確[9]。因此,本文利用網(wǎng)絡(luò)藥理學(xué)和分子對(duì)接技術(shù),篩選ISA抗少弱精癥的關(guān)鍵靶點(diǎn),獲取ISA抗少弱精癥的信號(hào)通路,以預(yù)測(cè)ISA治療少弱精癥的可能機(jī)制。
1 研究方法
1.1 ISA作用靶點(diǎn)篩選獲取
PubChem數(shù)據(jù)庫(kù)輸入“isatin”后,基于Chemical-Gene Co-Occurrences in Literature、Protein Bound 3-D Structures、Chemical-Target Interactions和BioAssay Results收集化合物—蛋白質(zhì)相互作用靶點(diǎn)信息。獲得ISA 2D結(jié)構(gòu)圖后,分別上傳至pharmMapper數(shù)據(jù)庫(kù)和Swiss Target Prediction數(shù)據(jù)庫(kù),預(yù)測(cè)ISA作用靶點(diǎn)。合并3個(gè)數(shù)據(jù)庫(kù)所得靶點(diǎn),去除重復(fù)后確定ISA作用靶點(diǎn)。借 助 UniProt 數(shù) 據(jù) 庫(kù)(http://www.uniprot.org/)規(guī)范ISA作用靶點(diǎn)的基因名稱。
1.2 少弱精癥相關(guān)疾病靶點(diǎn)篩選
以“oligospermia”和“asthenozoospermia”為關(guān)鍵詞,檢索GeneCards數(shù)據(jù)庫(kù)(https://www. genecards.org)和DisGeNET 數(shù)據(jù)庫(kù)(https://www.disgenet.org/)中與少弱精癥相關(guān)的疾病靶點(diǎn)。根據(jù)相關(guān)性分?jǐn)?shù)(Relevance score)值篩選GeneCards數(shù)據(jù)庫(kù)檢索結(jié)果,只接受大于相關(guān)性分?jǐn)?shù)值中位數(shù)的靶點(diǎn)。合并2個(gè)數(shù)據(jù)庫(kù)所得疾病靶點(diǎn),去除重復(fù)后確定與少弱精癥相關(guān)的疾病靶點(diǎn)。
1.3 蛋白—蛋白互作網(wǎng)絡(luò)構(gòu)建和核心靶點(diǎn)篩選
ISA作用靶點(diǎn)與少弱精癥相關(guān)疾病靶點(diǎn)分別上傳至在線Venny平臺(tái)(http://bioinformatics.psb.ugent.be/webtools/Venn/)完成映射,得藥物疾病交集靶點(diǎn)。導(dǎo)入交集靶點(diǎn)至線數(shù)據(jù)庫(kù)STRING(https://string-db.org/),完成蛋白-蛋白互作(protein-protein interaction,PPI)分析。PPI分析結(jié)果導(dǎo)入Cytoscape 3.7.2 軟件后,采用插件Cyot NCA 分析其度中心性(Degree Centrality,DC)、特征向量中心性(Eigenvector Centrality,EC)、介數(shù)中心性(Betweenness Centrality,BC)和緊密中心性(Closeness Centrality,CC)的網(wǎng)絡(luò)拓?fù)涮卣髦?。以超過(guò)上述4種網(wǎng)絡(luò)拓?fù)涮卣髦档闹形粩?shù)作為篩選標(biāo)準(zhǔn),確定核心靶點(diǎn)。
1.4 GO富集分析和KEGG 信號(hào)通路分析
使用R 4.1.2軟件中ClusterProfiler包,針對(duì)交集靶點(diǎn)完成基因本體(Gene Ontology,GO)功能富集和京都基因與基因組百科全書(shū)(Kyoto Encyclopedia of Genes and Genomes,KEGG)通路分析。取GO富集分析的富集基因數(shù)前10位做可視化處理。KEGG通路分析結(jié)果以P < 0.05為篩選標(biāo)準(zhǔn),按P由小到大取前20位做可視化處理。
1.5 分子對(duì)接
RCSB PDB蛋白質(zhì)結(jié)構(gòu)數(shù)據(jù)庫(kù)(https://www.rcsb.org/)下載核心靶點(diǎn)的蛋白3D結(jié)構(gòu)。PubChem數(shù)據(jù)庫(kù)(https://pubchem.ncbi.nlm.nih.gov/)下載ISA分子的3D結(jié)構(gòu),通過(guò)Open Babel軟件完成格式轉(zhuǎn)換。借助Auto Dock Tools優(yōu)化ISA分子結(jié)構(gòu),核心靶點(diǎn)蛋白結(jié)構(gòu)做脫水和氫化處理。優(yōu)化后的ISA分子和核心靶點(diǎn)蛋白保存為PDBQT格式。左卡尼汀(少弱精癥常用治療藥物)作為陽(yáng)性對(duì)照[10],與ISA做相同處理。采用Auto Dock Tools軟件做分子對(duì)接,對(duì)接結(jié)果使用PyMOL可視化。
2 結(jié)果
2.1 ISA作用靶點(diǎn)及少弱精癥相關(guān)疾病靶點(diǎn)
通過(guò)PubChem數(shù)據(jù)庫(kù)篩選后得121個(gè)ISA作用靶點(diǎn),通過(guò)PharmMapper數(shù)據(jù)庫(kù)得89個(gè)ISA作用靶點(diǎn),通過(guò)Swiss target Prediction數(shù)據(jù)庫(kù)篩選后得109個(gè)作用靶點(diǎn),合并所得ISA作用靶點(diǎn)并去除重復(fù),共得266個(gè)ISA作用靶點(diǎn)。通過(guò)GeneCards數(shù)據(jù)庫(kù)篩選得440個(gè)少弱精癥相關(guān)疾病靶點(diǎn),經(jīng)DisGeNET 數(shù)據(jù)庫(kù)檢索得381個(gè)少弱精癥相關(guān)疾病靶點(diǎn),合并所得疾病靶點(diǎn)并去除重復(fù),最終確定466個(gè)疾病靶點(diǎn)。
2.2 PPI網(wǎng)絡(luò)構(gòu)建和核心靶點(diǎn)確定
通過(guò)分別上傳ISA作用靶點(diǎn)與少弱精癥相關(guān)疾病靶點(diǎn)至在線Venny 平臺(tái)映射后,得27個(gè)交集靶點(diǎn)(圖1)。交集靶點(diǎn)導(dǎo)入STRING數(shù)據(jù)庫(kù),做交集靶點(diǎn)PPI網(wǎng)絡(luò)分析(圖2(a))?;贑ytoscape 軟件的Cyto NCA插件,拓?fù)浞治鼋患悬c(diǎn)PPI網(wǎng)絡(luò),計(jì)算DC、EC、BC和CC中位數(shù)分別為12、019、83和063。由表1和圖2(b)可知,有8個(gè)交集靶點(diǎn)參數(shù)大于上述參數(shù)中位數(shù),則確定為核心靶點(diǎn),分別是細(xì)胞凋亡相關(guān)半胱氨酸蛋白酶3(CASP3)、腫瘤蛋白p53(TP53)、雌激素受體1(ESR1)、甘油醛-3-磷酸脫氫酶(GAPDH)、缺氧誘導(dǎo)因子-1α(HIF1A)、前列腺素內(nèi)過(guò)氧化物酶2(PTGS2)、腫瘤壞死因子(TNF)和膜聯(lián)蛋白A5(ANXA5)。
2.3 GO功能富集和KEGG通路分析
利用R 4.1.2軟件中ClusterProfiler包,針對(duì)ISA與少弱精癥的交集靶點(diǎn)做GO功能富集分析和KEGG通路富集分析。GO分析結(jié)果顯示,與生物過(guò)程(biological processes,BP)相關(guān)條目共905條,主要涉及對(duì)外源性刺激的反應(yīng)、氧化應(yīng)激反應(yīng)、活性氧代謝過(guò)程、細(xì)胞周期調(diào)控、對(duì)腫瘤壞死因子反應(yīng)和對(duì)凋亡信號(hào)通路的反應(yīng)等;與細(xì)胞組分(cellular components,CC)相關(guān)條目有20條,主要包括轉(zhuǎn)錄調(diào)控復(fù)合物、膜閥、質(zhì)膜微區(qū)和過(guò)氧化物酶體等;與分子功能(molecular functions,MF)相關(guān)條目有63條,主要包括DNA結(jié)合轉(zhuǎn)錄因子結(jié)合、轉(zhuǎn)錄共調(diào)節(jié)因子結(jié)合、轉(zhuǎn)錄共激活因子調(diào)節(jié)、氧化還原酶活性等。根據(jù)富集基因數(shù),分別選取BP、CC和MF前10位條目繪制條形圖(圖3(a))。KEGG通路富集分析共得相關(guān)通路78條,主要包括p53信號(hào)通路、細(xì)胞衰老通路和IL-17信號(hào)通路等,按P由小到大選取前20條目繪制條形圖(圖3(b))。
2.4 分子對(duì)接
查閱以往研究成果[11-18],確定核心靶點(diǎn)蛋白與小分子結(jié)合位點(diǎn),使用Grid模塊參照結(jié)合位點(diǎn)設(shè)置對(duì)接盒子參數(shù)(表2)。ISA與8個(gè)核心靶點(diǎn)(CASP3、TP53、ESR1、GAPDH、HIF1A、PTGS2、TNF和ANXA5)分別做分子對(duì)接和可視化分析(圖4)。分子對(duì)接的結(jié)合自由能越小,配體與受體結(jié)合越穩(wěn)定,相互作用的可能性越大[19]。結(jié)合能小于0 kcal·mol-1時(shí),說(shuō)明配體與受體有結(jié)合潛力;結(jié)合能小于-5 kcal·mol-1時(shí),說(shuō)明配體與受體結(jié)合穩(wěn)定[20]。由表3可知,陽(yáng)性藥左卡尼汀與8個(gè)核心靶點(diǎn)對(duì)接結(jié)合能均小于0 kcal·mol-1,僅與TNF的結(jié)合能小于-5 kcal·mol-1。ISA與8個(gè)核心靶點(diǎn)結(jié)合能均小于0 kcal·mol-1,與CASP3、TP53、ESR1 、PTGS2、TNF和ANXA5的結(jié)合能小于-5 kcal·mol-1。
3 討論
影響精子數(shù)量和質(zhì)量的因素包括氧化應(yīng)激、炎癥、免疫紊亂和DNA損傷等[21]。本研究GO功能富集分析表明ISA主要通過(guò)參與氧化應(yīng)激、細(xì)胞凋亡和炎癥生物學(xué)過(guò)程發(fā)揮作用,此生物學(xué)過(guò)程與既往研究中影響精子數(shù)量和質(zhì)量的因素一致。本研究中KEGG通路分析推測(cè)ISA可能通過(guò)調(diào)控p53信號(hào)通路、細(xì)胞衰老通路和IL-17信號(hào)通路發(fā)揮改善少弱精癥的作用,p53信號(hào)通路是與細(xì)胞凋亡相關(guān)的重要通路之一。正常的精子發(fā)生過(guò)程中,凋亡是機(jī)體清除過(guò)量或異常生精細(xì)胞、維持正常精子數(shù)量的重要方式,但精子過(guò)多凋亡則是少弱精癥的重要原因之一[22]。研究發(fā)現(xiàn),男性少弱精癥患者中p53表達(dá)增加,凋亡活躍[23]。動(dòng)物實(shí)驗(yàn)顯示,刪除調(diào)節(jié)因子Pumilio 1,可導(dǎo)致p53強(qiáng)烈激活并導(dǎo)致精母細(xì)胞凋亡和精子生成破壞,而去除p53可挽救Pumilio 1缺失小鼠的細(xì)胞凋亡并改善精子生成[24]。衰老可影響男性生殖力,胰島素信號(hào)通路是衰老相關(guān)關(guān)鍵信號(hào)通路之一,抑制胰島素信號(hào)通路可改善生殖衰老及提高生育能力[25]。IL-17信號(hào)通路通過(guò)激活核因子κB(nuclear factor-κB,NF-κB)和絲裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)通路介導(dǎo)炎癥的發(fā)生和發(fā)展[26],病毒感染情況下精液中IL-17異常高表達(dá)并對(duì)精子存活率及精子密度產(chǎn)生負(fù)面影響[27]。
靶點(diǎn)蛋白互作網(wǎng)絡(luò)篩選出核心靶點(diǎn)后,分子對(duì)接驗(yàn)證顯示ISA與核心靶點(diǎn)蛋白的結(jié)合力及結(jié)合靶標(biāo)數(shù)量均優(yōu)于陽(yáng)性藥左卡尼汀。ISA與CASP3、TP53、ESR1、PTGS2、TNF和ANXA5結(jié)合穩(wěn)定(結(jié)合能<-5 kcal·mol-1),可能是ISA抗少弱精癥的關(guān)鍵靶點(diǎn),并普遍與凋亡和炎癥相關(guān)。CASP3是細(xì)胞凋亡的主要執(zhí)行者,接受上游信號(hào)被激活后作為特異性底物誘發(fā)細(xì)胞染色質(zhì)濃集、DNA片段化,從而促進(jìn)凋亡[28]。研究調(diào)查發(fā)現(xiàn),少弱精癥患者的精子中CASP3活性顯著升高,CASP3蛋白表達(dá)增加,說(shuō)明少弱精癥患者精子細(xì)胞凋亡活躍[29]。TP53是凋亡相關(guān)p53信號(hào)通路的關(guān)鍵成分,可與受損DNA結(jié)合而阻滯細(xì)胞周期,誘導(dǎo)細(xì)胞凋亡,TP53過(guò)度激活會(huì)導(dǎo)致精子過(guò)多凋亡而發(fā)生少弱精癥[30]。研究發(fā)現(xiàn),相較于正常精子細(xì)胞,弱精子細(xì)胞中TP53表達(dá)顯著增加[21]。ESR1所表達(dá)的雌激素受體α可調(diào)控精子發(fā)生和成熟[31],ESR1敲除小鼠睪丸萎縮,精子數(shù)目減少,導(dǎo)致生殖能力下降甚至不育[32]。PTGS2又名環(huán)氧化酶-2,是體內(nèi)催化花生四烯酸合成前列腺素的誘導(dǎo)型關(guān)鍵酶,低氧環(huán)境下,PTGS2可被HIF1A誘導(dǎo)產(chǎn)生,在輸精管及附睪中組成型表達(dá)并參與炎癥反應(yīng)[33]。TNF 是炎癥反應(yīng)的核心細(xì)胞因子,通過(guò)誘導(dǎo)炎癥基因表達(dá)及誘導(dǎo)細(xì)胞死亡驅(qū)動(dòng)炎癥反應(yīng)[34]。男性生殖系統(tǒng)中TNF水平增加可降低精子活力、破壞線粒體功能和DNA完整性,相較于生育力正常的男性,少弱精癥患者精液中TNF水平顯著升高[21]。ANXA5屬于Ca2+依賴的磷脂結(jié)合蛋白家族,Ca2+存在時(shí),胞外ANXA5與凋亡細(xì)胞外翻的特征標(biāo)志物磷酯酰絲氨酸特異性結(jié)合可示蹤凋亡細(xì)胞;胞內(nèi)ANXA5則有促凋亡作用[35]。ISA穩(wěn)定結(jié)合的關(guān)鍵靶點(diǎn)與凋亡和炎癥密切相關(guān),推測(cè)ISA抗少弱精癥的機(jī)制最可能涉及的通路是凋亡相關(guān)p53信號(hào)通路和炎癥相關(guān)IL-17信號(hào)通路,為后續(xù)研究指明方向。
4 結(jié)論
本研究采用網(wǎng)絡(luò)藥理學(xué)和分子對(duì)接方法,通過(guò)化學(xué)信息學(xué)數(shù)據(jù)庫(kù)和生物信息學(xué)數(shù)據(jù)庫(kù),篩選了ISA抗少弱精癥的核心靶點(diǎn)和通路,預(yù)測(cè)了ISA抗少弱精癥機(jī)制。ISA可能通過(guò)作用于核心靶點(diǎn)CASP3、TP53、ESR1、PTGS2、TNF和ANXA5,調(diào)控p53信號(hào)通路和IL-17信號(hào)通路發(fā)揮抗少弱精癥作用。今后將圍繞關(guān)鍵靶點(diǎn)和通路開(kāi)展動(dòng)物及細(xì)胞實(shí)驗(yàn)研究,為開(kāi)發(fā)抗少弱精癥新藥提供參考。
參考文獻(xiàn)
[1]HEIDARY Z, SALIMINEJAD K, ZAKI-DIZAJI M, et al. Genetic aspects of idiopathic asthenozoospermia as a cause of male infertility[J]. Human Fertility, 2020, 23(2): 83-92.
[2]鄧偉民, 孫大林, 蔡濱, 等. 淫羊藿苷基于PLCγ1/AKT/eNOS/NO信號(hào)通路改善大鼠少弱精癥[J]. 中藥材, 2023, 46(7): 1772-1776.
[3]劉媛, 葛平玉. 中醫(yī)藥治療少、弱精子癥的現(xiàn)狀[J]. 貴陽(yáng)中醫(yī)學(xué)院學(xué)報(bào), 2019, 41(6): 79-83.
[4]楊晶, 袁軼峰, 朱文雄, 等. 調(diào)治天癸方對(duì)環(huán)磷酰胺致少弱精癥模型大鼠生精細(xì)胞凋亡的影響[J]. 中成藥, 2019, 41(11): 2785-2787.
[5]GLOVER V, HALKET J M, WATKINS P J, et al. Isatin: Identity with the purified endogenous monoamine oxidase inhibitor tribulin[J]. Journal of Neurochemistry, 1988, 51(2): 656-659.
[6]MEDVEDEV A, BUNEEVA O, GNEDENKO O, et al. Isatin, an endogenous nonpeptide biofactor: A review of its molecular targets, mechanisms of actions, and their biomedical implications[J]. Biofactors, 2018, 44(2): 95-108.
[7]ARMANDO I, GLOVER V, SANDLER M. Distribution of endogenous benzodiazepine receptor ligand-monoamine oxidase inhibitory activity (tribulin) in tissues[J]. Life Science, 1986, 38(22): 2063-2067.
[8]WATKINS P, CLOW A, GLOVER V, et al. Isatin, regional distribution in rat brain and tissues[J]. Neurochemistry International, 1990, 17(2): 321-323.
[9]岳旺, 石振艷, 劉占濤, 等. 吲哚-2,3-二酮在制備改善生精障礙藥物中的應(yīng)用: 102210675B[P]. 2012-07-04.
[10] 楊文軍, 董志靈, 盧友. 生精片聯(lián)合左卡尼汀治療少弱精癥的療效及其對(duì)精子質(zhì)量的影響[J]. 臨床合理用藥, 2023, 16(9): 124-127.
[11] KANEKO N, AGO H, MATSUDA R, et al. Crystal structure of annexin V with its ligand K-201 as a calcium channel activity inhibitor[J]. Journal of Molecular Biology, 1997, 274(1): 16-20.
[12] CHOONG I C, LEW W, LEE D, et al. Identification of potent and selective small-molecule inhibitors of caspase-3 through the use of extended tethering and structure-based drug design[J]. Journal of Medicinal Chemistry, 2002, 45(23): 5005-5022.
[13] CELIK L, LUND J D D, SCHITT B. Conformational dynamics of the estrogen receptor α: Molecular dynamics simulations of the influence of binding site structure on protein dynamics[J]. Biochemistry, 2007, 46(7): 1743-1758.
[14] JENKINS J L, TANNER J J. High-resolution structure of human D-glyceraldehyde-3-phosphate dehydrogenase[J]. Acta Crystallographica Section D-Structural Biology, 2006, 62: 290-301.
[15] DAMES S A, MARTINEZ-YAMOUT M, DE GUZMAN R N, et al. Structural basis for Hif-1α/CBP recognition in the cellular hypoxic response[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(8): 5271-5276.
[16] LUCIDO M J, ORLANDO B J, VECCHIO A J, et al. The crystal structure of aspirin-acetylated human cyclooxygenase-2: Insight into the formation of products with reversed stereochemistry[J]. Biochemistry, 2016, 55(8): 1226-1238.
[17] HE M M, SMITH A S, OSLOB J D, et al. Small-molecule inhibition of TNF-α[J]. Science, 2005, 310: 1022-1025.
[18] KUSSIE P H, GORINA S, MARECHAL V, et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain[J]. Science, 1996, 274: 948-953.
[19] 徐奧, 周慧玲, 沈鐵柱, 等. 基于GEO基因芯片結(jié)合網(wǎng)絡(luò)藥理學(xué)和分子對(duì)接技術(shù)探究玉屏風(fēng)散治療原發(fā)性腎病綜合征的作用機(jī)制研究[J]. 中國(guó)處方藥, 2023, 21(10): 1-7.
[20] 楊?lèi)?ài)霞, 魯力, 柳佚雯. 基于網(wǎng)絡(luò)藥理學(xué)及分子對(duì)接驗(yàn)證探討退熱解毒靈清熱抗炎機(jī)制[J]. 中國(guó)醫(yī)院藥學(xué)雜志, 2021, 41(21): 2186-2191.
[21] GHANDEHARI-ALAVIJEH R, ZOHRABI D, TAVALAEE M, et al. Association between expression of TNF-α, P53 and HIF1α with asthenozoospermia[J]. Human Fertility, 2019, 22(2): 145-151.
[22] 王平, 戴研平, 楊薇, 等. 不育患者凋亡生精細(xì)胞與ACP超微結(jié)構(gòu)的關(guān)系[J]. 檢驗(yàn)醫(yī)學(xué), 2018, 33(6): 472-475.
[23] RAHBAR S, NOVIN M G, ALIZADEH E, et al. New insights into the expression profile of MicroRNA-34c and P53 in infertile men spermatozoa and testicular tissue[J]. Cellular and Molecular Biology, 2017, 63(8): 77-83.
[24] CHEN D, ZHENG W, LIN A P, et al. Pumilio 1 suppresses multiple activators of p53 to safeguard spermatogenesis[J]. Current Biology, 2012, 22 (5): 420-425.
[25] SEPIL I, HOPKINS B, DEAN R, et al. Male reproductive aging arises via multifaceted mating-dependent sperm and seminal proteome declines, but is postponable in Drosophila[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(29): 17094-17103.
[26] LI X X, BECHARA R, ZHAO J J, et al. Interleukin 17 receptor-based signaling and implications for disease[J]. Nature Immunology, 2019, 20(12): 1594-1602.
[27] QIAN L, LI Q, LI H B. Effect of hepatitis B virus infection on sperm quality and oxidative stress state of the semen of infertile males[J]. American Journal of Reproductive Immunology, 2016, 76(3): 183-185.
[28] 黃健清, 梁紅玲, 張緒超, 等. CASP3與Cleaved-CASP3在肺癌中的表達(dá)及意義[J]. 實(shí)用醫(yī)學(xué)雜志, 2012, 28(8): 1247-1250.
[29] MOHAMMADI P, MESBAH-NAMIN S A, MOVAHEDIN M. Attenuation of aquaporin-3 may be contributing to low sperm motility and is associated with activated caspase-3 inasthenozoospermic individuals[J]. Andrologia, 2021, 53(8): e14119.
[30] DE MORAIS M P, CURADO R F, E SILVA K S F, et al. Male idiopathic infertility and the TP53 polymorphism in codon 72[J]. Genetics and Molecular Research, 2016, 15(4): gmr15048882.
[31] 孟繁超, 李海松, 王彬, 等. 基于網(wǎng)絡(luò)藥理學(xué)探討菟絲子-枸杞子治療少弱精子癥的作用機(jī)制[J]. 中國(guó)男科學(xué)雜志, 2022, 36 (3): 29-37.
[32] 李新陽(yáng), 孫自學(xué). 基于網(wǎng)絡(luò)藥理學(xué)和分子對(duì)接探討益腎通絡(luò)補(bǔ)氣方對(duì)少弱精癥大鼠雌激素受體的影響[J]. 中成藥, 2021, 43(11): 3216-3221.
[33] SALVOLINI E, BULDREGHINI E, LUCARINI G, et al. Interleukin-1β, cyclooxygenase-2, and hypoxia-inducible factor-1α in asthenozoospermia[J]. Histochemistry and Cell Biology, 2014, 142(5): 569-575.
[34] VAN LOO G, BERTRAND M J M. Death by TNF: A road to inflammation[J]. Nature Reviews Immunology, 2023, 23(5): 289-303.
[35] 王小杰, 李欣, 武彥秋, 等. 膜聯(lián)蛋白A5的結(jié)構(gòu)與功能研究進(jìn)展[J]. 承德醫(yī)學(xué)院學(xué)報(bào), 2010, 27(4): 413-415.
Mechanistic Study of? Isatin Against Oligoasthenozoospermia
Based on Network Pharmacology and Molecular Docking
NI Bei-bei1a, DAI Meng1a, BI Xiao-lin1b, ZHAO Zhi-chen1a,YUE Wang2, SUI Zhong-guo1a
(1. a. Department of Pharmacy, b. Department of Nutrition, The Affiliated Hospital of Qingdao University, Qingdao 266000, China;
2. Nursing and Health College, Qingdao Huanghai University, Qingdao 266427, China)
Abstract:
To investigate the potential targets and mechanisms of isatin (ISA) in the treatment of oligoasthenozoospermia, targets of ISA and disease-related targets were identified utilizing public databases to find intersecting targets. Core targets were then determined using Cytoscape software. GO functional enrichment and KEGG pathway analyses on the intersecting targets were conducted, and molecular docking was used to predict the binding affinity of ISA with core target proteins. The results indicate that ISA′s intervention in oligoasthenozoospermia primarily involves biological processes such as oxidative stress, apoptosis, and inflammation, and is closely related to the p53 signaling pathway, the cell senescence pathway, and the IL-17 signaling pathway. After screening, eight core targets were identified, with ISA stably binding to six of them. Those suggest that ISA may exert its anti-oligoasthenospermia effects by modulating the p53 signaling pathway and the IL-17 signaling pathway through core targets including CASP3, TP53, ESR1, PTGS2, TNF and ANXA5.
Keywords: isatin; network pharmacology; oligoasthenozoospermia; molecular docking