• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    蘋果與膠孢炭疽菌互作研究進(jìn)展

    2024-06-30 13:58:23冀志蕊王美玉張樹武杜宜南叢佳林徐秉良周宗山
    果樹學(xué)報(bào) 2024年6期
    關(guān)鍵詞:蘋果

    冀志蕊 王美玉 張樹武 杜宜南 叢佳林 徐秉良 周宗山

    摘? ? 要:膠孢炭疽菌(Colletotrichum gloeosporioides)能夠引發(fā)蘋果苦腐病和蘋果炭疽葉枯病,危害葉片和果實(shí),影響果品產(chǎn)量和品質(zhì),給蘋果產(chǎn)業(yè)造成嚴(yán)重的經(jīng)濟(jì)損失。對(duì)蘋果與病原物互作分子機(jī)制最新研究進(jìn)展進(jìn)行綜述,包括蘋果上炭疽病的病原菌組成和分類、侵染循環(huán)及其引發(fā)的果樹病害種類,病原菌的致病結(jié)構(gòu)和降解酶類、致病相關(guān)基因的挖掘與分析、效應(yīng)蛋白的篩選與功能分析等致病相關(guān)分子機(jī)制,蘋果被侵染后生理生化變化、激素信號(hào)、抗病基因挖掘、miRNA參與的免疫調(diào)控機(jī)制等抗病相關(guān)的研究?jī)?nèi)容,以期為解析病原菌致病機(jī)制及與寄主互作機(jī)制,進(jìn)而為挖掘潛力候選基因,以及病害綜合防控和抗病分子育種奠定理論基礎(chǔ)。

    關(guān)鍵詞:蘋果;膠孢炭疽菌;侵染機(jī)制;抗病機(jī)制

    中圖分類號(hào):S661.1 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2024)06-1199-14

    Advances in study of the interaction between apple and Colletotrichum gloeosporioides

    JI Zhirui1, 2, WANG Meiyu2, ZHANG Shuwu1, DU Yinan2, CONG Jialin2, XU Bingliang1*, ZHOU Zongshan2*

    (1College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, Gansu, China; 2Research Institute of Pomology, Chinese Academy of Agricultural Science, Xingcheng 125100, Liaoning, China)

    Abstract: Colletotrichum gloeosporioides can cause apple bitter rot, and anthracnose leaf blight, resulting in affecting fruit yield and quality, and causing serious economic losses to the apple industry. According to the latest fungal classification system, the C. gloeosporioides species complex consists of 13 different species, including C. gloeosporioides, C. aenigma and C. fructicola et al. Among them, C. fructicola and C. gloeosporioides are important pathogenic fungi on various fruit trees. Meanwhile, C. gloeosporioides can also cause diseases on other fruit trees such as cherry, passion fruit, and kiwifruit. In order to better prevent and control diseases, we need to have a comprehensive understanding of the classification, pathogenic mechanisms, and host interaction mechanisms of the pathogens on apples. In the process of colonizing host tissue, a number of C. gloeosporioides genes participate in different phases of infection procedures, which include conidiation, appressorium morphogenesis, melanization and penetration, biotrophy, necrotrophy, and various transport activities. In recent years, research on the pathogenic molecular mechanism of C. gloeosporioides on apples has mainly focused on the cloning and analysis of pathogenic related genes, screening and identification of effector proteins, pathogenic enzymes, and colletotoxins of C. gloeosporioides. Fungi secrete enzymes such as pectin, keratin and cellulase could help them successfully infect their hosts. New studies have shown that the adapter protein gene GcAP1 can regulate the expression of endopolygalacturonase genes (CgPG1 and CgPG2), pectin lyase genes (pnl-1, pnl-2), and pectate lyase genes (pelA, pelB), and GcAP1 is an important virulence factor of C. gloeosporioides. Currently, the successful application of PEG mediated genetic transformation and Agrobacterium mediated transformation in the study of C. gloeosporioides provides a basis for the development of pathogenic molecular mechanisms. It has been confirmed that the genes with different functions such as CgABCF2, CgCMK1, CgSET5, CgOpt1, CgNVF1, CgABCF2, CgChip6 are present in C. gloeosporioides, playing an important role in infecting apples. In addition, C2H2 transcription factors, cation stress response transcription factors CgSltA, CgCrzA, and CsHtf1 also play important roles in pathogen pathogenesis. During the infection process, C. gloeosporioides can also secrete a series of effectors to inhibit the host immune response, thereby promoting pathogen infection and colonization. Currently, scientists have analyzed the roles of effectors such as CfE12, CfEC92, and Sntf2 in C. gloeosporioides, laying the foundation for subsequent research on interactions of pathogen and host. In addition, C. gloeosporioides secrete toxins during the necrotrophic stage, causing necrosis of the host tissue. The research on apple disease resistance started relatively late, mainly focusing on germplasm resource identification, physiological and biochemical testing, disease resistance gene mining, plant hormone mediated disease resistance response, disease related transcription factors, and other mechanisms of action. Research has shown that after inoculation with anthrax fungus, the activities of superoxide dismutase (SOD), polyphenol oxidase (PPO), peroxidase (POD), catalase (CAT), and serotonin N-acetyltransferase (SNAT) in apple leaves increased, indicating that these enzymes are involved in the infection process of C. gloeosporioides. Plant hormones play an important role in plant defense and growth and development, and hormones related to plant immune responses include salicylic acid (SA), jasmonic acid (JA), ethylene (ET), abscisic acid (ABA), and so on. Research has shown that there are significant differences in the expression levels of SA synthesis related genes MdEDS1, MdPAD4, MdPAL and SA signal transduction related genes MdNPR1, MdPR1 and MdPR5 between resistant and susceptible varieties. There are differences in the resistance and susceptibility of different apple varieties to C. gloeosporioides. The Hanfu variety has been used to screen for resistance genes due to its high resistance to C. gloeosporioides. WRKY and NAC transcription factors play a crucial role in plant resistance to pathogen infection. In apples, transcription factors MdWRKY15, MdWRKY17, and MdWRKY100 enhance apple resistance to anthracnose by regulating SA accumulation. Here, we plotted the downstream regulatory patterns of AtwrKY33 and MdWRKYs involved in the MAPK cascade reaction, and presented some research results on MdWRKYs. At the end of the article, we summarized the research results on the regulatory mechanism of miRNA involvement in plant immunity. Clarifying the pathogenic process and molecular mechanism of the pathogen is of great significance for the comprehensive prevention and control of C. gloeosporioides. With the deepening of various studies, researchers will inevitably change their thinking on the prevention and control of C. gloeosporioides. Traditional chemical prevention and control methods, such as the extensive use of fungicides and insecticides, can achieve the effect of combating pathogens, but they also can cause serious harm to the environment and people. Breeding of resistant varieties is a fundamental means to solve the problems in preventing and controlling C. gloeosporioides. This article aimed to analyze the pathogenic mechanism of pathogens and their interaction with hosts, laying a theoretical foundation for screening potential candidate genes and breeding new varieties resistant to diseases.

    Key words: Apples; Colletotrichum gloeosporioides; Infection mechanism; Disease resistance mechanisms

    炭疽菌(Colletotrichum)屬小叢殼科刺盤孢屬真菌,有性型為子囊菌門盤菌亞門小叢殼屬,在溫暖和潮濕的條件下易暴發(fā)流行,是世界上重要的植物病原菌之一[1]。炭疽菌可分為14個(gè)復(fù)合種和部分種,膠胞炭疽菌(C. gloeosporioides)是重要的一個(gè)復(fù)合種,能侵染1000余種作物,危害枝干、葉部、果實(shí)等部位,造成果實(shí)腐爛、植株枯萎甚至死亡。

    C. gloeosporioides通過“半活體營(yíng)養(yǎng)”寄生并侵染寄主植物[2],在整個(gè)侵染周期主要有活體營(yíng)養(yǎng)型(biotrophic)和死體營(yíng)養(yǎng)型(necrotrophic)兩種營(yíng)養(yǎng)模式。在侵染初期活體營(yíng)養(yǎng)階段,菌體不會(huì)立即殺死周邊寄主細(xì)胞,而是感應(yīng)寄主表面的物理和化學(xué)信號(hào)(植物表面硬度、疏水性、葉片紋理、植物激素等),產(chǎn)生初侵染菌絲攝取寄主體內(nèi)營(yíng)養(yǎng)和能源。在侵染后期,分化出次生菌絲并迅速擴(kuò)展,分泌細(xì)胞壁降解酶導(dǎo)致植物組織形成壞死斑,后轉(zhuǎn)換為死體營(yíng)養(yǎng)[3-5],其生活史和侵染過程如圖1所示。

    目前,生產(chǎn)上對(duì)炭疽病的防控以化學(xué)農(nóng)藥為主,隨著人們對(duì)果品安全的逐漸重視,科研人員開展了藥劑篩選和復(fù)配[6]、農(nóng)藥助劑應(yīng)用[7]及植物免疫誘抗劑使用等[8]藥劑減量增效研究。盡管對(duì)蘋果炭疽病菌的侵染和致病研究取得一定進(jìn)展,但因其種群多樣、侵染過程復(fù)雜,對(duì)其侵染致病機(jī)制和果樹抗性機(jī)制的研究仍有待深入。筆者在本文中將圍繞蘋果膠孢炭疽菌病原學(xué)、病原菌致病機(jī)制及果樹抗性機(jī)制展開論述。

    1 侵染蘋果的膠孢炭疽菌復(fù)合群概述

    膠孢炭疽菌(C. gloeosporioides)能夠引發(fā)蘋果果實(shí)炭疽?。╝pple bitter rot)和蘋果炭疽葉枯?。℅lomerella leaf spot of apple,GLSA),也能引發(fā)果實(shí)采后炭疽病。膠孢炭疽菌復(fù)合種(C. gloeosporioides complex)是蘋果上主要的病原菌,包含果生刺盤孢(C. fructicola)、隱秘刺盤孢(C. aenigma)、膠孢刺盤孢(C. gloeosporioides)等13種不同炭疽菌,其中C. fructicola和C. gloeosporioides是多種果樹的重要致病菌,可以在無傷條件下成功侵染寄主[9-10]。除蘋果外,C. gloeosporioides還可引發(fā)櫻桃、百香果、獼猴桃等果樹病害[10-15](表1)。

    2 膠孢炭疽菌致病分子機(jī)制

    隨著生物信息學(xué)和分子生物學(xué)的發(fā)展,膠孢刺盤孢(C. gloeosporioides)、希金斯刺盤孢(C. higginsianum)、禾生刺盤孢(C. graminicola)、東方刺盤孢(C. orbiculare)等全基因組測(cè)序組裝完成并公布。在此基礎(chǔ)上,PEG介導(dǎo)的遺傳轉(zhuǎn)化[25]和農(nóng)桿菌介導(dǎo)的轉(zhuǎn)化[26]在蘋果炭疽菌研究中成功應(yīng)用,為病原菌致病分子機(jī)制的解析提供了理論依據(jù)[22-23]。近年來蘋果上膠孢炭疽菌致病分子機(jī)制的研究主要集中在致病結(jié)構(gòu)和降解酶測(cè)定、致病基因的克隆與分析、效應(yīng)蛋白篩選與功能研究及炭疽菌毒素等方面(圖2)[27-29]。

    2.1 膠孢炭疽菌致病結(jié)構(gòu)和降解酶

    炭疽菌要穿透寄主的表皮組織,需要對(duì)寄主組織施加機(jī)械壓力,即孢子萌發(fā)時(shí)形成的附著胞及其胞內(nèi)組合液產(chǎn)生膨壓,壓力施加至附著胞下部的侵染釘,當(dāng)壓力到達(dá)一定程度時(shí)直接穿透植物表皮而侵入,構(gòu)成侵染和定殖[30]。黑化附著胞的形成可能涉及一系列復(fù)雜的生物學(xué)過程,包括分泌特定的分子、改變細(xì)胞壁結(jié)構(gòu)以提供附著支持等[31]。

    植物的細(xì)胞壁是抵御病原菌侵入的天然屏障,病原菌通過分泌產(chǎn)生果膠酶、角質(zhì)酶、纖維素酶、蛋白酶等降解酶類物質(zhì)破壞寄主細(xì)胞壁,輔助其侵染和定殖。薛蓮[32]對(duì)蘋果采后炭疽病菌細(xì)胞壁降解酶活性進(jìn)行分析,明確聚甲基半乳糖醛酸酶(PMG)和羧甲基纖維素酶(Cx)在病原菌侵染中發(fā)揮重要作用。研究表明,銜接蛋白GcAP1復(fù)合體分布于細(xì)胞質(zhì)中,GcAP1基因能夠調(diào)控多聚半乳糖醛酸內(nèi)切酶基因(CgPG1、CgPG2)、果膠裂解酶基因(pnl-1、pnl-2)及果膠酸酯裂解酶基因(pelA、pelB)的表達(dá),從而影響炭疽菌的生長(zhǎng)發(fā)育和毒力[33]。研究表明,膠孢炭疽菌pH依賴性轉(zhuǎn)錄因子CgPacC能夠調(diào)節(jié)細(xì)胞壁降解酶、轉(zhuǎn)運(yùn)蛋白和抗氧化劑的表達(dá),在病原菌定殖中發(fā)揮重要作用[34]。

    2.2 膠孢炭疽菌侵染階段相關(guān)致病基因挖掘與分析

    C. gloeosporioides成功侵染定殖包括分生孢子萌發(fā)、附著胞形成、黑色素生成、侵染釘穿透寄主組織等不同階段,涉及的基因及其調(diào)控機(jī)制較為復(fù)雜,目前的研究以單一基因?yàn)橹鳌?/p>

    Zhao等[35]證實(shí)蘋果炭疽葉枯病菌染色質(zhì)調(diào)節(jié)基因CgSET5在菌絲生長(zhǎng)、分生孢子形成、附著胞形成、細(xì)胞壁完整性、致病性中發(fā)揮重要作用,并同時(shí)參與過氧化物酶體的生物反應(yīng),是C. gloeosporioides的核心致病調(diào)節(jié)因子。該團(tuán)隊(duì)在后續(xù)研究中證實(shí)單羧酸轉(zhuǎn)運(yùn)蛋白CgMCT1參與了C. gloeosporioides營(yíng)養(yǎng)生長(zhǎng)、黑色素形成、分生孢子形成,且參與寄主體內(nèi)ROS降解[27]。Zhou等[28]發(fā)現(xiàn)當(dāng)炭疽菌CgABCF2基因缺失后,菌絲生長(zhǎng)速率和附著胞數(shù)量顯著下降,導(dǎo)致致病性喪失。張俊祥等[36-37]研究證實(shí)CgCMK1、CgNVF1在炭疽菌分生孢子和附著胞中的表達(dá),對(duì)分生孢子產(chǎn)量、附著胞形成、氧化脅迫應(yīng)答反應(yīng)及致病性等方面均有影響。徐杰[38]證實(shí)蘋果炭疽葉枯病菌基因GTPBP1在調(diào)控附著胞的形成中發(fā)揮作用。譚清群[39]研究證實(shí)氨甲酰磷酸合成酶(carbamyl phosphate synthase,CPS)小亞基基因Cpa1通過調(diào)控精氨酸的合成從而影響病原菌致病力。研究表明,寡肽轉(zhuǎn)運(yùn)蛋白基因CgOpt1在菌絲中表達(dá),參與真菌對(duì)IAA反應(yīng)的調(diào)節(jié),通過影響產(chǎn)孢和色素沉積來降低病菌的致病性[40]。甾醇糖基轉(zhuǎn)移酶編碼基因CgChip6參與分生孢子萌發(fā)和附著胞的形成,該基因缺失后病原菌毒力顯著下降[41]。Liang等[42]對(duì)果生炭疽菌(C. fructicola)1104-7基因組進(jìn)行了測(cè)序和組裝,獲得了高質(zhì)量參考基因組,為C. fructicola致病相關(guān)基因的研究提供了重要的理論和數(shù)據(jù)支撐。

    2.3 轉(zhuǎn)錄因子調(diào)控膠孢炭疽菌分子機(jī)制

    轉(zhuǎn)錄因子(transcription factor,TF)能夠與基因啟動(dòng)子區(qū)域的順式作用元件進(jìn)行特異性互作,從而調(diào)控目的基因的表達(dá)強(qiáng)度,可分為4類,即鋅指蛋白(包括3類:C2H2、C4和C6)、堿性亮氨酸拉鏈、堿性螺旋環(huán)螺旋和同源異形盒類轉(zhuǎn)錄因子[43]。已有研究表明,膠孢炭疽菌的轉(zhuǎn)錄因子在表達(dá)調(diào)控中能起到協(xié)調(diào)作用,能夠促進(jìn)附著胞黑化和定殖。C2H2鋅指蛋白型轉(zhuǎn)錄因子CgAzf1、CgCrzA及CgGcp1能夠調(diào)控黑色素生物合成途徑相關(guān)基因的表達(dá),參與分生孢子的萌發(fā)和侵染過程[31,44-45]。CfSte12能夠調(diào)控與附著胞功能相關(guān)的四次穿模蛋白PLS1(tetraspanin PLS1)、Gas1樣蛋白(Gas1-like proteins)、角質(zhì)酶和黑色素合成的基因表達(dá)[46]。陽離子脅迫反應(yīng)轉(zhuǎn)錄因子CgSltA、CgCrzA及CsHtf1在炭疽菌營(yíng)養(yǎng)生長(zhǎng)、分生孢子產(chǎn)生、附著胞形成和致病性等方面均發(fā)揮重要作用[45,47]。堿性亮氨酸拉鏈(basic leucine zipper,bZIP)轉(zhuǎn)錄因子CgAP1在C. gloeosporioides中起氧化還原傳感器的作用[48-49]。轉(zhuǎn)錄因子CfMcm1是C. fructicola的關(guān)鍵調(diào)節(jié)因子,在病原菌無性繁殖、黑色素形成、致病性、果膠酶降解等過程中發(fā)揮作用[50]。

    2.4 效應(yīng)蛋白篩選及功能研究

    在侵染過程中,炭疽菌通過分泌一系列效應(yīng)蛋白抑制寄主免疫反應(yīng),從而促進(jìn)病原菌的侵染和定殖[51-52],不同侵染階段所分泌的效應(yīng)因子功能不同[3,53]。隨著基因組測(cè)序的應(yīng)用,炭疽菌中多個(gè)候選的效應(yīng)因子被成功篩選鑒定[54-55]。真菌胞外膜蛋白CFEM(common in several fungal extracellular membrane)是真菌所獨(dú)有的蛋白結(jié)構(gòu)域,與病原菌致病性密切相關(guān)。Shang等[56]研究證實(shí),刺盤孢屬真菌CFEM型效應(yīng)因子CfEC12能夠與蘋果中MdNIMIN2互作,與水楊酸受體NPR1競(jìng)爭(zhēng)MdNIMIN2蛋白的結(jié)合位點(diǎn),從而抑制蘋果抗性基因的表達(dá)和免疫反應(yīng)。LysM型效應(yīng)蛋白可以保護(hù)真菌細(xì)胞壁免受植物幾丁質(zhì)酶的作用或隔離釋放的殼寡糖,從而避免被植物的防御系統(tǒng)識(shí)別,其具有幾丁質(zhì)結(jié)合活性,可以結(jié)合幾丁質(zhì)從而抑制植物的PTI(pattern-triggered immunity),促進(jìn)病原菌的侵染[57]。Shang等[58]研究證實(shí)C. fructicola中效應(yīng)蛋白CfEC92在早期附著胞生成和附著胞介導(dǎo)的滲透階段上調(diào)表達(dá),抑制蘋果的PTI和相關(guān)防御基因表達(dá),促進(jìn)病原菌侵染。王美玉[59]開展效應(yīng)蛋白Sntf2功能研究,證實(shí)其能夠與葉綠體組裝因子Mdycf39互作干擾葉綠體功能,從而抑制寄主植物的免疫反應(yīng),促進(jìn)C. gloeosporioides的侵染和定殖。

    2.5 膠孢炭疽菌毒素

    炭疽菌在死體營(yíng)養(yǎng)階段通過分泌毒素造成寄主組織壞死。目前,對(duì)于炭疽菌毒素的研究多集中在毒素生物學(xué)測(cè)定、成分鑒定純化階段。C. gloeosporioides產(chǎn)生的毒素為非寄主?;远舅兀軌蚯秩径喾N寄主。Khodadadi等[60]分離鑒定了蘋果苦腐病病原菌,明確其毒素能夠?qū)?種不同樹種造成危害,關(guān)于炭疽菌的毒素和作用機(jī)制仍然有待進(jìn)一步深入研究。

    3 蘋果抗膠胞炭疽菌侵染的分子機(jī)制

    果樹在自然環(huán)境中會(huì)受到各類病原物的侵染,為了抵御病原菌的侵染,植物進(jìn)化出識(shí)別和抵御病原菌的PTI和ETI兩層免疫系統(tǒng)[61]。第一層免疫系統(tǒng)是由植物細(xì)胞質(zhì)膜上的模式識(shí)別受體感知微生物相關(guān)分子模式(microbe-associated molecular pattern,MAMPs)或損傷相關(guān)分子模式(damage-associated molecular pattern,DAMPs)而觸發(fā)一系列的免疫反應(yīng),稱為“模式觸發(fā)免疫”(PTI),該免疫反應(yīng)包括活性氧(reactive oxygen species,ROS)的激活及抗病基因表達(dá)量上調(diào)等[62-63]。病原菌為了應(yīng)對(duì)植物的PTI免疫反應(yīng)進(jìn)化出毒力蛋白(效應(yīng)因子),抑制植物PTI反應(yīng),從而成功侵入,這一中間過程被稱為“效應(yīng)因子觸發(fā)的易感性”,即EST(effector-triggered susceptibility)。最后,植物進(jìn)化出識(shí)別和抵御這些效應(yīng)子的胞內(nèi)NLR來誘導(dǎo)更為強(qiáng)大的抗性反應(yīng),即第二層免疫“效應(yīng)因子觸發(fā)的免疫”,ETI(effector-triggered immunnity)[64-65]。ETI的免疫反應(yīng)主要包括程序性細(xì)胞死亡的過敏性反應(yīng)(hypersensitive responses,HR)、Ca2+內(nèi)流、胼胝質(zhì)的沉積等。植物在PTI和ETI期間,產(chǎn)生的免疫反應(yīng)幅度和時(shí)間有所不同,但所觸發(fā)的免疫信號(hào)網(wǎng)絡(luò)和下游反應(yīng)有所重疊[66-68]。

    蘋果抗炭疽病的研究起步相對(duì)較晚,主要開展了種質(zhì)資源鑒定[69]、生理生化檢測(cè)、抗病基因挖掘、植物激素介導(dǎo)的抗病反應(yīng)及抗病相關(guān)轉(zhuǎn)錄因子[70]作用機(jī)制等研究。

    3.1 生理生化變化

    研究表明接種炭疽菌后,嘎拉和富士葉片內(nèi)超氧化物歧化酶(superoxide dismutase,SOD)、多酚氧化酶(polyphenoloxidas,PPO)、過氧化物酶(peroxidase,POD)、過氧化氫酶(catalase,CAT)、5-羥色胺-N-乙?;D(zhuǎn)移酶(SNAT)的活性增強(qiáng),其相關(guān)基因表達(dá)量呈先升后降的趨勢(shì),表明以上酶類參與了炭疽葉枯病菌的侵染過程[71-72]。蘋果不同組織被炭疽菌侵染后,PPO、POD、苯丙氨酸解氨酶(phenylalanine ammonia-lyase,PAL)等7種酶活性均有不同程度的提高[73-75]。通過分析不同抗感品種感染炭疽菌后細(xì)胞壁降解酶活性的變化,證實(shí)甲基半乳糖醛酸酶(PMG)和羧甲基纖維素酶(Cx)在病菌侵染過程中發(fā)揮作用,且抗病品種中細(xì)胞壁降解酶活性高峰的出現(xiàn)早于感病品種[76]。白靜科[30]比較了C. fructicola侵染后抗感品種中過氧化氫(H2O2)和乳突產(chǎn)生的差異,發(fā)現(xiàn)炭疽菌的侵染誘導(dǎo)了蘋果細(xì)胞中H2O2的積累和乳突的產(chǎn)生,并隨著侵染時(shí)間延長(zhǎng)不斷積累。此外,生防菌也可以通過提高感病品種嘎拉葉片中POD、CAT、SOD等防御酶活性,減少活性氧的積累,從而誘導(dǎo)蘋果對(duì)炭疽菌的抗性[77]。

    3.2 植物激素

    植物激素在植物防御和生長(zhǎng)發(fā)育中發(fā)揮重要作用,與植物免疫反應(yīng)相關(guān)的激素包括水楊酸(SA)、茉莉酸(JA)、乙烯(ET)、脫落酸(ABA)等。SA和JA-ET激素作為重要的調(diào)控因子,在蘋果生物和非生物脅迫反應(yīng)中發(fā)揮重要作用[78-79]。SA是通過異分支酸合成酶(ICS)和苯丙氨酸解氨酶(PAL)途徑合成。在應(yīng)激條件下,超過90%的受刺激SA是通過ICS合成的[80]。當(dāng)沒有遇到病原體或逆境時(shí),植物細(xì)胞積累相對(duì)較低濃度的SA,外源噴施SA可增強(qiáng)抗病相關(guān)酶的活性,誘導(dǎo)高感蘋果品種對(duì)C. gloeosporioides產(chǎn)生抗性[81-82]。在蘋果中,藤牧1號(hào)、40-9及16-16等抗性品種(系)中SA合成相關(guān)基因MdEDS1、MdPAD4和MdPAL被C. gloeosporioides誘導(dǎo)表達(dá),SA信號(hào)轉(zhuǎn)導(dǎo)相關(guān)基因MdNPR1、MdPR1、MdPR5的表達(dá)量顯著高于嘎拉等感病品種(系)[83]。水楊酸合成途徑中的關(guān)鍵酶MdICS1可以被G. cingulata誘導(dǎo)上調(diào)表達(dá),而JA、ABA和ETH三種外源信號(hào)可抑制其表達(dá)。

    3.3 蘋果抗病基因挖掘

    不同蘋果品種對(duì)炭疽菌抗感表現(xiàn)存在差異,在田間蘋果炭疽葉枯病的表現(xiàn)尤為突出[84]。馬玉鑫[85]研究表明,寒富品種CDPK基因家族成員MdCDPK24基因在炭疽菌侵染后顯著上調(diào)表達(dá)。對(duì)寒富蘋果同源四倍體進(jìn)行轉(zhuǎn)錄組測(cè)序,發(fā)現(xiàn)MdCaMBP6、MdIPT8在蘋果炭疽葉枯病菌侵染后顯著上調(diào)表達(dá),能夠提高品種抗性[86-87]。Guo等[88]報(bào)道湖北蘋果M. hupehensis YT521-B同源結(jié)構(gòu)域包含蛋白2(MhYTP2),其與MdRGA2L mRNA結(jié)合并降低其穩(wěn)定性,在調(diào)節(jié)對(duì)炭疽葉枯病的抗性中發(fā)揮重要作用,可用于開發(fā)具有GLS抗性的蘋果品種。劉源霞等[89]采用分離群體分組分析(BSA)方法,篩選獲得了一個(gè)與抗病性狀相關(guān)的分子標(biāo)記S0506206-24,在此基礎(chǔ)上,采用全基因組重測(cè)序和BSA相結(jié)合的方法,在該雜交群體中定位了1個(gè)蘋果抗炭疽葉枯病基因位點(diǎn)Rgls,并將其精細(xì)定位于標(biāo)記InDel4199和SNP4299之間[90],室內(nèi)接種驗(yàn)證與Rgls位點(diǎn)緊密連鎖的4個(gè)分子標(biāo)記S0405127(SSR)、S0304673(SSR)、SNP4236和InDel4254,準(zhǔn)確率均高于90%[91]。

    3.4 抗病相關(guān)轉(zhuǎn)錄因子參與的防御反應(yīng)

    植物被病原物感染后,當(dāng)病原體相關(guān)的分子模式(PAMP)或效應(yīng)器被植物識(shí)別時(shí),細(xì)胞內(nèi)的信號(hào)可以被激活,導(dǎo)致活性氧簇(ROS)的產(chǎn)生、絲裂原激活的蛋白激酶(MAPK)激活和防御基因的表達(dá)[62]。MAPKs能夠靶向并磷酸化調(diào)節(jié)下游基因轉(zhuǎn)錄的轉(zhuǎn)錄因子,最終響應(yīng)病原菌的侵入。已報(bào)道的與炭疽菌侵染響應(yīng)相關(guān)的轉(zhuǎn)錄因子有AP2/ERF、TGACG基序結(jié)合因子(BZIP)、MYC2(BHLH)、ARF、MYB、WRKY和NAC等7種,后兩者是高等植物特有的轉(zhuǎn)錄因子家族[92]。WRKYs轉(zhuǎn)錄因子作為MAPK級(jí)聯(lián)反應(yīng)的重要靶標(biāo),在植物對(duì)病原菌的抗性中起關(guān)鍵作用。當(dāng)病原菌侵入后,SA依賴的WRKY基因會(huì)迅速表達(dá)并積累,與抗病基因啟動(dòng)子上的W盒[W-box,TTGAC(C/T)]特異性結(jié)合,啟動(dòng)防御反應(yīng),從而形成復(fù)雜的WRKY調(diào)控網(wǎng)絡(luò)。在蘋果中,MKK4-MPK3下游轉(zhuǎn)錄因子MdWRKY15、MdWRKY17及MdWRKY100通過調(diào)控SA積累增強(qiáng)蘋果對(duì)炭疽菌的抗性[70,93]。其中,MdWRKY100正向調(diào)節(jié)蘋果對(duì)C. gloeosporioides的抗性;C. fructicola可提高感病品種中MdWRKY17蛋白積累,誘導(dǎo)MdMEK4-MdMPK3-MdWRKY17-MdDMR6-SA途徑,加速SA降解,從而降低果樹抗性[94]。此外,有研究表明,MdWRKY15通過激活SA合成酶MdICS1的表達(dá)增強(qiáng)對(duì)輪紋病的抗性[95]。酯酶/脂肪酶GELP1是MPK3/MPK6及其下游轉(zhuǎn)錄因子MdWRKY100的靶標(biāo),在蘋果抵御病原菌侵染中發(fā)揮重要作用[96]。Li等[97]和Lippok等[98]研究證實(shí),γ-氨基丁酸(GABA)關(guān)鍵合成基因MdGAD1能夠與MdWRKY33互作,增強(qiáng)轉(zhuǎn)基因蘋果愈傷組織形成和葉片的抗氧化能力,正向調(diào)控蘋果對(duì)C. gloeosporioides的抗性。此外,MdWRKY31能夠與蘋果超敏反應(yīng)蛋白MdHIR4(hypersensitive-induced reaction? protein,HIR)相互作用,影響SA信號(hào)通路中基因的轉(zhuǎn)錄從而調(diào)節(jié)蘋果對(duì)葡萄座腔菌B.dothidea的抗性[99]。MdWRKY75能夠與MdRAC7啟動(dòng)子結(jié)合,調(diào)節(jié)漆酶的生物合成,并在蘋果斑點(diǎn)落葉病菌Alternaria alternata感染期間促進(jìn)了木質(zhì)素的合成[100]。最新研究表明,MdVQ10能夠與MdWRKY75互作,增強(qiáng)衰老相關(guān)基因MdSAG12和MdSAG18的轉(zhuǎn)錄,促進(jìn)葉片損傷引發(fā)的衰老進(jìn)程[101]。然而,以上幾個(gè)轉(zhuǎn)錄因子是否在蘋果對(duì)炭疽菌抗性中也發(fā)揮著相同或類似的作用仍有待進(jìn)一步驗(yàn)證(圖3)。

    3.5 miRNA參與植物免疫的調(diào)控機(jī)制

    非編碼的RNA分為微小RNA(microRNAs,miRNAs)和小干擾RNA(small interfering RNAs,siRNA)兩大類,miRNA是植物生長(zhǎng)發(fā)育和脅迫應(yīng)答中重要的調(diào)控因子[102]。miRNA可能參與調(diào)節(jié)病原菌感染中胼胝質(zhì)沉積過程,在模式植物擬南芥中,miR773靶向抑制甲基轉(zhuǎn)移酶2(MET2),影響胼胝質(zhì)沉積和ROS累積,負(fù)調(diào)控C. higginianum的抗病性[103]。Zhang等[104]研究發(fā)現(xiàn),Md-miRln20靶向Md-TN1-GLS負(fù)調(diào)控蘋果對(duì)膠孢炭疽菌的侵染。此外,Zhang等[105]研究證實(shí)兩種CCR-NB-LRR蛋白MdRNL2和MdRNL6能夠形成復(fù)合物,抑制病原菌生長(zhǎng),提高了蘋果樹對(duì)蘋果斑點(diǎn)落葉病菌A. alternata的抗性,進(jìn)一步研究證實(shí)其同樣能夠提高果樹對(duì)C. gloeosporioides的抗性[106]。張亞楠等[107]分析了抗感品種中抗病相關(guān)miRNA的表達(dá)量差異,預(yù)測(cè)miR390a、miR482b及miR396b/c/f 在蘋果被炭疽菌侵染中發(fā)揮重要作用。Shen等[108]研究發(fā)現(xiàn),Mdm-miR160-MdARF17-MdWRKY33模塊能夠通過調(diào)節(jié)活性氧(ROS)提高蘋果耐寒性能,但其對(duì)病原菌致病力的影響仍未證實(shí)。上述結(jié)果對(duì)果樹抗病育種起重要的推動(dòng)作用。

    4 問題與展望

    近年來,在分子生物學(xué)和生物信息學(xué)的推動(dòng)下,蘋果和炭疽菌互作方面的研究取得了巨大進(jìn)展。筆者詳細(xì)闡述了蘋果炭疽菌組成、病原菌侵染相關(guān)基因及其與寄主互作的研究進(jìn)展。明確病原菌致病過程及其分子機(jī)制,對(duì)蘋果炭疽葉枯病的綜合防控具有重要意義,隨著各項(xiàng)研究的日益深入,研究者對(duì)炭疽病的防控思路必將有所轉(zhuǎn)變。

    炭疽菌對(duì)蘋果產(chǎn)業(yè)造成巨大危害,由于炭疽菌具有潛伏侵染的特性,果樹病害監(jiān)測(cè)不僅耗時(shí)費(fèi)力,還存在一定的技術(shù)難題。利用傳統(tǒng)的化學(xué)防控手段,通過大量使用殺菌劑和殺蟲劑等雖能達(dá)到對(duì)抗病原菌的效果,但對(duì)環(huán)境和人體也會(huì)造成嚴(yán)重的危害。隨著生活水平的不斷提高,健康問題已經(jīng)逐漸成為關(guān)注的焦點(diǎn)。目前,研發(fā)生態(tài)友好型生物防治策略已經(jīng)被人們廣泛接受和認(rèn)可,前景一片光明。開展抗性品種選育是從根本上解決果樹炭疽菌防控難問題的有效手段,符合現(xiàn)代農(nóng)業(yè)的生產(chǎn)需求[109-110]。解析抗病機(jī)制能夠?yàn)樘O果抗病性改良提供重要的理論依據(jù),是果業(yè)科研的重點(diǎn)研究領(lǐng)域。

    生物信息學(xué)和分子生物學(xué)的各種先進(jìn)技術(shù)為作物改良提供了其他途徑,能夠極大地縮短果樹育種周期,解決傳統(tǒng)實(shí)生苗選育耗時(shí)長(zhǎng)的難題。通過構(gòu)建蘋果高效遺傳轉(zhuǎn)化體系進(jìn)一步開展基因編輯、RNA干擾等生物育種技術(shù)研究,培育具有優(yōu)良性狀的蘋果新種質(zhì)或新品種是果樹科研工作者努力的方向[110]。

    總之,了解蘋果與炭疽菌互作的分子機(jī)制,能夠?yàn)榕嘤共∑贩N和創(chuàng)新病害防控策略提供新的見解,對(duì)果樹產(chǎn)業(yè)健康發(fā)展具有重要的指導(dǎo)意義。

    參考文獻(xiàn) References:

    [1] DEAN R,VAN KAN J A L,PRETORIUS Z A,HAMMOND-KOSACK K E,DI PIETRO A,SPANU P D,RUDD J J,DICKMAN M,KAHMANN R,ELLIS J,F(xiàn)OSTER G D. The Top 10 fungal pathogens in molecular plant pathology[J]. Molecular Plant Pathology,2012,13(4):414-430.

    [2] DE SILVA D D,CROUS P W,ADES P K,HYDE K D,TAYLOR P W J. Life styles of Colletotrichum species and implications for plant biosecurity[J]. Fungal Biology Reviews,2017,31(3):155-168.

    [3] OCONNELL R,HERBERT C,SREENIVASAPRASAD S,KHATIB M,ESQUERR?-TUGAY? M T,DUMAS B. A novel Arabidopsis-Colletotrichum pathosystem for the molecular dissection of plant-fungal interactions[J]. Molecular Plant-Microbe Interactions,2004,17(3):272-282.

    [4] TUCKER S L,TALBOT N J. Surface attachment and pre-penetration stage development by plant pathogenic fungi[J]. Annual Review of Phytopathology,2001,39:385-417.

    [5] M?NCH S,LINGNER U,F(xiàn)LOSS D S,LUDWIG N,SAUER N,DEISING H B. The hemibiotrophic lifestyle of Colletotrichum species[J]. Journal of Plant Physiology,2008,165(1):41-51.

    [6] 梁曉飛,侯彥忠,白云芳,李蘇莉,孫廣宇,朱明旗. 防控蘋果炭疽葉枯病的化學(xué)農(nóng)藥減量增效研究[J]. 陜西農(nóng)業(yè)科學(xué),2022,68(1):39-43.

    LIANG Xiaofei,HOU Yanzhong,BAI Yunfang,LI Suli,SUN Guangyu,ZHU Mingqi. Studies on improvement of chemical fungicide efficiency in control of apple Glomerella leaf spot disease[J]. Shaanxi Journal of Agricultural Sciences,2022,68(1):39-43.

    [7] 劉安泰,張朝敏,李紫騰,曹克強(qiáng),孟祥龍,胡同樂. 有機(jī)硅助劑在蘋果炭疽葉枯病化學(xué)防控中的減藥增效作用評(píng)價(jià)[J]. 植物保護(hù),2022,48(1):284-290.

    LIU Antai,ZHANG Chaomin,LI Ziteng,CAO Keqiang,MENG Xianglong,HU Tongle. Evaluation of increasing control effect and reducing fungicide effect of organosilicon adjuvant on chemical control of Glomerella apple leaf spot[J]. Plant Protection,2022,48(1):284-290.

    [8] 劉禹彤,徐瑞旋,王洪濤,時(shí)彥嬌,李翠英,馬鋒旺,梁微. 外源甜菜堿提高蘋果對(duì)炭疽葉枯病的抗病性[J]. 果樹學(xué)報(bào),2022,39(7):1252-1261.

    LIU Yutong,XU Ruixuan,WANG Hongtao,SHI Yanjiao,LI Cuiying,MA Fengwang,LIANG Wei. Exogenous glycine betaine improved the resistance of apple to Glomerella leaf spot[J]. Journal of Fruit Science,2022,39(7):1252-1261.

    [9] WENNEKER M,PHAM K,KERKHOF E,HARTEVELD D O C. First report of preharvest fruit rot of ‘Pink Lady apples caused by Colletotrichum fructicola in Italy[J]. Plant Disease,2021,105(5):1561.

    [10] XU C N,ZHOU Z S,WU Y X,CHI F M,JI Z R,ZHANG H J. First report of stem and leaf anthracnose on blueberry caused by Colletotrichum gloeosporioides in China[J]. Plant Disease,2013,97(6):845.

    [11] 劉麗萍,高潔,李玉. 植物炭疽菌屬Colletotrichum真菌研究進(jìn)展[J]. 菌物研究,2020,18(4):266-281.

    LIU Liping,GAO Jie,LI Yu. Advances in knowledge of the fungi referred to the genus Colletotrichum[J]. Journal of Fungal Research,2020,18(4):266-281.

    [12] 王薇,符丹丹,張榮,孫廣宇. 蘋果炭疽葉枯病病原學(xué)研究[J]. 菌物學(xué)報(bào),2015,34(1):13-25.

    WANG Wei,F(xiàn)U Dandan,ZHANG Rong,SUN Guangyu. Etiology of apple leaf spot caused by Colletotrichum spp.[J]. Mycosystema,2015,34(1):13-25.

    [13] LI Q L,BU J Y,SHU J,YU Z H,TANG L H,HUANG S P,GUO T X,MO J Y,LUO S M,SOLANGI G S,HSIANG T. Colletotrichum species associated with mango in Southern China[J]. Scientific Reports,2019,9(1):18891.

    [14] ZHANG R,WANG S F,CUI J Q,SUN G Y,GLEASON M L. First report of bitter rot caused by Colletotrichum acutatum on apple in China[J]. Plant Disease,2008,92(10):1474.

    [15] CHEN Y,F(xiàn)U D D,WANG W,GLEASON M L,ZHANG R,LIANG X F,SUN G Y. Diversity of Colletotrichum species causing apple bitter rot and Glomerella leaf spot in China[J]. Journal of Fungi,2022,8(7):740.

    [16] YANG Z N,MO J Y,GUO T X,LI Q L,TANG L H,HUANG S P,WEI J G,HSIANG T. First report of Colletotrichum fructicola causing anthracnose on Pouteria campechiana in China[J]. Plant Disease,2021,105(3):708.

    [17] TANG Z Y,LOU J,HE L Q,WANG Q D,CHEN L H,ZHONG X T,WU C F,ZHANG L Q,WANG Z Q. First report of Colletotrichum fructicola causing anthracnose on cherry (Prunus avium) in China[J]. Plant Disease,2021,106(1):317.

    [18] HU Y F,LUO X X,XU Z H,ZHANG L H,WANG Y Q,CUI R Q,KUANG W G,XIA Y Y,MA J. First report of Colletotrichum fructicola causing anthracnose on Punica granatum in China[J]. Plant Disease,2023,107(9):2863.

    [19] LI W Z,RAN F,LONG Y H,MO F X,SHU R,YIN X H. Evidences of Colletotrichum fructicola causing anthracnose on Passiflora edulis Sims in China[J]. Pathogens,2021,11(1):6.

    [20] ZHANG Z H,YAN M J,LI W W,GUO Y Z,LIANG X F. First report of Colletotrichum aenigma causing apple Glomerella leaf spot on the Granny Smith cultivar in China[J]. Plant Disease,2021,105(5):1563.

    [21] ZHANG Y J,SUN W X,NING P,GUO T X,HUANG S P,TANG L H,LI Q L,MO J Y. First report of anthracnose of Papaya (Carica papaya L.) caused by Colletotrichum siamense in China[J]. Plant Disease,2021,105(8):2252.

    [22] FAN Y C,GUO F Y,WU R H,CHEN Z Q,LI Z. First report of Colletotrichum gloeosporioides causing anthracnose on grapevine (Vitis vinifera) in Shaanxi Province,China[J]. Plant Disease,2023,107(7):2249.

    [23] AHMAD T,WANG J J,ZHENG Y Q,MUGIZI A E,MOOSA A,NIE C R,LIU Y. First record of Colletotrichum alienum causing postharvest anthracnose disease of mango fruit in China[J]. Plant Disease,2021,105(6):1852.

    [24] WANG N,XU J,ZHAO X Z,WANG M Y,ZHANG J X. First report of Glomerella leaf spot of apple caused by Colletotrichum asianum[J]. Plant Disease,2020,104(10):2734.

    [25] 韓小路,白靜科,張瑋,張榮,孫廣宇. PEG介導(dǎo)的蘋果果生刺盤孢Colletotrichum fructicola原生質(zhì)體轉(zhuǎn)化[J]. 西北農(nóng)業(yè)學(xué)報(bào),2016,25(3):442-449.

    HAN Xiaolu,BAI Jingke,ZHANG Wei,ZHANG Rong,SUN Guangyu. PEG-mediated transformation of Colletotrichum fructicola[J]. Acta Agriculturae Boreali-Occidentalis Sinica,2016,25(3):442-449.

    [26] 徐杰,王美玉,王娜,周宗山,張俊祥. 適用于ATMT介導(dǎo)的RNA干擾載體的構(gòu)建及在蘋果炭疽葉枯病菌中的應(yīng)用[J]. 基因組學(xué)與應(yīng)用生物學(xué),2020,39(9):4053-4057.

    XU Jie,WANG Meiyu,WANG Na,ZHOU Zongshan,ZHANG Junxiang. Construction of RNAi vector and application of ATMT-mediated genetic transformation in Colletotrichum gloeosporioides of apple[J]. Genomics and Applied Biology,2020,39(9):4053-4057.

    [27] WU J Y,JI Z R,WANG N,CHI F M,XU C N,ZHOU Z S,ZHANG J X. Identification of conidiogenesis-associated genes in Colletotrichum gloeosporioides by Agrobacterium tumefaciens-mediated transformation[J]. Current Microbiology,2016,73(6):802-810.

    [28] ZHOU Z S,WU J Y,WANG M Y,ZHANG J X. ABC protein CgABCF2 is required for asexual and sexual development,appressorial formation and plant infection in Colletotrichum gloeosporioides[J]. Microbial Pathogenesis,2017,110:85-92.

    [29] WANG M Y,JI Z R,YAN H F,XU J,ZHAO X Z,ZHOU Z S. Effector Sntf2 interacted with chloroplast-related protein Mdycf39 promoting the colonization of Colletotrichum gloeosporioides in apple leaf[J]. International Journal of Molecular Sciences,2022,23(12):6379.

    [30] 白靜科. 果生炭疽菌Colletotrichum fructicola與蘋果不同抗性品種互作研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2016.

    BAI Jingke. Interaction between resistant and susceptible apple cultivars and Colletotrichum fructicola[D]. Yangling:Northwest A & F University,2016.

    [31] 張興媛,王地廣,高菁,唐雯,李曉宇. 膠孢炭疽菌C2H2型轉(zhuǎn)錄因子CgGcp1的生物學(xué)功能[J]. 微生物學(xué)通報(bào),2022,49(7):2587-2598.

    ZHANG Xingyuan,WANG Diguang,GAO Jing,TANG Wen,LI Xiaoyu. Biological functions of a C2H2 transcription factor CgGcp1 in Colletotrichum gloeosporioides[J]. Microbiology China,2022,49(7):2587-2598.

    [32] 薛蓮. 采后蘋果與炭疽菌互作的生理生化機(jī)制的研究[D]. 合肥:安徽農(nóng)業(yè)大學(xué),2005.

    XUE Lian. Studies on physiological and biochemical mechanism of host-pathogen reaction between postharvest apple and Colletotrichum gloeosporioides[D]. Hefei:Anhui Agricultural University,2005.

    [33] 張俊祥,冀志蕊,王娜,徐成楠,遲福梅,周宗山. 蘋果炭疽葉枯病菌GcAP1復(fù)合體β亞基基因的克隆及功能分析[J]. 中國(guó)農(nóng)業(yè)科學(xué),2017,50(8):1430-1439.

    ZHANG Junxiang,JI Zhirui,WANG Na,XU Chengnan,CHI Fumei,ZHOU Zongshan. Gene cloning and functional analysis of GcAP1 complex beta subunit in Glomerella cingulata[J]. Scientia Agricultura Sinica,2017,50(8):1430-1439.

    [34] ALKAN N,MENG X C,F(xiàn)RIEDLANDER G,REUVENI E,SUKNO S,SHERMAN A,THON M,F(xiàn)LUHR R,PRUSKY D. Global aspects of pacC regulation of pathogenicity genes in Colletotrichum gloeosporioides as revealed by transcriptome analysis[J]. Molecular Plant-Microbe Interactions,2013,26(11):1345-1358.

    [35] ZHAO X Z,TANG B Z,XU J,WANG N,ZHOU Z S,ZHANG J X. A SET domain-containing protein involved in cell wall integrity signaling and peroxisome biogenesis is essential for appressorium formation and pathogenicity of Colletotrichum gloeosporioides[J]. Fungal Genetics and Biology,2020,145:103474.

    [36] 張俊祥,王美玉,遲福梅,徐杰,周宗山. 蘋果炭疽葉枯病菌CgCMK1基因的克隆與功能分析[J]. 植物病理學(xué)報(bào),2020,50(1):40-48.

    ZHANG Junxiang,WANG Meiyu,CHI Fumei,XU Jie,ZHOU Zongshan. Cloning and functional analysis of CgCMK1 in Colletotrichum gloeosporioides[J]. Acta Phytopathologica Sinica,2020,50(1):40-48.

    [37] 張俊祥,王美玉,徐成楠,周宗山. 蘋果炭疽葉枯病菌致病相關(guān)基因CgNVF1的功能初步分析[J]. 植物病理學(xué)報(bào),2018,48(6):810-816.

    ZHANG Junxiang,WANG Meiyu,XU Chengnan,ZHOU Zongshan. Functional analysis of the pathogenicity-related gene CgNVF1 in Colletotrichum gloeosporioides[J]. Acta Phytopathologica Sinica,2018,48(6):810-816.

    [38] 徐杰. 蘋果炭疽葉枯病菌GTP結(jié)合蛋白GTPBP1的功能分析[D]. 北京:中國(guó)農(nóng)業(yè)科學(xué)院,2020.

    XU Jie. Function analysis of GTP-binding protein GTPBP1 in Colletotrichum gloeosporioides[D]. Beijing:Chinese Academy of Agricultural Sciences,2020.

    [39] 譚清群. 蘋果炭疽葉枯病菌CPA1基因的鑒定與功能分析[D]. 長(zhǎng)沙:湖南農(nóng)業(yè)大學(xué),2021.

    TAN Qingqun. Identification and functional analysis of CPA1 in Colletotrichum gloeosporioides[D]. Changsha:Hunan Agricultural University,2021.

    [40] CHAGU? V,MAOR R,SHARON A. CgOpt1,a putative oligopeptide transporter from Colletotrichum gloeosporioides that is involved in responses to auxin and pathogenicity[J]. BMC Microbiology,2009,9:173.

    [41] KIM Y K,WANG Y H,LIU Z M,KOLATTUKUDY P E. Identification of a hard surface contact-induced gene in Colletotrichum gloeosporioides conidia as a sterol glycosyl transferase,a novel fungal virulence factor[J]. The Plant Journal,2002,30(2):177-187.

    [42] LIANG X F,CAO M Y,LI S,KONG Y Y,ROLLINS J A,ZHANG R,SUN G Y. Highly contiguous genome resource of Colletotrichum fructicola generated using long-read sequencing[J]. Molecular Plant-Microbe Interactions,2020,33(6):790-793.

    [43] LIU Q G,WANG Z C,XU X M,ZHANG H Z,LI C H. Genome-wide analysis of C2H2 zinc-finger family transcription factors and their responses to abiotic stresses in poplar (Populus trichocarpa)[J]. PLoS One,2015,10(8):e0134753.

    [44] LI X Y,KE Z J,YU X J,LIU Z Q,ZHANG C H. Transcription factor CgAzf1 regulates melanin production,conidial development and infection in Colletotrichum gloeosporioides[J]. Antonie Van Leeuwenhoek,2019,112(7):1095-1104.

    [45] WANG P,LI B,PAN Y T,ZHANG Y Z,LI D W,HUANG L. Calcineurin-responsive transcription factor CgCrzA is required for cell wall integrity and infection-related morphogenesis in Colletotrichum gloeosporioides[J]. The Plant Pathology Journal,2020,36(5):385-397.

    [46] LIU W K,LIANG X F,GLEASON M L,CAO M Y,ZHANG R,SUN G Y. Transcription factor CfSte12 of Colletotrichum fructicola is a key regulator of early apple Glomerella leaf spot pathogenesis[J]. Applied and Environmental Microbiology,2020,87(1):e02212-e02220.

    [47] 劉歡慶,周雙針,高菁,王金泓,唐雯,柳志強(qiáng),李曉宇. 暹羅炭疽菌同源異型盒轉(zhuǎn)錄因子CsHtf1的生物學(xué)功能[J]. 微生物學(xué)通報(bào),2023,50(12):5350-5362.

    LIU Huanqing,ZHOU Shuangzhen,GAO Jing,WANG Jinhong,TANG Wen,LIU Zhiqiang,LI Xiaoyu. Biological function of a homeobox transcription factor CsHtf1 in Colletotrichum siamense[J]. Microbiology China,2023,50(12):5350-5362.

    [48] SUN Y J,WANG Y L,TIAN C M. bZIP transcription factor CgAP1 is essential for oxidative stress tolerance and full virulence of the poplar anthracnose fungus Colletotrichum gloeosporioides[J]. Fungal Genetics and Biology,2016,95:58-66.

    [49] LI X Y,WU Y T,LIU Z Q,ZHANG C H. The function and transcriptome analysis of a bZIP transcription factor CgAP1 in Colletotrichum gloeosporioides[J]. Microbiological Research,2017,197:39-48.

    [50] LIU W K,HAN L,CHEN J Z,LIANG X F,WANG B,GLEASON M L,ZHANG R,SUN G Y. The CfMcm1 regulates pathogenicity,conidium germination,and sexual development in Colletotrichum fructicola[J]. Phytopathology,2022,112(10):2159-2173.

    [51] ELLIS J G,RAFIQI M,GAN P,CHAKRABARTI A,DODDS P N. Recent progress in discovery and functional analysis of effector proteins of fungal and oomycete plant pathogens[J]. Current Opinion in Plant Biology,2009,12(4):399-405.

    [52] RAFIQI M,ELLIS J G,LUDOWICI V A,HARDHAM A R,DODDS P N. Challenges and progress towards understanding the role of effectors in plant-fungal interactions[J]. Current Opinion in Plant Biology,2012,15(4):477-482.

    [53] SHIMADA C,LIPKA V,OCONNELL R,OKUNO T,SCHULZE-LEFERT P,TAKANO Y. Nonhost resistance in Arabidopsis-Colletotrichum interactions acts at the cell periphery and requires actin filament function[J]. Molecular Plant-Microbe Interactions,2006,19(3):270-279.

    [54] GAN P,IKEDA K,IRIEDA H,NARUSAKA M,OCONNELL R J,NARUSAKA Y,TAKANO Y,KUBO Y,SHIRASU K. Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of Colletotrichum fungi[J]. New Phytologist,2013,197(4):1236-1249.

    [55] OCONNELL R J,THON M R,HACQUARD S,AMYOTTE S G,KLEEMANN J,TORRES M F,DAMM U,BUIATE E A,EPSTEIN L,ALKAN N,ALTM?LLER J,ALVARADO-BALDERRAMA L,BAUSER C A,BECKER C,BIRREN B W,CHEN Z H,CHOI J,CROUCH J A,DUVICK J P,F(xiàn)ARMAN M A,GAN P,HEIMAN D,HENRISSAT B,HOWARD R J,KABBAGE M,KOCH C,KRACHER B,KUBO Y,LAW A D,LEBRUN M H,LEE Y H,MIYARA I,MOORE N,NEUMANN U,NORDSTR?M K,PANACCIONE D G,PANSTRUGA R,PLACE M,PROCTOR R H,PRUSKY D,RECH G,REINHARDT R,ROLLINS J A,ROUNSLEY S,SCHARDL C L,SCHWARTZ D C,SHENOY N,SHIRASU K,SIKHAKOLLI U R,ST?BER K,SUKNO S A,SWEIGARD J A,TAKANO Y,TAKAHARA H,TRAIL F,VAN DER DOES H C,VOLL L M,WILL I,YOUNG S,ZENG Q D,ZHANG J Z,ZHOU S G,DICKMAN M B,SCHULZE-LEFERT P,VAN THEMAAT E V L,MA L J,VAILLANCOURT L J. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses[J]. Nature Genetics,2012,44(9):1060-1065.

    [56] SHANG S P,LIU G L,ZHANG S,LIANG X F,ZHANG R,SUN G Y. A fungal CFEM-containing effector targets NPR1 regulator NIMIN2 to suppress plant immunity[J]. Plant Biotechnology Journal,2024,22(1):82-97.

    [57] LIU L P,XU L,JIA Q,PAN R,OELM?LLER R,ZHANG W Y,WU C. Arms race:Diverse effector proteins with conserved motifs[J]. Plant Signaling & Behavior,2019,14(2):1557008.

    [58] SHANG S P,WANG B,ZHANG S,LIU G L,LIANG X F,ZHANG R,GLEASON M L,SUN G Y. A novel effector CfEC92 of Colletotrichum fructicola contributes to glomerella leaf spot virulence by suppressing plant defences at the early infection phase[J]. Molecular Plant Pathology,2020,21(7):936-950.

    [59] 王美玉. 蘋果炭疽葉枯病菌效應(yīng)蛋白Sntf2抑制植物免疫的分子機(jī)制研究[D]. 北京:中國(guó)農(nóng)業(yè)科學(xué)院,2022.

    WANG Meiyu. Molecular mechanism of inhibition of plant immunity by effector Sntf2 from Colletotrichum gloeosporioides[D]. Beijing:Chinese Academy of Agricultural Sciences,2022.

    [60] KHODADADI F,GONZ?LEZ J B,MARTIN P L,GIROUX E,BILODEAU G J,PETER K A,DOYLE V P,A?IMOVI? S G. Identification and characterization of Colletotrichum species causing apple bitter rot in New York and description of C. noveboracense sp. nov.[J]. Scientific Reports,2020,10(1):11043.

    [61] PENG Y J,VAN WERSCH R,ZHANG Y L. Convergent and divergent signaling in PAMP-triggered immunity and effector-triggered immunity[J]. Molecular Plant-Microbe Interactions,2018,31(4):403-409.

    [62] COUTO D,ZIPFEL C. Regulation of pattern recognition receptor signalling in plants[J]. Nature Reviews Immunology,2016,16(9):537-552.

    [63] TANG D Z,WANG G X,ZHOU J M. Receptor kinases in plant-pathogen interactions:More than pattern recognition[J]. The Plant Cell,2017,29(4):618-637.

    [64] BIA?AS A,ZESS E K,DE LA CONCEPCION J C,F(xiàn)RANCESCHETTI M,PENNINGTON H G,YOSHIDA K,UPSON J L,CHANCLUD E,WU C H,LANGNER T,MAQBOOL A,VARDEN F A,DEREVNINA L,BELHAJ K,F(xiàn)UJISAKI K,SAITOH H,TERAUCHI R,BANFIELD M J,KAMOUN S. Lessons in effector and NLR biology of plant-microbe systems[J]. Molecular Plant-Microbe Interactions,2018,31(1):34-45.

    [65] JONES J D G,DANGL J L. The plant immune system[J]. Nature,2006,444(7117):323-329.

    [66] TSUDA K,SATO M,STODDARD T,GLAZEBROOK J,KATAGIRI F. Network properties of robust immunity in plants[J]. PLoS Genetics,2009,5(12):e1000772.

    [67] DODDS P N,RATHJEN J P. Plant immunity:Towards an integrated view of plant-pathogen interactions[J]. Nature Reviews Genetics,2010,11(8):539-548.

    [68] QI Y P,TSUDA K,GLAZEBROOK J,KATAGIRI F. Physical association of pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) immune receptors in Arabidopsis[J]. Molecular Plant Pathology,2011,12(7):702-708.

    [69] 吳建圓,王娜,冀志蕊,遲福梅,周宗山,張俊祥. 蘋果炭疽葉枯病菌致病力分析及蘋果種質(zhì)抗病性鑒定[J]. 植物遺傳資源學(xué)報(bào),2017,18(2):210-216.

    WU Jianyuan,WANG Na,JI Zhirui,CHI Fumei,ZHOU Zongshan,ZHANG Junxiang. Pathogenicity differentiation of pathogen causing Glomerella leaf spot of apple (GLSA) and evaluation of resistance to GLSA in apple germplasms[J]. Journal of Plant Genetic Resources,2017,18(2):210-216.

    [70] ZHANG F,WANG F,YANG S,ZHANG Y Y,XUE H,WANG Y S,YAN S P,WANG Y,ZHANG Z H,MA Y. MdWRKY100 encodes a group Ⅰ WRKY transcription factor in Malus domestica that positively regulates resistance to Colletotrichum gloeosporioides infection[J]. Plant Science,2019,286:68-77.

    [71] 劉瑛雙,房中文,TURAKULOV K S,劉春曉,董超華,張玉剛. 接種蘋果炭疽葉枯病菌對(duì)蘋果葉片相關(guān)酶活性及基因表達(dá)的影響[J]. 青島農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2021,38(3):157-163.

    LIU Yingshuang,F(xiàn)ANG Zhongwen,TURAKULOV K S,LIU Chunxiao,DONG Chaohua,ZHANG Yugang. Effects on related enzymes activity and gene expression analysis of inoculate apple leaves under Glomerella leaf spot stress[J]. Journal of Qingdao Agricultural University (Natural Science),2021,38(3):157-163.

    [72] 吳成成,李婷,趙芮嘉,李保華,梁文星,王彩霞. 蘋果MpSNAT1的克隆與表達(dá)特性分析[J]. 植物生理學(xué)報(bào),2018,54(5):872-878.

    WU Chengcheng,LI Ting,ZHAO Ruijia,LI Baohua,LIANG Wenxing,WANG Caixia. Cloning and expression characterization of MpSNAT1 in Malus pumila[J]. Plant Physiology Journal,2018,54(5):872-878.

    [73] 吳芳芳,檀根甲. 蘋果感染炭疽病菌后6種酶活性的變化[J]. 安徽農(nóng)業(yè)大學(xué)學(xué)報(bào),2004,31(1):46-50.

    WU Fangfang,TAN Genjia. Changes in six kinds of enzyme activities in apple fruit inoculatedwith Colletotrichum gloeosporioides[J]. Journal of Anhui Agricultural University,2004,31(1):46-50.

    [74] 吳芳芳,鄭有飛,胡正華,陳魁. UV-B輻射增強(qiáng)對(duì)蘋果炭疽菌生長(zhǎng)特性及其過氧化氫酶活性的影響[J]. 生態(tài)環(huán)境,2008,17(1):158-162.

    WU Fangfang,ZHENG Youfei,HU Zhenghua,CHEN Kui. Effects of enhancing ultraviolet-B radiation on grown character and catalase activity in Colletitrichum gloeosporiodes[J]. Ecology and Environment,2008,17(1):158-162.

    [75] 孔祥華,侯董亮,張偉,田義軻,劉源霞,王彩虹. 炭疽葉枯病菌誘導(dǎo)的不同蘋果種質(zhì)中防御酶活性及丙二醛含量比較[J]. 青島農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2017,34(1):5-8.

    KONG Xianghua,HOU Dongliang,ZHANG Wei,TIAN Yike,LIU Yuanxia,WANG Caihong. Comparison of defensive enzymes activities and malonaldehyde content induced by Glomerella cingulata among different apple resources[J]. Journal of Qingdao Agricultural University (Natural Science),2017,34(1):5-8.

    [76] 薛蓮,檀根甲,徐先松,李麗,韓翔. 蘋果炭疽病菌對(duì)蘋果果實(shí)致病機(jī)制初探[J]. 安徽農(nóng)業(yè)大學(xué)學(xué)報(bào),2006,33(4):522-525.

    XUE Lian,TAN Genjia,XU Xiansong,LI Li,HAN Xiang. Pathogenesis of the cell wall degrading enzymes produced by Colletotrichum gloeosporioides[J]. Journal of Anhui Agricultural University,2006,33(4):522-525.

    [77] 朱學(xué)明,史祥鵬,雍道敬,張穎,李保華,梁文星,王彩霞. 內(nèi)生放線菌A-1誘導(dǎo)蘋果對(duì)炭疽葉枯病的抗性[J]. 植物生理學(xué)報(bào),2015,51(6):949-954.

    ZHU Xueming,SHI Xiangpeng,YONG Daojing,ZHANG Ying,LI Baohua,LIANG Wenxing,WANG Caixia. Induction of resistance against Glomerella cingulata in apple by endophytic actinomycetes strain A-1[J]. Plant Physiology Journal,2015,51(6):949-954.

    [78] BARI R,JONES J D G. Role of plant hormones in plant defence responses[J]. Plant Molecular Biology,2009,69(4):473-488.

    [79] TANG L G,YANG G G,MA M,LIU X F,LI B,XIE J T,F(xiàn)U Y P,CHEN T,YU Y,CHEN W D,JIANG D H,CHENG J S. An effector of a necrotrophic fungal pathogen targets the calcium-sensing receptor in chloroplasts to inhibit host resistance[J]. Molecular Plant Pathology,2020,21(5):686-701.

    [80] DEMPSEY D A,VLOT A C,WILDERMUTH M C,KLESSIG D F. Salicylic acid biosynthesis and metabolism[J]. The Arabidopsis Book,2011,9:e0156.

    [81] ZHANG Y,SHI X P,LI B H,ZHANG Q M,LIANG W X,WANG C X. Salicylic acid confers enhanced resistance to Glomerella leaf spot in apple[J]. Plant Physiology and Biochemistry,2016,106:64-72.

    [82] 趙妍,王晨. 水楊酸處理對(duì)蘋果采后品質(zhì)及炭疽病害的影響[J]. 食品工業(yè),2015,36(9):195-198.

    ZHAO Yan,WANG Chen. Influence of salicylic acid on quality and anthracnose in postharvest apple fruit[J]. The Food Industry,2015,36(9):195-198.

    [83] 何曉文,孟慧,張家虎,范昆,李林光. ‘嘎拉蘋果及其雜交后代對(duì)炭疽葉枯病的抗性機(jī)制分析[J]. 西北植物學(xué)報(bào),2022,42(6):983-993.

    HE Xiaowen,MENG Hui,ZHANG Jiahu,F(xiàn)AN Kun,LI Linguang. Resistance analysis of ‘Gala and F1 individuals to Glomerella leaf spot[J]. Acta Botanica Boreali-Occidentalia Sinica,2022,42(6):983-993.

    [84] 張朝紅,陳東玫,楊鳳秋,趙同生,趙國(guó)棟,李揚(yáng),趙永波. 蘋果種質(zhì)及雜種對(duì)炭疽菌葉枯病的田間抗性分析[J]. 河北農(nóng)業(yè)科學(xué),2018,22(3):42-46.

    ZHANG Chaohong,CHEN Dongmei,YANG Fengqiu,ZHAO Tongsheng,ZHAO Guodong,LI Yang,ZHAO Yongbo. Field resistance of apple germplasm and hybrids to Glomerella leaf spot[J]. Journal of Hebei Agricultural Sciences,2018,22(3):42-46.

    [85] 馬玉鑫. ‘寒富蘋果CDPK基因家族分析及MdCDPK24對(duì)蘋果炭疽病抗性功能鑒定[D]. 沈陽:沈陽農(nóng)業(yè)大學(xué),2023.

    MA Yuxin. Analysis of CDPK gene family and identification of resistance function of MdCDPK24 to Colletotrichum gloeosporioides in ‘Hanfu apple[D]. Shenyang:Shenyang Agricultural University,2023.

    [86] 趙偉玉. ‘寒富蘋果CaMBP基因家族分析及MdCaMBP6抗蘋果炭疽葉枯病的功能鑒定[D]. 沈陽:沈陽農(nóng)業(yè)大學(xué),2023.

    ZHAO Weiyu. Analysis of CaMBP gene family in ‘Hanfu apple and function identification of MdCaMBP6 against apple Glomerella leaf spot[D]. Shenyang:Shenyang Agricultural University,2023.

    [87] 史佳俊. 蘋果細(xì)胞分裂素合成關(guān)鍵酶基因MdIPT8在抗炭疽病中的功能解析[D]. 沈陽:沈陽農(nóng)業(yè)大學(xué),2022.

    SHI Jiajun. Functional analysis of MdIPT8,a key enzyme gene for cytokinin synthesis in apple,in resistance to anthracnose[D]. Shenyang:Shenyang Agricultural University,2022.

    [88] GUO T L,BAO R,YANG Z H,F(xiàn)U X M,HU L,WANG N,LIU C H,MA F W. The m6A reader MhYTP2 negatively modulates apple Glomerella leaf spot resistance by binding to and degrading MdRGA2L mRNA[J]. Molecular Plant Pathology,2023,24(10):1287-1299.

    [89] 劉源霞,李保華,王彩虹,劉春曉,孔祥華,祝軍,戴洪義. 蘋果對(duì)炭疽菌葉枯病抗性遺傳的研究及其分子標(biāo)記篩選[J]. 園藝學(xué)報(bào),2015,42(11):2105-2112.

    LIU Yuanxia,LI Baohua,WANG Caihong,LIU Chunxiao,KONG Xianghua,ZHU Jun,DAI Hongyi. Genetic studies and molecular markers screening of apple resistance to Glomerella leaf spot[J]. Acta Horticulturae Sinica,2015,42(11):2105-2112.

    [90] 劉源霞,蘭進(jìn)好,柏素花,孫曉紅,劉春曉,張玉剛,戴洪義. 蘋果抗炭疽菌葉枯病基因SNP和InDel標(biāo)記的HRM篩選[J]. 園藝學(xué)報(bào),2017,44(2):215-222.

    LIU Yuanxia,LAN Jinhao,BAI Suhua,SUN Xiaohong,LIU Chunxiao,ZHANG Yugang,DAI Hongyi. Screening of SNP and InDel markers to Glomerella leaf spot resistance gene locus in apple using HRM technology[J]. Acta Horticulturae Sinica,2017,44(2):215-222.

    [91] 劉春曉,蘭進(jìn)好,侯鴻敏,張玉剛,戴洪義,劉源霞. 蘋果抗炭疽菌葉枯病基因相關(guān)的4個(gè)分子標(biāo)記的準(zhǔn)確性驗(yàn)證[J]. 園藝學(xué)報(bào),2017,44(7):1355-1362.

    LIU Chunxiao,LAN Jinhao,HOU Hongmin,ZHANG Yugang,DAI Hongyi,LIU Yuanxia. Accuracy test of four molecular markers of Glomerella leaf spot resistant gene in apple cultivars[J]. Acta Horticulturae Sinica,2017,44(7):1355-1362.

    [92] LI W X,PANG S Y,LU Z G,JIN B. Function and mechanism of WRKY transcription factors in abiotic stress responses of plants[J]. Plants,2020,9(11):1515.

    [93] 谷彥冰. 蘋果兩個(gè)WRKY轉(zhuǎn)錄因子的克隆和表達(dá)分析[D]. 北京:中國(guó)農(nóng)業(yè)科學(xué)院,2016.

    GU Yanbing. Cloning and expression analysis of two WRKY transcription factors in apple (Malus domestica Borkh.)[D]. Beijing:Chinese Academy of Agricultural Sciences,2016.

    [94] SHAN D Q,CHANYU W,ZHENG X D,HU Z H,ZHU Y P,ZHAO Y,JIANG A W,ZHANG H X,SHI K,BAI Y X,YAN T C,WANG L,SUN Y Z,LI J F,ZHOU Z Y,GUO Y,KONG J. MKK4-MPK3-WRKY17-mediated salicylic acid degradation increases susceptibility to Glomerella leaf spot in apple[J]. Plant Physiology,2021,186(2):1202-1219.

    [95] ZHAO X Y,QI C H,JIANG H,ZHONG M S,YOU C X,LI Y Y,HAO Y J. MdWRKY15 improves resistance of apple to Botryosphaeria dothidea via the salicylic acid-mediated pathway by directly binding the MdICS1 promoter[J]. Journal of Integrative Plant Biology,2020,62(4):527-543.

    [96] JI Z R,WANG M Y,ZHANG S W,DU Y N,CONG J L,YAN H F,GUO H M,XU B L,ZHOU Z S. GDSL esterase/lipase GELP1 involved in the defense of apple leaves against Colletotrichum gloeosporioides infection[J]. International Journal of Molecular Sciences,2023,24(12):10343.

    [97] LI Y X,CUI Y L,LIU B Y,XU R X,SHI Y J,LV L L,WANG H T,SHANG Y M,LIANG W,MA F W,LI C Y. γ-aminobutyric acid plays a key role in alleviating Glomerella leaf spot in apples[J]. Molecular Plant Pathology,2023,24(6):588-601.

    [98] LIPPOK B,BIRKENBIHL R P,RIVORY G,BR?MMER J,SCHMELZER E,LOGEMANN E,SOMSSICH I E. Expression of AtWRKY33 encoding a pathogen- or PAMP-responsive WRKY transcription factor is regulated by a composite DNA motif containing W-box elements[J]. Molecular Plant-Microbe Interactions,2007,20(4):420-429.

    [99] ZHAO X Y,QI C H,JIANG H,ZHONG M S,YOU C X,LI Y Y,HAO Y J. MdHIR4 transcription and translation levels associated with disease in apple are regulated by MdWRKY31[J]. Plant Molecular Biology,2019,101(1/2):149-162.

    [100] HOU Y J,YU X Y,CHEN W P,ZHUANG W B,WANG S H,SUN C,CAO L F,ZHOU T T,QU S C. MdWRKY75e enhances resistance to Alternaria alternata in Malus domestica[J]. Horticulture Research,2021,8(1):225.

    [101] ZHANG X W,XU R R,LIU Y K,YOU C X,AN J P. MdVQ10 promotes wound-triggered leaf senescence in association with MdWRKY75 and undergoes antagonistic modulation of MdCML15 and MdJAZs in apple[J]. The Plant Journal,2023,115(6):1599-1618.

    [102] ZHANG S S,WU Y Q,HUANG X,WU W L,LYU L F,LI W L. Research progress about microRNAs involved in plant secondary metabolism[J]. International Journal of Biological Macromolecules,2022,216:820-829.

    [103] SALVADOR-GUIRAO R,BALDRICH P,WEIGEL D,RUBIO-SOMOZA I,SAN SEGUNDO B. The microRNA miR773 is involved in the Arabidopsis immune response to fungal pathogens[J]. Molecular Plant-Microbe Interactions,2018,31(2):249-259.

    [104] ZHANG Y,ZHANG Q L,HAO L,WANG S N,WANG S Y,ZHANG W N,XU C R,YU Y F,LI T Z. A novel miRNA negatively regulates resistance to Glomerella leaf spot by suppressing expression of an NBS gene in apple[J]. Horticulture Research,2019,6:93.

    [105] ZHANG Q L,XU C R,WEI H Y,F(xiàn)AN W Q,LI T Z. Two pathogenesis-related proteins interact with leucine-rich repeat proteins to promote Alternaria leaf spot resistance in apple[J]. Horticulture Research,2021,8:219.

    [106] ZHANG Q L,WANG Y H,WEI H Y,F(xiàn)AN W Q,XU C R,LI T Z. CCR-NB-LRR proteins MdRNL2 and MdRNL6 interact physically to confer broad-spectrum fungal resistance in apple (Malus × domestica)[J]. The Plant Journal,2021,108(5):1522-1538.

    [107] 張亞楠,陳新慧,張杰. 蘋果炭疽病抗性miRNA的篩選[J]. 中國(guó)農(nóng)學(xué)通報(bào),2021,37(7):106-111.

    ZHANG Yanan,CHEN Xinhui,ZHANG Jie. Screening of Malus miRNA:Mediated resistance to Colletotrichum gloeosporioides[J]. Chinese Agricultural Science Bulletin,2021,37(7):106-111.

    [108] SHEN X X,PING Y K,BAO C N,LIU C,TAHIR M M,LI X W,SONG Y,XU W R,MA F W,GUAN Q M. Mdm-miR160-MdARF17-MdWRKY33 module mediates freezing tolerance in apple[J]. The Plant Journal,2023,114(2):262-278.

    [109] YU X Y,HOU Y J,CAO L F,ZHOU T T,WANG S H,HU K X,CHEN J R,QU S C. MicroRNA candidate miRcand137 in apple is induced by Botryosphaeria dothidea for impairing host defense[J]. Plant Physiology,2022,189(3):1814-1832.

    [110] LIU K,YANG A,YAN J D,LIANG Z L,YUAN G P,CONG P H,ZHANG L Y,HAN X L,ZHANG C X. MdAIL5 overexpression promotes apple adventitious shoot regeneration by regulating hormone signaling and activating the expression of shoot development-related genes[J]. Horticulture Research,2023,10(11):uhad198.

    收稿日期:2024-03-13 接受日期:2024-04-07

    基金項(xiàng)目:中央級(jí)公益性科研院所基本科研業(yè)務(wù)費(fèi)專項(xiàng)(1610182023012);國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系(CARS-27);中國(guó)農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程專項(xiàng)(CAAS-ASTIP-2021-RIP-05)

    作者簡(jiǎn)介:冀志蕊,女,在讀博士研究生,研究方向?yàn)楣麡洳『α餍信c綜合防控。Tel:0429-3598236,E-mail:xinyu_jzr@163.com

    *通信作者 Author for correspondence. E-mail:xubl@gsau.edu.cn;Tel:0429-3598268,E-mail:zhouzongshan@caas.cn

    猜你喜歡
    蘋果
    快樂蘋果鎮(zhèn)
    0分也能拿第一
    第一個(gè)大蘋果
    收獲蘋果
    有毒的蘋果
    拿蘋果
    梨與蘋果
    會(huì)說話的蘋果
    蘋果豐收啦
    洗蘋果
    热re99久久国产66热| 中文字幕色久视频| 一个人免费看片子| 性色av一级| 亚洲综合精品二区| 精品一区二区三区av网在线观看 | 少妇人妻精品综合一区二区| 亚洲免费av在线视频| 永久免费av网站大全| kizo精华| 亚洲av在线观看美女高潮| 夜夜骑夜夜射夜夜干| 国产97色在线日韩免费| 亚洲精品aⅴ在线观看| 久热这里只有精品99| 下体分泌物呈黄色| 男女国产视频网站| 日本午夜av视频| 国产高清不卡午夜福利| 亚洲国产精品国产精品| a级毛片黄视频| 黑人欧美特级aaaaaa片| 日韩av在线免费看完整版不卡| 亚洲欧美一区二区三区黑人| 亚洲第一青青草原| 在线观看免费视频网站a站| 99热全是精品| 天堂8中文在线网| 国产精品亚洲av一区麻豆 | 亚洲欧美中文字幕日韩二区| 啦啦啦视频在线资源免费观看| 亚洲伊人久久精品综合| 电影成人av| 人体艺术视频欧美日本| 国产精品久久久人人做人人爽| 国产爽快片一区二区三区| 日韩制服丝袜自拍偷拍| 精品少妇一区二区三区视频日本电影 | 亚洲成人av在线免费| 亚洲精品一二三| 熟女av电影| 人妻 亚洲 视频| 18禁观看日本| 伊人久久大香线蕉亚洲五| 老司机在亚洲福利影院| 多毛熟女@视频| 国产男女超爽视频在线观看| 久久国产精品男人的天堂亚洲| 亚洲精品中文字幕在线视频| 美女福利国产在线| 91老司机精品| 国产男人的电影天堂91| 操出白浆在线播放| 亚洲色图 男人天堂 中文字幕| 国产精品 国内视频| 欧美日韩亚洲综合一区二区三区_| 国产精品二区激情视频| 少妇被粗大的猛进出69影院| 欧美黑人欧美精品刺激| 日韩精品免费视频一区二区三区| 秋霞在线观看毛片| 大片免费播放器 马上看| 十分钟在线观看高清视频www| 精品福利永久在线观看| 午夜免费男女啪啪视频观看| 女人被躁到高潮嗷嗷叫费观| 啦啦啦中文免费视频观看日本| 国产成人免费观看mmmm| 别揉我奶头~嗯~啊~动态视频 | 伦理电影免费视频| 久久97久久精品| 青春草亚洲视频在线观看| 国产精品 欧美亚洲| 波多野结衣一区麻豆| 国产视频首页在线观看| 日韩制服骚丝袜av| 这个男人来自地球电影免费观看 | 久久97久久精品| 国产一区亚洲一区在线观看| 日韩精品有码人妻一区| 制服诱惑二区| 国产精品免费大片| 99久久综合免费| 激情五月婷婷亚洲| 中国国产av一级| av天堂久久9| 国产片内射在线| 丰满乱子伦码专区| 久久青草综合色| 精品国产国语对白av| 下体分泌物呈黄色| 亚洲国产成人一精品久久久| 亚洲成人免费av在线播放| 欧美人与善性xxx| 欧美激情高清一区二区三区 | 狂野欧美激情性xxxx| 国产激情久久老熟女| 久久久久精品国产欧美久久久 | 女性生殖器流出的白浆| 天天操日日干夜夜撸| 亚洲伊人久久精品综合| 日韩成人av中文字幕在线观看| 在线 av 中文字幕| 999久久久国产精品视频| 涩涩av久久男人的天堂| 日本91视频免费播放| 国产又色又爽无遮挡免| 亚洲成色77777| 又大又爽又粗| 日韩制服骚丝袜av| 久久久久国产一级毛片高清牌| 亚洲婷婷狠狠爱综合网| 晚上一个人看的免费电影| 在线观看一区二区三区激情| 久久国产精品大桥未久av| 国产极品粉嫩免费观看在线| 狂野欧美激情性xxxx| 91精品伊人久久大香线蕉| 亚洲五月色婷婷综合| 十八禁高潮呻吟视频| 美女高潮到喷水免费观看| 这个男人来自地球电影免费观看 | av卡一久久| 9热在线视频观看99| 九九爱精品视频在线观看| 1024香蕉在线观看| 免费观看人在逋| 中文欧美无线码| 国产精品 欧美亚洲| 国产免费一区二区三区四区乱码| 丰满饥渴人妻一区二区三| 免费黄频网站在线观看国产| 女性生殖器流出的白浆| 欧美日韩成人在线一区二区| 日韩大片免费观看网站| 国精品久久久久久国模美| 秋霞在线观看毛片| 成人午夜精彩视频在线观看| 老鸭窝网址在线观看| 色综合欧美亚洲国产小说| 91精品国产国语对白视频| 国产精品免费视频内射| 国产成人系列免费观看| 国产高清不卡午夜福利| 少妇人妻 视频| 日日爽夜夜爽网站| 久久人人爽人人片av| 亚洲人成网站在线观看播放| 国产福利在线免费观看视频| 精品国产一区二区久久| 成人漫画全彩无遮挡| 午夜激情av网站| 嫩草影视91久久| 看免费成人av毛片| 日本色播在线视频| 国产亚洲欧美精品永久| 青春草国产在线视频| 国产成人精品福利久久| 男女边吃奶边做爰视频| 精品亚洲乱码少妇综合久久| 国产女主播在线喷水免费视频网站| 久久久久精品国产欧美久久久 | 日本爱情动作片www.在线观看| 久久久久久久国产电影| 亚洲av欧美aⅴ国产| 丰满迷人的少妇在线观看| 亚洲美女搞黄在线观看| 日韩av在线免费看完整版不卡| 最近中文字幕高清免费大全6| 乱人伦中国视频| 国产精品久久久久久人妻精品电影 | 精品国产超薄肉色丝袜足j| 亚洲中文av在线| 日韩中文字幕视频在线看片| 亚洲av综合色区一区| 日韩熟女老妇一区二区性免费视频| 爱豆传媒免费全集在线观看| 老汉色∧v一级毛片| 女人久久www免费人成看片| 人人妻人人澡人人看| 高清不卡的av网站| 欧美日韩精品网址| 麻豆精品久久久久久蜜桃| 精品人妻一区二区三区麻豆| 国产欧美亚洲国产| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久精品国产欧美久久久 | 宅男免费午夜| 亚洲av日韩在线播放| 高清av免费在线| 成年人午夜在线观看视频| 伊人久久国产一区二区| 国产高清不卡午夜福利| 最近最新中文字幕免费大全7| 99九九在线精品视频| www.自偷自拍.com| 免费观看人在逋| 欧美国产精品一级二级三级| 秋霞在线观看毛片| 精品一品国产午夜福利视频| 久久精品人人爽人人爽视色| 国产极品粉嫩免费观看在线| 精品少妇一区二区三区视频日本电影 | 国产黄频视频在线观看| 热99国产精品久久久久久7| 熟女av电影| 女人精品久久久久毛片| 建设人人有责人人尽责人人享有的| 久久久精品免费免费高清| 午夜av观看不卡| 国产精品偷伦视频观看了| 国产精品久久久久久久久免| 亚洲专区中文字幕在线 | 免费人妻精品一区二区三区视频| 国产精品免费大片| 一边摸一边做爽爽视频免费| 青春草视频在线免费观看| 国产成人精品久久二区二区91 | 久久久久久久久免费视频了| 老司机亚洲免费影院| 国产亚洲精品第一综合不卡| 99国产综合亚洲精品| √禁漫天堂资源中文www| 晚上一个人看的免费电影| 岛国毛片在线播放| 一区二区三区精品91| 国产免费一区二区三区四区乱码| 婷婷成人精品国产| 亚洲成人国产一区在线观看 | 日本色播在线视频| 国产成人a∨麻豆精品| 久久久久久久大尺度免费视频| 深夜精品福利| 国产精品成人在线| 久久综合国产亚洲精品| 亚洲欧美激情在线| 亚洲国产精品999| 黄片无遮挡物在线观看| 中文字幕av电影在线播放| 老司机靠b影院| 免费观看人在逋| 夫妻午夜视频| 久久人人爽人人片av| av视频免费观看在线观看| 午夜av观看不卡| 咕卡用的链子| 精品国产超薄肉色丝袜足j| 大香蕉久久网| 亚洲av福利一区| 热99国产精品久久久久久7| 国产探花极品一区二区| 免费观看a级毛片全部| 最近中文字幕高清免费大全6| 三上悠亚av全集在线观看| 亚洲中文av在线| 亚洲精品国产一区二区精华液| 国产乱来视频区| 国产在线视频一区二区| 成人三级做爰电影| 97精品久久久久久久久久精品| 99re6热这里在线精品视频| 亚洲一卡2卡3卡4卡5卡精品中文| 大片免费播放器 马上看| 巨乳人妻的诱惑在线观看| av在线观看视频网站免费| 99久久99久久久精品蜜桃| 成人午夜精彩视频在线观看| 国产国语露脸激情在线看| 久久精品国产综合久久久| 精品国产一区二区三区四区第35| 69精品国产乱码久久久| 久久精品国产综合久久久| 午夜免费男女啪啪视频观看| 人人妻人人澡人人看| netflix在线观看网站| 亚洲第一av免费看| 91国产中文字幕| 色播在线永久视频| 赤兔流量卡办理| 大香蕉久久成人网| 亚洲,一卡二卡三卡| 少妇精品久久久久久久| 人成视频在线观看免费观看| 91国产中文字幕| 精品国产乱码久久久久久男人| 日日撸夜夜添| 99热全是精品| 免费观看人在逋| 国产亚洲午夜精品一区二区久久| 蜜桃国产av成人99| 亚洲第一区二区三区不卡| 看免费av毛片| 日本91视频免费播放| 波多野结衣一区麻豆| 不卡av一区二区三区| 成人午夜精彩视频在线观看| 亚洲国产av影院在线观看| 欧美人与性动交α欧美软件| 久久婷婷青草| 一级,二级,三级黄色视频| 成人影院久久| 女的被弄到高潮叫床怎么办| av.在线天堂| 两个人看的免费小视频| 天天躁狠狠躁夜夜躁狠狠躁| 哪个播放器可以免费观看大片| 久久久久网色| 成人亚洲精品一区在线观看| 日韩av免费高清视频| 亚洲精品在线美女| 国产探花极品一区二区| 欧美中文综合在线视频| 亚洲精品国产av蜜桃| 又大又爽又粗| 超碰成人久久| 人妻一区二区av| 一级片免费观看大全| 99久久99久久久精品蜜桃| 国产又色又爽无遮挡免| 久久久久精品久久久久真实原创| 日日摸夜夜添夜夜爱| 久久精品国产a三级三级三级| 国产精品国产三级专区第一集| 国产1区2区3区精品| 无遮挡黄片免费观看| 亚洲激情五月婷婷啪啪| 丁香六月欧美| 日韩视频在线欧美| 国产精品一国产av| 我要看黄色一级片免费的| 国产不卡av网站在线观看| 少妇人妻 视频| a级毛片黄视频| 亚洲精品国产av蜜桃| 90打野战视频偷拍视频| 日本wwww免费看| 老司机深夜福利视频在线观看 | 国产高清国产精品国产三级| www.自偷自拍.com| av网站免费在线观看视频| 日日摸夜夜添夜夜爱| 久久婷婷青草| 极品人妻少妇av视频| 伊人久久大香线蕉亚洲五| 国产 一区精品| 日韩中文字幕欧美一区二区 | 久久热在线av| 人人妻人人爽人人添夜夜欢视频| 国产精品女同一区二区软件| 亚洲国产精品999| 国产人伦9x9x在线观看| 国产一卡二卡三卡精品 | 国产精品久久久av美女十八| 在线观看三级黄色| 久久婷婷青草| 国产人伦9x9x在线观看| 欧美人与善性xxx| 精品一区二区三区av网在线观看 | 欧美少妇被猛烈插入视频| 欧美黑人精品巨大| 国产高清国产精品国产三级| 男女床上黄色一级片免费看| 国产av国产精品国产| 91精品三级在线观看| 我的亚洲天堂| 五月开心婷婷网| 丁香六月欧美| 欧美日韩综合久久久久久| 中文字幕高清在线视频| 最近中文字幕2019免费版| 丰满少妇做爰视频| 久久精品国产亚洲av高清一级| 一本大道久久a久久精品| 欧美日韩综合久久久久久| 一级毛片我不卡| 老司机影院毛片| 欧美乱码精品一区二区三区| 久久精品国产亚洲av高清一级| 在现免费观看毛片| 色精品久久人妻99蜜桃| 亚洲熟女毛片儿| 91国产中文字幕| 超碰97精品在线观看| 两性夫妻黄色片| 亚洲三区欧美一区| 中文字幕人妻熟女乱码| 久久精品国产a三级三级三级| 国产一区二区在线观看av| 涩涩av久久男人的天堂| 成人三级做爰电影| 国产不卡av网站在线观看| 成人18禁高潮啪啪吃奶动态图| 亚洲男人天堂网一区| 久久久久久久精品精品| 女性生殖器流出的白浆| 国产在视频线精品| 亚洲一码二码三码区别大吗| 国产黄色视频一区二区在线观看| 久久性视频一级片| 亚洲国产成人一精品久久久| 99热网站在线观看| 国产又爽黄色视频| 成人影院久久| 欧美人与善性xxx| av在线播放精品| 久久精品人人爽人人爽视色| 亚洲自偷自拍图片 自拍| 满18在线观看网站| 黄色视频在线播放观看不卡| 18在线观看网站| 另类精品久久| 亚洲av成人精品一二三区| 精品人妻一区二区三区麻豆| 国产亚洲欧美精品永久| 熟女av电影| 最近中文字幕高清免费大全6| 国产精品.久久久| 丝袜美足系列| 大话2 男鬼变身卡| 一边摸一边做爽爽视频免费| 最黄视频免费看| 99久久人妻综合| 亚洲一级一片aⅴ在线观看| 久久狼人影院| 成人影院久久| 国产成人精品福利久久| 无限看片的www在线观看| 大话2 男鬼变身卡| 青春草国产在线视频| 亚洲一卡2卡3卡4卡5卡精品中文| 新久久久久国产一级毛片| 自拍欧美九色日韩亚洲蝌蚪91| 久热这里只有精品99| 9色porny在线观看| 成人亚洲精品一区在线观看| 五月天丁香电影| 午夜日本视频在线| 欧美日韩亚洲高清精品| 亚洲国产av影院在线观看| 久久久国产欧美日韩av| 国产成人啪精品午夜网站| 精品国产一区二区三区四区第35| 亚洲成国产人片在线观看| 亚洲成人免费av在线播放| 一边亲一边摸免费视频| 搡老岳熟女国产| 免费不卡黄色视频| 在线观看一区二区三区激情| 欧美精品av麻豆av| 亚洲国产日韩一区二区| 中文字幕精品免费在线观看视频| 电影成人av| 超碰97精品在线观看| 久久这里只有精品19| 日本欧美视频一区| 中文字幕最新亚洲高清| 久久久久久久久久久免费av| 99久国产av精品国产电影| 亚洲一区二区三区欧美精品| 欧美日韩亚洲高清精品| 久久久久视频综合| 亚洲第一青青草原| 91精品伊人久久大香线蕉| 肉色欧美久久久久久久蜜桃| 亚洲精品成人av观看孕妇| 哪个播放器可以免费观看大片| 一本久久精品| 午夜福利免费观看在线| 久久久久精品性色| 国产一区二区三区av在线| 亚洲图色成人| 国产亚洲午夜精品一区二区久久| 欧美日本中文国产一区发布| 欧美 亚洲 国产 日韩一| 亚洲av中文av极速乱| 悠悠久久av| 99久久精品国产亚洲精品| 日韩精品免费视频一区二区三区| 日本av手机在线免费观看| 大陆偷拍与自拍| 欧美精品亚洲一区二区| 亚洲色图 男人天堂 中文字幕| 日韩制服丝袜自拍偷拍| 日韩av免费高清视频| 在线精品无人区一区二区三| 亚洲av成人不卡在线观看播放网 | 成人国语在线视频| 亚洲视频免费观看视频| 午夜日韩欧美国产| 国产精品 国内视频| 飞空精品影院首页| 中文精品一卡2卡3卡4更新| 亚洲国产精品999| 9191精品国产免费久久| 中文天堂在线官网| 中文字幕亚洲精品专区| av网站在线播放免费| 91精品三级在线观看| 午夜福利影视在线免费观看| av在线观看视频网站免费| 亚洲精品一区蜜桃| √禁漫天堂资源中文www| 看免费成人av毛片| 国产片特级美女逼逼视频| 欧美日韩成人在线一区二区| 女人高潮潮喷娇喘18禁视频| 伦理电影免费视频| 免费高清在线观看日韩| 国产精品99久久99久久久不卡 | 欧美av亚洲av综合av国产av | 精品国产露脸久久av麻豆| 亚洲五月色婷婷综合| 日本wwww免费看| 两个人免费观看高清视频| 国产1区2区3区精品| 欧美精品一区二区大全| 亚洲精品国产av蜜桃| 日韩av免费高清视频| 啦啦啦 在线观看视频| www日本在线高清视频| 男人操女人黄网站| 美女午夜性视频免费| 久久青草综合色| 一级毛片黄色毛片免费观看视频| 青春草国产在线视频| 亚洲免费av在线视频| 午夜福利一区二区在线看| 高清不卡的av网站| 一级片免费观看大全| 免费黄网站久久成人精品| 夫妻午夜视频| 五月开心婷婷网| a 毛片基地| 国产极品粉嫩免费观看在线| 一区二区日韩欧美中文字幕| 国产成人a∨麻豆精品| 电影成人av| 丝瓜视频免费看黄片| 一级毛片电影观看| 成人亚洲精品一区在线观看| 少妇 在线观看| 性少妇av在线| 国产一卡二卡三卡精品 | 美女高潮到喷水免费观看| 黄色视频在线播放观看不卡| 久久久精品国产亚洲av高清涩受| 人妻 亚洲 视频| 卡戴珊不雅视频在线播放| 久久久亚洲精品成人影院| 亚洲图色成人| 成人18禁高潮啪啪吃奶动态图| 国产av码专区亚洲av| 亚洲欧美一区二区三区国产| 极品人妻少妇av视频| 蜜桃在线观看..| 亚洲国产最新在线播放| 91国产中文字幕| 一级爰片在线观看| av国产精品久久久久影院| 亚洲七黄色美女视频| 欧美亚洲日本最大视频资源| 精品午夜福利在线看| 黄色一级大片看看| 一二三四在线观看免费中文在| 亚洲天堂av无毛| 涩涩av久久男人的天堂| 国产一区亚洲一区在线观看| 久久久精品免费免费高清| 校园人妻丝袜中文字幕| 性高湖久久久久久久久免费观看| 精品久久久精品久久久| 高清黄色对白视频在线免费看| 99热全是精品| 哪个播放器可以免费观看大片| 在线观看一区二区三区激情| 一区二区三区四区激情视频| 在线看a的网站| 纯流量卡能插随身wifi吗| 美女扒开内裤让男人捅视频| 免费高清在线观看日韩| 国产亚洲一区二区精品| 777米奇影视久久| 日本黄色日本黄色录像| 9热在线视频观看99| 日本wwww免费看| 国产成人一区二区在线| 中文乱码字字幕精品一区二区三区| 婷婷色综合大香蕉| 赤兔流量卡办理| 午夜福利影视在线免费观看| 别揉我奶头~嗯~啊~动态视频 | 丝袜喷水一区| 日本av手机在线免费观看| 男的添女的下面高潮视频| 新久久久久国产一级毛片| 黄色怎么调成土黄色| 伊人亚洲综合成人网| 精品人妻一区二区三区麻豆| 亚洲精品久久午夜乱码| 男的添女的下面高潮视频| 高清在线视频一区二区三区| 黄色怎么调成土黄色| 天天躁夜夜躁狠狠久久av| 午夜福利视频在线观看免费| 综合色丁香网| 日韩av不卡免费在线播放| 波多野结衣av一区二区av| 国产成人免费无遮挡视频| 只有这里有精品99| 久久国产精品男人的天堂亚洲| 91精品伊人久久大香线蕉| 两性夫妻黄色片| 人妻 亚洲 视频| 亚洲自偷自拍图片 自拍| 少妇人妻 视频|