摘 要 鹿科(Cervidae)動(dòng)物是反芻動(dòng)物的一大類群,中國(guó)擁有世界上最豐富的鹿科動(dòng)物種質(zhì)資源。與其他反芻動(dòng)物相比,鹿科動(dòng)物最獨(dú)特的特點(diǎn)是擁有能夠定期再生的器官性骨質(zhì)角。不同品種的鹿角形態(tài)具有較大差異,大部分復(fù)雜的大型鹿角主要用于求偶期的爭(zhēng)斗,開展鹿角功能與演化的研究對(duì)動(dòng)物遺傳學(xué)、行為學(xué)和生態(tài)學(xué)有極高價(jià)值。鹿角生長(zhǎng)發(fā)育受多種因素調(diào)控,因每年定期再生與快速生長(zhǎng)機(jī)制,使鹿角成為研究哺乳動(dòng)物器官再生的理想模型,同時(shí)鹿角快速增殖卻極少產(chǎn)生癌變的特性也為癌癥治療研究提供了新的視野。有關(guān)鹿角生長(zhǎng)發(fā)育和再生機(jī)制的研究近年來取得諸多重要成果,本文對(duì)鹿角的生物學(xué)特征和初生發(fā)育、成熟脫落與再生過程的研究進(jìn)展進(jìn)行綜述,以期為鹿科動(dòng)物種質(zhì)資源保護(hù)利用和深入解析鹿角獨(dú)特性質(zhì)遺傳機(jī)制提供理論依據(jù)。
關(guān)鍵詞:鹿角發(fā)育;鹿角再生;骨骼再生機(jī)制;鹿科動(dòng)物
中圖分類號(hào):Q958 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):2310 - 1490(2024)- 02 - 0421 - 09
DOI:10.12375/ysdwxb.20240223
鹿科(Cervidae)動(dòng)物歸屬于鯨偶蹄目(Cetartio?dactyla),共有3個(gè)亞科,19個(gè)屬,51種[1],分布于除南極洲、澳大利亞、非洲中部和南部、馬達(dá)加斯加以及新西蘭外的所有地區(qū)[2]。中國(guó)是鹿類資源最豐富的國(guó)家之一,鹿種占全球的41. 7%[3]。具有再生能力、能夠穩(wěn)定更換的鹿角是鹿科動(dòng)物特有的標(biāo)志[4]。大多數(shù)哺乳動(dòng)物的器官或器官附屬不具備完整的再生能力,而多數(shù)雄性鹿科動(dòng)物的角作為一個(gè)能夠穩(wěn)定再生的骨骼結(jié)構(gòu)器官[5],是研究哺乳動(dòng)物長(zhǎng)骨發(fā)育及器官修復(fù)、再生的理想模型。鹿角每年會(huì)經(jīng)歷一次生長(zhǎng)與脫落的完整過程,在鹿角周期性更替的過程中有兩個(gè)明顯階段,一個(gè)是有茸皮覆蓋的鹿角生長(zhǎng)階段(醫(yī)藥學(xué)和養(yǎng)鹿業(yè)將此階段的鹿角稱為“鹿茸”),另一個(gè)是在茸皮脫落后鹿角成為完全的骨角,標(biāo)志著鹿角成熟的階段。有茸皮覆蓋的鹿角作為傳統(tǒng)中藥材具有較高的藥用價(jià)值,其代謝產(chǎn)物中的多種物質(zhì)被認(rèn)為與抗衰老和再生機(jī)制相關(guān)[6?7]。成為完全骨角的成熟鹿角在交配季節(jié)中對(duì)雄鹿?fàn)帄Z交配權(quán)具有決定性作用。但鹿角的發(fā)育再生這一動(dòng)態(tài)過程機(jī)制尚不明確,本文通過對(duì)鹿角生長(zhǎng)發(fā)育及再生過程研究進(jìn)展進(jìn)行綜述,旨在討論鹿角這一獨(dú)特器官的再生機(jī)制。
1 鹿角的特點(diǎn)
鹿是唯一能夠長(zhǎng)有再生骨質(zhì)角的動(dòng)物,除馴鹿(Rangifer tarandus)外,通常僅有雄鹿擁有鹿角。鹿角由角柄處長(zhǎng)出,每年脫落與再生,這也是區(qū)別于鯨偶蹄目其他動(dòng)物角最顯著的特點(diǎn)[8]。牛角是由永久性的骨質(zhì)角芯和角質(zhì)鞘組成,不會(huì)發(fā)生周期性更換[9];羚羊(Taurotragus oryx)角骨質(zhì)部分是被皮膚所覆蓋的額骨突起,表皮產(chǎn)生的角質(zhì)能夠每年更換[10];長(zhǎng)頸鹿(Giraffa camelopardalis)角則不包括角質(zhì)部分,僅包括表皮所覆蓋的額骨突起骨質(zhì)[11]。鹿角只有在生長(zhǎng)過程中被皮膚覆蓋,鹿角上生長(zhǎng)的皮膚才被稱為茸皮。茸皮與頭部其他區(qū)域的皮膚有所不同,茸皮較體表皮膚更厚,且毛囊缺乏立毛肌并擁有豐富的皮脂腺[12?13]。茸皮生長(zhǎng)速度與皮下的鹿骨角生長(zhǎng)速度保存一致[14]。Wang等[8]對(duì)反芻動(dòng)物頭帶的比較基因組學(xué)的研究發(fā)現(xiàn),鹿角與牛角的基因表達(dá)譜相似,角的發(fā)育源于相同的神經(jīng)嵴。此外,有研究發(fā)現(xiàn)RXFP2 基因在反芻動(dòng)物角的發(fā)育中有重要作用[15?16],在不同的反芻動(dòng)物類群中產(chǎn)生了趨同進(jìn)化。鹿角是完整的動(dòng)物器官,在完全骨化前含有皮膚、神經(jīng)、血管、軟骨和骨組織,是“活”的角,區(qū)別于由間充質(zhì)干細(xì)胞(mesenchymal stemcell,MSC)分泌的角質(zhì)所組成“死”的角質(zhì)角。
鹿角的形狀和大小在種間存在巨大差異。鹿角按照形狀可分為:無分枝角,如赤麂(Muntiacus vagi?nalis)、小麂(M. reevesi);掌狀角,如馴鹿、駝鹿(Alcesalces);枝狀角,如梅花鹿(Cervus nippon)、麋鹿(Elaphurus davidianus)。在現(xiàn)存鹿科動(dòng)物中,普渡鹿(Pudu puda)的無分枝角長(zhǎng)度僅為5~9 cm[17],成年駝鹿的分叉掌狀角則長(zhǎng)達(dá)108 cm[18]。已知最大的鹿角是已滅絕的巨大角鹿(Megaloceros giganteus)的鹿角,雄性鹿角橫寬可達(dá)3. 6 m,總質(zhì)量可達(dá)40~45 kg[19]。鹿角的骨骼形式類似于哺乳動(dòng)物的長(zhǎng)骨,和四肢的發(fā)育一樣,鹿角也有3個(gè)軸:近端-遠(yuǎn)端軸、前后軸和背腹軸[20]。鹿角的力學(xué)性質(zhì)從根部到尖端有所不同,這種變化與骨組織微觀結(jié)構(gòu)和礦化的綜合效應(yīng)相關(guān)。鹿角骨骼的生成在很短的生長(zhǎng)期內(nèi)完成(4~5個(gè)月)[21],形成的骨骼被茸皮覆蓋。茸皮脫落后,其中的血管和神經(jīng)退化,骨骼形成和礦化停止,鹿角骨骼死亡[22]。
鹿角有分叉,這也是鹿角區(qū)別于其他反芻動(dòng)物角的重要特點(diǎn)。大多數(shù)鹿在夏季完成鹿角的骨化并進(jìn)入求偶期,雄鹿會(huì)產(chǎn)生圈群行為,鹿角具有展示以及武器的作用[23]。帶有分支的鹿角使雄鹿在求偶期爭(zhēng)斗時(shí)能夠互相鎖定和推擠,擁有比其他有角反芻動(dòng)物更復(fù)雜的爭(zhēng)斗方式[24]。求偶季節(jié)雄鹿激烈的爭(zhēng)斗使鹿角容易發(fā)生折損,有學(xué)者認(rèn)為,根據(jù)缺損的部分進(jìn)行修補(bǔ)可能比重新按照遺傳物質(zhì)生長(zhǎng)成完整的鹿角更加復(fù)雜,定期脫落與再生能夠保證雄鹿每年擁有完整的鹿角參與求偶過程[25?27]。
2 鹿角的生長(zhǎng)發(fā)育
鹿角發(fā)育始于角柄上的芽基,鹿角柄是額骨上的一個(gè)固定突出,成對(duì)存在[27]。角柄發(fā)育源于眼眶上緣向后內(nèi)側(cè)延伸的低骨脊后部區(qū)域的額頂縫。新生鹿在出生后的第1年,其角柄在睪酮水平上升的刺激下[28],在角柄上長(zhǎng)出芽基,因此,通過對(duì)雄性鹿進(jìn)行早期閹割能夠抑制角的生長(zhǎng)[29]。新生鹿初始鹿角的形成(通常為無分枝的尖角)是角柄生長(zhǎng)的延續(xù),不是角的再生事件。
2. 1 鹿角的新生
鹿角的最初發(fā)育依賴于鹿角生長(zhǎng)位置上方的額骨附屬骨膜,即生茸骨膜(antlerogenic periosteum,AP),將其切除后會(huì)阻止鹿角的生長(zhǎng)[30],而將AP自體移植到身體其他部位會(huì)導(dǎo)致異位帶有茸皮的鹿角生長(zhǎng)[31?32]。這些異位鹿角都被特殊的茸皮覆蓋,并經(jīng)歷脫落和再生過程。AP不僅在移植部位誘導(dǎo)了鹿角骨生長(zhǎng),還形成了特定的茸皮[30]。同時(shí),試驗(yàn)也表明鹿皮轉(zhuǎn)換為茸皮的能力在鹿的不同部位皮膚中廣泛存在[30]。移植試驗(yàn)結(jié)果表明,AP細(xì)胞在角柄和鹿角形成中起決定性作用[32?33]。哺乳動(dòng)物額骨是由頭部神經(jīng)嵴細(xì)胞分化而來,AP分化過程可能在神經(jīng)嵴細(xì)胞還未遷移或正在遷移時(shí)就已完成,或在顱骨生長(zhǎng)過程中稍后完成[34]。AP與其他顱蓋區(qū)域的骨膜相比要厚得多,AP細(xì)胞中富含的糖原被認(rèn)為是快速增殖的能量來源,研究表明其具有胚胎干細(xì)胞的特點(diǎn)[35]。此外,AP還攜帶了鹿角軸向定向形態(tài)發(fā)生的信息,當(dāng)AP在原位旋轉(zhuǎn)180°時(shí),隨后形成的鹿角顯示其前后軸的反轉(zhuǎn),鹿角形態(tài)發(fā)生的決定性調(diào)控主要存在于AP前內(nèi)側(cè)部分[30]。通過對(duì)鹿和多種反芻動(dòng)物頭帶區(qū)域轉(zhuǎn)錄組及基因組的分析發(fā)現(xiàn),鹿角生長(zhǎng)的骨膜早期發(fā)育自神經(jīng)嵴,篩選到的OTOP3 和OLIG1 基因變化可能在反芻動(dòng)物頭帶的演化和發(fā)育中起關(guān)鍵作用[8]。鑒定到的SNAI2、TWIST1、SOX9 和HOXD 基因,以及其調(diào)控元件可能在重編程神經(jīng)嵴細(xì)胞發(fā)育成頭飾方面發(fā)揮作用,而RXFP2 基因在無角的鹿科動(dòng)物中發(fā)生了趨同假基因化[16,36],因此RXFP2 可能是決定鹿角生長(zhǎng)的關(guān)鍵基因[8]。鹿角在早期發(fā)育過程中依賴神經(jīng)、骨骼和皮膚組織的基因募集,對(duì)AP來源細(xì)胞進(jìn)行基因編輯發(fā)現(xiàn)TGF-β1是鹿角快速生長(zhǎng)的調(diào)控因子,并且BMP信號(hào)通路可能發(fā)揮關(guān)鍵作用[37?38]。另外一項(xiàng)對(duì)比小鼠和鹿軟骨細(xì)胞的研究發(fā)現(xiàn),鹿TGF-β1和小鼠TGF-β1蛋白存在結(jié)構(gòu)差異,且鹿TGF-β1可能比小鼠TGF-β1具有更強(qiáng)的功能[39]。
在外觀上,在第1對(duì)鹿角形成過程中,角柄處皮膚變成鹿茸皮是可見的轉(zhuǎn)化過程[22]。鹿角再生的初始時(shí)期,脫落的角柄殘留部分皮膚傷口會(huì)產(chǎn)生無疤痕的再生性愈合[40],研究認(rèn)為這個(gè)過程中機(jī)械壓力的變化是誘導(dǎo)這一過程產(chǎn)生的原因[14]。在鹿皮變化為茸皮的過程中,毛囊立毛肌和汗腺會(huì)退化,大型雙葉或多葉皮脂腺會(huì)增加,這種變化是皮膚對(duì)周期性激素水平誘導(dǎo)信號(hào)的特定反應(yīng)。茸皮下層的MSC來源于鹿角柄處的骨膜[41],茸皮進(jìn)入快速生長(zhǎng)階段后面積不斷擴(kuò)大,當(dāng)茸皮與鹿皮的邊界移動(dòng)到角柄基部時(shí),標(biāo)志著鹿角柄的成熟和角生長(zhǎng)的正式開始,茸皮被激活與鹿茸芽基的再生是一個(gè)同步的過程[42?43]。
2. 2 鹿角的發(fā)育成熟
鹿角生長(zhǎng)速度極快,馬鹿(Cervus elaphus)角平均生長(zhǎng)速度為1. 7 cm/d[28],加拿大馬鹿(C. canaden?sis)角最快生長(zhǎng)速度可達(dá)2. 75 cm/d,而已滅絕的巨大角鹿可能擁有更快的鹿角生長(zhǎng)速度[44]。每年重新生成鹿角需要補(bǔ)充大量的鈣磷,而在鹿角快速生長(zhǎng)期僅通過食物攝入礦物質(zhì)無法滿足角生長(zhǎng)的鈣磷需求[45]。研究顯示,在鹿角快速生長(zhǎng)時(shí)期會(huì)發(fā)生類似于雌性哺乳期動(dòng)物的骨質(zhì)動(dòng)員現(xiàn)象,會(huì)在肋骨等部位發(fā)生骨吸收,使鹿產(chǎn)生周期性的骨質(zhì)疏松。這種全身鈣磷的動(dòng)員可能是影響鹿角大小的主要因素[26]。
鹿角成熟是軟骨內(nèi)骨化的結(jié)果[46]。對(duì)不同鹿科物種未成熟初生鹿角和再生鹿角的組織學(xué)結(jié)構(gòu)以及正在發(fā)育的鹿角骨化過程進(jìn)行研究,結(jié)果表明鹿角生長(zhǎng)是持續(xù)性的[47?48],而哺乳動(dòng)物長(zhǎng)骨生長(zhǎng)的特征,如生長(zhǎng)板和次生骨化中心在生長(zhǎng)的鹿角中并不存在[49]。鹿角屬于頂端生長(zhǎng),在不同區(qū)段之間有逐漸過渡的不明確邊界[40]。遠(yuǎn)心端的鹿角部分比近心端的年輕,成熟鹿角縱向軸上的組織結(jié)構(gòu)[50]可以證明這一特點(diǎn)。另外,對(duì)不同區(qū)段鹿角蛋白質(zhì)組學(xué)的分析發(fā)現(xiàn),鹿角尖端表達(dá)的蛋白質(zhì)主要與抗氧化代謝機(jī)制、蛋白質(zhì)形成和Wnt信號(hào)通路有關(guān),鹿角中段表達(dá)的蛋白質(zhì)與血液有關(guān)[51]。位于茸皮真皮層下面的是軟骨膜,由大量低分化程度細(xì)胞組成,也被稱為增生軟骨膜,其與鹿角周圍的鹿角骨膜細(xì)胞(antlerperiosteal cells,AnPC)相連,鹿角軟骨細(xì)胞在AnPC膜內(nèi)實(shí)現(xiàn)骨化[32]。細(xì)胞體外培養(yǎng)試驗(yàn)證明,鹿角尖端MSC增殖受Ras/Raf、MEK/ERK通路調(diào)節(jié),并通過Gab1/Grb2和PI3K/AKT通路調(diào)節(jié)細(xì)胞的遷移[52]。軟骨膜下方致密細(xì)胞層被稱為增殖帶,即增生區(qū),其從遠(yuǎn)端到近端依次細(xì)分為3個(gè)亞區(qū),即儲(chǔ)備間充質(zhì)、前軟骨層和軟骨層[15],后2個(gè)亞區(qū)也被稱為軟骨前區(qū)。儲(chǔ)備間充質(zhì)的特點(diǎn)是有絲分裂活性高,細(xì)胞凋亡水平高,存在豐富神經(jīng)血管網(wǎng)絡(luò)[53]。緊隨其后的是軟骨細(xì)胞或軟骨區(qū),由透明軟骨組成,在該區(qū)域內(nèi),軟骨細(xì)胞經(jīng)歷成熟和肥大,且軟骨基質(zhì)開始礦化[54]。
在軟骨前區(qū),細(xì)胞經(jīng)歷了軟骨分化的第1個(gè)步驟[48],在軟骨前區(qū)中特異性高表達(dá)的基因主要與Wnt通路相關(guān)[38],該信號(hào)通路可能參與干細(xì)胞向軟骨形成的早期分化,OPN 基因受啟動(dòng)子DNA甲基化水平的調(diào)控,主要通過調(diào)控軟骨前組織和軟骨組織的生長(zhǎng)來促進(jìn)鹿角早期生長(zhǎng)發(fā)育[55]。比較前軟骨層和軟骨層細(xì)胞DNA 甲基化水平的研究也顯示,軟骨細(xì)胞的DNA甲基化水平明顯更高,這表明DNA去甲基化可能參與了鹿角快速軟骨分化[56]。軟骨區(qū)也含有許多血管。在軟骨層中高表達(dá)的基因與軟骨發(fā)育(如SOX6 和SOX9)以及細(xì)胞外基質(zhì)組織生長(zhǎng)發(fā)育(如COL2A1)有關(guān)[57]。肥大軟骨層中高表達(dá)的基因,如MMP16 與軟骨細(xì)胞礦化有關(guān)[58]。該區(qū)域內(nèi)軟骨細(xì)胞排列成相互連接的垂直小梁,形成一個(gè)圍繞富含血管化梁間組織的空間網(wǎng)絡(luò)[53]。軟骨的骨化從小梁中央向外圍擴(kuò)散。在接近軟骨區(qū)的位置,存在一個(gè)具有軟骨吸收、骨吸收和成骨活性共存的廣泛區(qū)域,呈現(xiàn)出海綿狀特征。在這個(gè)區(qū)域內(nèi),軟骨被大量軟骨吸收細(xì)胞侵蝕,骨組織沉積在變薄的軟骨小梁表面[59]。隨著軟骨吸收和成骨化,軟骨網(wǎng)絡(luò)被完全礦化,骨小梁系統(tǒng)逐漸被替代。在某些部位,新形成的骨組織也被骨吸收細(xì)胞侵蝕[60],尤其是在鹿角遠(yuǎn)端位置,軟骨在被替代過程中并未完全被吸收,這些組織殘留物可以在堅(jiān)硬的鹿角骨小梁中央被找到[61]。在鹿角四周,骨化結(jié)構(gòu)逐漸沉積并壓實(shí),形成一個(gè)緊密的表面,環(huán)繞內(nèi)部松質(zhì)部分。鹿角骨化過程還包括軟骨周圍的鈣化。因此,沿著鹿角外緣,通過直接從軟骨周圍或骨膜(鹿角頂端)骨化而形成了一個(gè)光滑骨套[62]。這一過程可能也是形成某些鹿種鹿角表面特征突起的原因[63]。鹿角生長(zhǎng)隨睪酮水平的升高而終止,在茸皮脫落時(shí)血液流動(dòng)停止,骨骼形成和礦化停止,形成成熟的骨質(zhì)角[21]。
3 鹿角的脫落再生
鹿角在茸皮脫落前后,其中的血管神經(jīng)逐漸退化成硬骨角,在交配季節(jié)過后鹿角自然脫落,第2年開始在角柄上長(zhǎng)出新的鹿茸角,即鹿角的再生。關(guān)于鹿角的周期性脫落與再生的原因有多種猜測(cè),如發(fā)育期的鹿角神經(jīng)血管豐富不適于打斗,成熟已死亡的鹿角無法對(duì)在發(fā)情期爭(zhēng)斗中出現(xiàn)的骨折進(jìn)行自我修復(fù),而定期的鹿角再生能確保雄鹿每個(gè)發(fā)情季節(jié)都有一套全新的“武器”。再如初生鹿角通常只有簡(jiǎn)單的無分叉結(jié)構(gòu),隨著每年鹿角的脫落和再生,隨后生長(zhǎng)的鹿角尺寸和復(fù)雜性才有可能增加[23]。也有觀點(diǎn)認(rèn)為,鹿可能發(fā)源于溫帶,富含神經(jīng)血管且表面積較大,有永久性皮膚覆蓋的鹿角很容易被凍壞,定期的再生有利于每年保存完整的鹿角[64?65]。
3. 1 鹿角的骨化與脫落
雄性鹿的鹿角再生周期與它們的繁殖周期密切相關(guān),棲息在較高緯度的鹿科物種,其生殖周期受光周期的嚴(yán)格控制[66?67]。鹿角的生長(zhǎng)啟動(dòng)發(fā)生在睪酮水平較低的階段[68]。求偶期前睪酮濃度的增加導(dǎo)致鹿角迅速骨化并伴隨茸皮脫落,有研究認(rèn)為CALR 基因很可能是雄性激素觸發(fā)鹿角再生的下游介質(zhì)[69]。早期鹿角生長(zhǎng)中主要的營(yíng)養(yǎng)供應(yīng)來源于鹿角柄處及鹿角根部的血管,隨著鹿角的快速生長(zhǎng),遠(yuǎn)端鹿角主要依靠茸皮豐富的血管網(wǎng)絡(luò)提供營(yíng)養(yǎng)[70]。茸皮脫落導(dǎo)致位于茸皮中的血管無法繼續(xù)為鹿角提供營(yíng)養(yǎng),鹿角內(nèi)部的血管也逐漸死亡,最終導(dǎo)致裸露骨質(zhì)鹿角的死亡[25]。隨后,在求偶期間,裸露的骨質(zhì)鹿角被用于雄性之間的求偶爭(zhēng)斗。
發(fā)情期過后,循環(huán)睪酮水平下降,引發(fā)角柄骨膜(pedicle periosteum,PP)附近的破骨細(xì)胞骨吸收[59],破骨細(xì)胞再吸收也發(fā)生在骨柄的骨膜表面,導(dǎo)致角柄上方環(huán)狀溝的形成[60]。這兩個(gè)過程導(dǎo)致角柄和鹿角之間的連接逐漸減弱,最后導(dǎo)致鹿角從角柄上斷裂[71],形成新的鹿角在鹿角柄上開始以年為周期的脫落和再生過程[72]。有證據(jù)表明,在鹿角局部睪酮轉(zhuǎn)化為雌激素后會(huì)影響鹿角的生長(zhǎng)發(fā)育,注射雌激素會(huì)抑制再生鹿角的生長(zhǎng),而促進(jìn)鹿角過早骨化和茸皮脫落[73]。睪酮對(duì)鹿角的影響在某種程度上是間接的[30]。
3. 2 鹿角的再生
鹿角脫落后,會(huì)在角柄殘基頂部發(fā)生短暫的膜內(nèi)成骨[74],彌補(bǔ)了之前部分角柄骨的缺失[40,75]。盡管PP會(huì)發(fā)生骨質(zhì)修復(fù),但是隨著鹿年齡的增大,PP會(huì)逐漸變薄,由于角柄基部會(huì)發(fā)生骨質(zhì)堆積,因此在鹿的整個(gè)生命周期中,骨柄厚度在增加[76]。鹿角脫落時(shí)伴隨著角柄附近血管的斷裂,但之后傷口表面迅速被皮膚覆蓋,皮膚下面形成了一團(tuán)再生組織,即鹿茸芽[76]。鹿茸芽在角柄殘端頂部形成一個(gè)再生芽狀物,此過程類似于其他脊椎動(dòng)物附肢的表皮再生過程。在鹿角再生期間,鹿角最下方的分叉很早就開始發(fā)育,在鹿茸芽中已經(jīng)可以識(shí)別出主梁和眉叉的分別增殖區(qū)域[77],都位于鹿角中央部位,是鹿角的生長(zhǎng)中心[74]。在多叉鹿角再生過程中,主梁尖端的生長(zhǎng)中心反復(fù)不對(duì)稱地分裂為一個(gè)較大的生長(zhǎng)中心成為主梁,以及一個(gè)較小的生長(zhǎng)中心用于長(zhǎng)出相應(yīng)的分叉角[78]。
鹿角再生是一個(gè)基于干細(xì)胞再生不依賴于去分化的周期性激活過程[41]。PP是負(fù)責(zé)啟動(dòng)鹿角柄和第1個(gè)鹿角生長(zhǎng)AP的衍生物[76]。有研究表明,AP和PP細(xì)胞具有干細(xì)胞屬性[69]。來自AP、PP和鹿角生長(zhǎng)中心的細(xì)胞統(tǒng)稱為鹿角干細(xì)胞(antler stem cells,ASCs),ASCs是鹿角再生的基礎(chǔ),其可在體外被誘導(dǎo)分化為軟骨細(xì)胞、骨細(xì)胞和脂肪細(xì)胞[79]。通過對(duì)分離自鹿角不同位置的ASCs、AnPC和PP細(xì)胞進(jìn)行體外培養(yǎng),發(fā)現(xiàn)培養(yǎng)的AnPC表達(dá)經(jīng)典的MSC標(biāo)記物,與PP細(xì)胞一致。然而,AnPC上的MSC標(biāo)記物強(qiáng)度明顯弱于PP。AnPC的增殖率在連續(xù)傳代后逐漸降低,而PP細(xì)胞的增殖率保持不變,與PP細(xì)胞相比,AnPC的分化程度更高。全基因分析也揭示了兩者基因表達(dá)模式的不同。鹿角再生過程中,AnPC主要起促進(jìn)血管生成、神經(jīng)生長(zhǎng)和骨膜內(nèi)骨形成的作用,PP 則可能主要參與雄激素信號(hào)受體途徑和PI3K/AKT信號(hào)通路,起干細(xì)胞更新的作用[32]。另一項(xiàng)對(duì)鹿角再生的研究利用單細(xì)胞測(cè)序技術(shù)建立了鹿角再生的時(shí)空細(xì)胞圖譜,從鹿角尖部分離鑒定出了鹿角芽基祖細(xì)胞(antler blastema progenitor cells,AB?PCs),這類細(xì)胞能夠直接促進(jìn)鹿角再生,相比人類骨髓干細(xì)胞(bone marrow stromal cells,BMSCs),其有更強(qiáng)的自我更新能力,以及更顯著的成軟骨和成骨的能力[57]。鹿角的快速細(xì)胞增殖需要刺激細(xì)胞快速增殖的因子,以及ABPCs的干細(xì)胞特性控制細(xì)胞周期。ABPCs 高度表達(dá)的標(biāo)記基因PRRX1、TNC、DLX5、PTN 和SOX4 在小鼠長(zhǎng)骨快速發(fā)育中也存在,這些基因可能在哺乳動(dòng)物骨骼發(fā)育中起到重要作用且具有物種間的保守性[57]。在ABPCs 中檢測(cè)到的大量與血管合成相關(guān)的基因也符合鹿角軟骨血管高度密集的特征[70,80],證明ABPCs在鹿角再生過程中起到多種作用。此外,ABPCs樣細(xì)胞也存在于處于再生過程中的哺乳動(dòng)物器官中,但不存在于哺乳動(dòng)物非再生組織,也不存在于蠑螈(Ambystoma mexicanum)和斑馬魚(Danio rerio)的再生組織中,這提示哺乳動(dòng)物與其他非哺乳動(dòng)物存在不同的再生機(jī)制,而ABPCs或許在哺乳動(dòng)物的附肢再生中發(fā)揮重要作用[48]。在ASCs中添加褪黑素(melatonin,MLT)能夠加速干細(xì)胞分化,并且MLT通過MT2結(jié)合介導(dǎo)YAP1 的轉(zhuǎn)錄來調(diào)節(jié)Col1a 的表達(dá),MLT通過抑制STAT5/IL-6信號(hào)通路激活依賴于SOX9 表達(dá)的AKT/CREB通路,能夠有效抑制血管內(nèi)皮生長(zhǎng)因子(vascular endothelialderivedgrowth factor,VEGF)誘導(dǎo)的鹿角軟骨細(xì)胞變性[81]。目前對(duì)于鹿角再生過程中多種ASCs的研究主要集中于尋找啟動(dòng)再生的細(xì)胞類群,而對(duì)于不同類群細(xì)胞協(xié)同參與,相關(guān)分子機(jī)制的驗(yàn)證以及在臨床上的應(yīng)用還有待進(jìn)一步探索。
鹿角再生過程中涉及的各類干細(xì)胞研究對(duì)于臨床上的骨骼修復(fù)和恒牙再造領(lǐng)域有極高的應(yīng)用前景。ABPCs特異表達(dá)相關(guān)基因的研究也有助于加深對(duì)干細(xì)胞的認(rèn)識(shí),ABPCs可能在骨損傷或肢體再生的再生醫(yī)學(xué)中被利用。
4 結(jié)語及展望
鹿角周期性再生是哺乳動(dòng)物器官再生的典型案例,是研究骨骼、神經(jīng)和血管損傷再生的理想模型。鹿角再生過程不同于兩棲類動(dòng)物的去分化再生過程,它是一種周期性干細(xì)胞控制的重生長(zhǎng)[80]。茸皮無疤痕修復(fù)機(jī)制對(duì)于疤痕修復(fù)、皮膚再生研究也有很重要的研究意義。另外,鹿角在快速增長(zhǎng)過程中很少發(fā)生癌變[53],其具體機(jī)制有助于理解癌癥的發(fā)生和研究抑制、治療癌癥的手段。我國(guó)擁有豐富的鹿種資源,研究鹿角這種獨(dú)特的器官對(duì)于保護(hù)我國(guó)鹿種資源具有重要作用。隨著組學(xué)技術(shù)的快速發(fā)展,通過宏基因組研究鹿對(duì)鈣磷的消化代謝,可為牛羊等反芻動(dòng)物的飼料營(yíng)養(yǎng)研究提供新的觀點(diǎn);基于單細(xì)胞測(cè)序技術(shù)、空間轉(zhuǎn)錄組測(cè)序技術(shù)等新手段對(duì)鹿角生長(zhǎng)發(fā)育機(jī)制進(jìn)行研究,對(duì)于理解再生醫(yī)學(xué)有重大意義,尤其是可為人類四肢的斷肢修復(fù)治療提供重要思路[20]。
參考文獻(xiàn):
[1] ROSKOV Y, OWER G, ORRELL T, et al. Species 2000 amp; ITISCatalogue of Life[EB/OL]. [2023-08-18]. https://www. cata?logueoflife. org/data/taxon/7XR.
[2] PRICE J S, ALLEN S, FAUCHEUX C, et al. Deer antlers: Azoological curiosity or the key to understanding organ regenerationin mammals?[J]. Journal of Anatomy, 2005, 207(5): 603-618.
[3] 劉匯濤, 董依萌, 王磊, 等. 中國(guó)鹿類動(dòng)物分類及系統(tǒng)進(jìn)化研究進(jìn)展[J]. 野生動(dòng)物學(xué)報(bào), 2017, 38(3): 514-523.
LIU H T, DONG Y M, WANG L, et al. Research progress on tax?onomy and phylogeny of deer in China[J]. Chinese Journal ofWildlife, 2017, 38(3): 514-523.
[4] R?SSNER G E, COSTEUR L, SCHEYER T M. Antiquity andfundamental processes of the antler cycle in Cervidae (Mammalia)[J]. The Science of Nature, 2021, 108(1): 3.
[5] FELEKE M, BENNETT S, CHEN J Z, et al. New physiologicalinsights into the phenomena of deer antler: a unique model forskeletal tissue regeneration[J]. Journal of Orthopaedic Transla?tion, 2020, 27: 57-66.
[6] GUAN M Q, PAN D A, ZHANG M, et al. Deer antler extract po?tentially facilitates xiphoid cartilage growth and regeneration andprevents inflammatory susceptibility by regulating multiple func?tional genes[J]. Journal of Orthopaedic Surgery and Research,2021, 16(1): 208.
[7] LIU Z P, LI W, GENG L L, et al. Cross-species metabolomicanalysis identifies uridine as a potent regeneration promoting factor[J]. Cell Discovery, 2022, 8: 6.
[8] WANG Y, ZHANG C Z, WANG N N, et al. Genetic basis of ru?minant headgear and rapid antler regeneration[J]. Science,2019, 364(6446): eaav6335.
[9] DEMIGUEL D, AZANZA B, MORALES J. Key innovations in ru?minant evolution: a paleontological perspective[J]. IntegrativeZoology, 2014, 9(4): 412-433.
[10] CAPPELLI J, GARCíA A J, KOTRBA R, et al. The bony horn?core of the common eland (Taurotragus oryx): composition andmechanical properties of a spiral fighting structure[J]. Journal ofAnatomy, 2018, 232(1): 72-79.
[11] NASOORI A. Formation, structure, and function of extraskeletalbones in mammals[J]. Biological Reviews of the Cam?bridge Philosophical Society, 2020, 95(4): 986-1019.
[12] SINHA S, SPARKS H D, LABIT E, et al. Fibroblast inflamma?tory priming determines regenerative versus fibrotic skin repair inreindeer[J]. Cell, 2022, 185(25): 4717-4736. e25.
[13] LI C, SUTTIE J M. Histological studies of pedicle skin forma?tion and its transformation to antler velvet in red deer (Cervus ela?phus)[J]. The Anatomical Record, 2000, 260(1): 62-71.
[14] LI C Y, YANG F H, LI G Y, et al. Antler regeneration: A de?pendent process of stem tissue primed via interaction with its en?veloping skin[J]. Journal of Experimental Zoology Part A, Eco?logical Genetics and Physiology, 2007, 307(2): 95-105.
[15] WANG D T, BERG D, BA H X, et al. Deer antler stem cellsare a novel type of cells that sustain full regeneration of a mamma?lian organ: deer antler[J]. Cell Death amp; Disease, 2019,10: 443.
[16] BA H X, WANG X, WANG D T, et al. Single-cell transcrip?tome reveals core cell populations and androgen-RXFP2 axis in?volved in deer antler full regeneration[J]. Cell Regeneration,2022, 11(1): 43.
[17] BUBENIK G A, REYES E, SCHAMS D, et al. Effect of antian?drogen cyproterone acetate on the development of the antler cyclein southern Pudu (Pudu puda)[J]. The Journal of ExperimentalZoology, 2002, 292(4): 393-401.
[18] CLUTTON-BROCK T H, ALBON S D, HARVEY P H. Ant?lers, body size and breeding group size in the Cervidae[J]. Na?ture, 1980, 285: 565-567.
[19] GOULD S J. The origin and function of“ bizarre” structures: ant?ler size and skull size in the“ Irish elk,” Megaloceros giganteus[J]. Evolution, 1974, 28(2): 191-220.
[20] LI C Y, ZHAO H P, LIU Z, et al. Deer antler: a novel modelfor studying organ regeneration in mammals[J]. The Interna?tional Journal of Biochemistry amp; Cell Biology, 2014, 56:111-122.
[21] CURREY J D, LANDETE-CASTILLEJOS T, ESTEVEZ J, etal. The mechanical properties of red deer antler bone when usedin fighting[J]. The Journal of Experimental Biology, 2009, 212(Pt 24): 3985-3993.
[22] LI C Y. Histogenetic aspects of deer antler development[J].Frontiers in Bioscience( Elite Edition), 2013, 5(2): 479-489.
[23] SMOLKO P, GARAJ P, LEBOCKY T, et al. Soil nutrients anddeer density affect antler size of the Carpathian red deer[J].Mammalian Biology, 2022, 102(1): 119-130.
[24] PETERS L, HUISMAN J, KRUUK L E B, et al. Genomic analy?sis reveals a polygenic architecture of antler morphology in wildred deer (Cervus elaphus)[J]. Molecular Ecology, 2022, 31(4): 1281-1298.
[25] LANDETE-CASTILLEJOS T, KIERDORF H, GOMEZ S, et al.Antlers-Evolution, development, structure, composition, andbiomechanics of an outstanding type of bone[J]. Bone, 2019,128: 115046.
[26] CEACERO F. Long or heavy? Physiological constraints in theevolution of antlers[J]. Journal of Mammalian Evolution, 2016,23(2): 209-216.
[27] LI C, LITTLEJOHN R P, CORSON I D, et al. Effects of testos?terone on pedicle formation and its transformation to antler in cas?trated male, freemartin and normal female red deer (Cervus ela?phus)[J]. General and Comparative Endocrinology, 2003,131(1): 21-31.
[28] SUTTIE J M, FENNESSY P F, LAPWOOD K R, et al. Role ofsteroids in antler growth of red deer stags[J]. The Journal of Ex?perimental Zoology, 1995,271(2): 120-130.
[29] KIERDORF U, KIERDORF H, SCHULTZ M, et al. Histologi?cal structure of antlers in castrated male fallow deer (Damadama)[J]. The Anatomical Record Part A, discoveries in Mo?lecular, Cellular, and Evolutionary Biology, 2004, 281(2):1352-1362.
[30] GAO Z G, YANG F H, MCMAHON C, et al. Mapping the mor?phogenetic potential of antler fields through deleting and trans?planting subregions of antlerogenic periosteum in sika deer (Cer?vus nippon)[J]. Journal of Anatomy, 2012, 220(2): 131-143.
[31] GOSS R J, POWEL R S. Induction of deer antlers by trans?planted periosteum. I. Graft size and shape[J]. The Journal ofExperimental Zoology, 1985, 235(3): 359-373.
[32] WEI G N, QIN T, LI X S, et al. Constructing the in vitro cul?ture system of the sika deer (Cervus nippon) antler periosteal cellto detect its function on antler regeneration[J]. Frontiers in Bio?science( Landmark Edition), 2022, 27(2): 69.
[33] ZHANG W, KE C H, GUO H H, et al. Antler stem cells andtheir potential in wound healing and bone regeneration[J].World Journal of Stem Cells, 2021,13(8): 1049-1057.
[34] ROTH D M, BAYONA F, BADDAM P, et al. Craniofacial de?velopment: neural crest in molecular embryology[J]. Head andNeck Pathology, 2021, 15(1): 1-15.
[35] LI C, SUTTIE J M. Electron microscopic studies of antlerogeniccells from five developmental stages during pedicle and early ant?ler formation in red deer (Cervus elaphus)[J]. The AnatomicalRecord, 1998, 252(4): 587-599.
[36] LUAN Y Y, WU S J, WANG M K, et al. Identification of criti?cal genes for ovine horn development based on transcriptome dur?ing the embryonic period[J]. Biology, 2023, 12(4): 591.
[37] LIU M X, HAN X Y, LIU H Y, et al. The effects of CRISPRCas9knockout of the TGF-β1 gene on antler cartilage cells in vi?tro[J]. Cellular amp; Molecular Biology Letters, 2019, 24: 44.
[38] ZHANG Z X, HE C X, BAO C H, et al. MiRNA profiling andits potential roles in rapid growth of velvet antler in Gansu reddeer( Cervus elaphus kansuensis)[J]. Genes, 2023, 14(2): 424.
[39] ZHOU Z W, ZHONG J H, ZHANG J C, et al. Comparative tran?scriptome analysis provides insight into the molecular targets andsignaling pathways of deer TGF-1 regulating chondrocytes prolif?eration and differentiation[J]. Molecular Biology Reports,2023, 50(4): 3155-3166.
[40] LI C Y, SUTTIE J M, CLARK D E. Morphological observationof antler regeneration in red deer (Cervus elaphus)[J]. Journalof Morphology, 2004, 262(3): 731-740.
[41] LI C Y, CHU W H. The regenerating antler blastema: the de?rivative of stem cells resident in a pedicle stump[J]. Frontiers inBioscience( Landmark Edition), 2016, 21(3): 455-467.
[42] ROLF H J, KIERDORF U, KIERDORF H, et al. Localizationand characterization of STRO-1 cells in the deer pedicle and re?generating antler[J]. PLoS One, 2008,3(4): e2064.
[43] LI C Y. Deer antler regeneration: a stem cell-based epimorphicprocess[J]. Birth Defects Research Part C, Embryo Today: Re?views, 2012, 96(1): 51-62.
[44] KLINKHAMER A J, WOODLEY N, NEENAN J M, et al.Head to head: the case for fighting behaviour in Megaloceros gi?ganteus using finite-element analysis[J]. Proceedings BiologicalSciences, 2019, 286(1912): 20191873.
[45] LOPEZ N, STANKOWICH T. Sizing up swords: correlated evo?lution of antlers and tusks in ruminants[J]. Journal of Mamma?lian Evolution, 2023, 30(1): 231-244.
[46] SUN H M, YANG F H, CHU W H, et al. Lentiviral-mediated RNAi knockdown of Cbfa1 gene inhibits endochondral ossifica?tion of antler stem cells in micromass culture[J]. PLoS One,2012, 7(10): e47367.
[47] BA H X, WANG D T, YAU T O, et al. Transcriptomic analysisof different tissue layers in antler growth center in sika deer (Cer?vus nippon)[J]. BMC Genomics, 2019, 20(1): 173.
[48] CLARK D E, LI C Y, WANG W Y, et al. Vascular localizationand proliferation in the growing tip of the deer antler[J]. TheAnatomical Record Part A, Discoveries in Molecular, Cellular,and Evolutionary Biology, 2006, 288(9): 973-981.
[49] SZUWART T, KIERDORF H, KIERDORF U, et al. Ultrastruc?tural aspects of cartilage formation, mineralization, and degen?eration during primary antler growth in fallow deer (Dama dama)[J]. Annals of Anatomy-Anatomischer Anzeiger, 1998, 180(6):501-510.
[50] GOMEZ S, GARCIA A J, LUNA S, et al. Labeling studies oncortical bone formation in the antlers of red deer (Cervus elaphus)[J]. Bone, 2013,52(1): 506-515.
[51] LóPEZ-PEDROUSO M, LORENZO J M, LANDETE-CASTILLEJOST, et al. SWATH-MS quantitative proteomic analysis ofdeer antler from two regenerating and mineralizing sections[J].Biology, 2021, 10(7): 679.
[52] WANG M, LIN C, JIA X D, et al. HGF/c-Met signaling pro?motes the migration and proliferation of deer antler MSCs[J].Scientific Reports, 2023, 13: 11121.
[53] LI X S, SHI W W, WEI G N, et al. Galectin-1 promotes angio?genesis and chondrogenesis during antler regeneration[J]. Cellu?lar amp; Molecular Biology Letters, 2023, 28(1): 40.
[54] LI C Y, CLARK D E, LORD E A, et al. Sampling technique todiscriminate the different tissue layers of growing antler tips forgene discovery[J]. The Anatomical Record, 2002, 268(2):125-130.
[55] XING H H, ZHANG F R, HAN R B, et al. DNA methylationpattern and mRNA expression of OPN promoter in sika deer ant?ler tip tissues[J]. Gene, 2023, 868: 147382.
[56] YANG C, GAO Z Z, WANG Y K, et al. Genome-wide DNAmethylation analysis reveals layer-specific methylation patternsin deer antler tissue[J]. Gene, 2023, 884: 147744.
[57] QIN T, ZHANG G K, ZHENG Y, et al. A population of stemcells with strong regenerative potential discovered in deer antlers[J]. Science, 2023, 379(6634): 840-847.
[58] WU J, YANG F, WU X Y, et al. Comparison of genome-wideDNA methylation patterns between antler precartilage and carti?lage[J]. Molecular Genetics and Genomics, 2023, 298(2):343-352.
[59] KIERDORF U, GOMEZ S, STOCK S R, et al. Bone resorptionand formation in the pedicles of European roe deer (Capreolus ca?preolus) in relation to the antler cycle: a morphological and mi?croanalytical study[J]. Journal of Anatomy, 2023, 243(5):842-859.
[60] KIERDORF U, SCHULTZ M, KIERDORF H. The conse?quences of living longer: effects of an experimentally extendedvelvet antler phase on the histomorphology of antler bone in fal?low deer (Dama dama)[J]. Journal of Anatomy, 2021, 239(5): 1104-1113.
[61] KIERDORF U, STOCK S R, GOMEZ S, et al. Distribution,structure, and mineralization of calcified cartilage remnants inhard antlers[J]. Bone Reports, 2022,16: 101571.
[62] KIERDORF U, FLOHR S, GOMEZ S, et al. The structure ofpedicle and hard antler bone in the European roe deer (Capreoluscapreolus): a light microscope and backscattered electron imag?ing study[J]. Journal of Anatomy, 2013, 223(4): 364-384.
[63] KIERDORF U, KIERDORF H, SZUWART T. Deer antler re?generation: cells, concepts, and controversies[J]. Journal ofMorphology, 2007,268(8): 726-738.
[64] GOSS R J. Tumor-like growth of antlers in castrated fallow deer:an electron microscopic study[J]. Scanning Microscopy, 1990,4(3): 715-720; discussion 720-721.
[65] KIERDORF U, KIERDORF H, KNUTH S. Effects of castrationon antler growth in fallow deer (Dama dama L.)[J]. The Jour?nal of Experimental Zoology, 1995, 273(1): 33-43.
[66] WELDENEGODGUAD M, POKHAREL K, MING Y, et al. Ge?nome sequence and comparative analysis of reindeer (Rangifertarandus) in northern Eurasia[J]. Scientific Reports, 2020,10: 8980.
[67] LIN Z S, CHEN L, CHEN X Q, et al. Biological adaptations inthe Arctic cervid, the reindeer (Rangifer tarandus)[J]. Sci?ence, 2019, 364(6446): eaav6312.
[68] AKHTAR R W, LIU Z, WANG D T, et al. Identification of pro?teins that mediate the role of androgens in antler regeneration us?ing label free proteomics in sika deer (Cervus nippon)[J]. Gen?eral and Comparative Endocrinology, 2019, 283: 113235.
[69] GUO Q Q, ZHENG J J, BA H X, et al. Calreticulin identifiedas one of the androgen response genes that trigger full regenera?tion of the only capable mammalian organ, the deer antler[J].Frontiers in Cell and Developmental Biology, 2022, 10:862841.
[70] LEHOCZKY J A, ROBERT B, TABIN C J. Mouse digit tip re?generation is mediated by fate-restricted progenitor cells[J]. Pro?ceedings of the National Academy of Sciences of the UnitedStates of America, 2011, 108(51): 20609-20614.
[71] GOSS R J, VAN PRAAGH A, BREWER P. The mechanism ofantler casting in the fallow deer[J]. The Journal of ExperimentalZoology, 1992, 264(4): 429-436.
[72] GASPAR-LóPEZ E, LANDETE-CASTILLEJOS T, ESTEVEZ JA, et al. Biometrics, testosterone, cortisol and antler growthcycle in Iberian red deer stags (Cervus elaphus hispanicus)[J].Reproduction in Domestic Animals = Zuchthygiene, 2010, 45(2): 243-249.
[73] PRICE J, ALLEN S. Exploring the mechanisms regulating regen?eration of deer antlers[J]. Philosophical Transactions of theRoyal Society of London. Series B, Biological Sciences, 2004,359(1445): 809-822.
[74] LI C Y, MACKINTOSH C G, MARTIN S K, et al. Identifica?tion of key tissue type for antler regeneration through pedicle peri?osteum deletion[J]. Cell and Tissue Research, 2007, 328(1):65-75.
[75] KIERDORF U, KIERDORF H. Bilateral antler sequestrationabove the coronet in a red deer (Cervus elaphus) stag: insightsinto the process of antler casting[J]. Anatomia, Histologia, Em?bryologia, 2021, 50(2): 422-428.
[76] LI C Y, SUTTIE J M, CLARK D E. Histological examination ofantler regeneration in red deer (Cervus elaphus)[J]. The Ana?tomical Record Part A, Discoveries in Molecular, Cellular, andEvolutionary Biology, 2005, 282(2): 163-174.
[77] YAO B J, WANG C N, ZHOU Z W, et al. Comparative tran?scriptome analysis of the main beam and brow tine of sika deerantler provides insights into the molecular control of rapid antlergrowth[J]. Cellular amp; Molecular Biology Letters, 2020, 25: 42.
[78] LI C Y, SUTTIE J. Morphogenetic aspects of deer antler devel?opment[J]. Frontiers in Bioscience (Elite Edition), 2012, 4(5): 1836-1842.
[79] SEO M S, PARK S B, CHOI S W, et al. Isolation and character?ization of antler-derived multipotent stem cells[J]. Cell Trans?plantation, 2014, 23(7): 831-843.
[80] KIERDORF U, KIERDORF H. Antler regrowth as a form of epi?morphic regeneration in vertebrates- a comparative view[J].Frontiers in Bioscience (Elite Edition), 2012, 4(5): 1606-1624.
[81] SUNX Y, GUX Y, LIK K, et al. Melatonin promotes antlergrowth by accelerating MT1-mediated mesenchymal cell differen?tiation and inhibiting VEGF-induced degeneration of chondro?cytes[J]. International Journal of Molecular Sciences, 2022, 23(2): 759.
基金項(xiàng)目:北京市財(cái)政資金項(xiàng)目(23CB063)